Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 180 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
180
Dung lượng
13,64 MB
Nội dung
Dịch Vụ Toán Học Tuyển tập Đề thi Tuyển sinh Đại học (2002 -2012) Môn Toán Ấn phẩm Kỉ niệm 5 năm VNMATH.COM Vol.1 VnMath.CoM - Trang web Toán học có lượt truy cập lớn nhất Việt Nam vnMath.com Dịch vụ Toán học info@vnmath.com Sách Đại số Giải tích Hình học Các loại khác Chuyên đề Toán Luyện thi Đại học Bồi dưỡng HSG Đề thi Đáp án Đại học Cao học Thi lớp 10 Olympic Giáo án các môn bộ giáo dục và đào tạo Kỳ thi tuyển sinh đại học, cao ĐẳnG năm 2002 Môn thi : toán Đề chính thức (Thời gian làm bài: 180 phút) _____________________________________________ Câu I (ĐH : 2,5 điểm; CĐ : 3,0 điểm) Cho hàm số : (1) ( là tham số). 23223 )1(33 mmxmmxxy +++= m 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi .1=m 2. Tìm k để phơng trình: có ba nghiệm phân biệt. 033 2323 =++ kkxx 3. Viết phơng trình đờng thẳng đi qua hai điểm cực trị của đồ thị hàm số (1). Câu II.(ĐH : 1,5 điểm; CĐ: 2,0 điểm) Cho phơng trình : 0121loglog 2 3 2 3 =++ mxx (2) ( là tham số). m 1 Giải phơng trình (2) khi .2=m 2. Tìm để phơng trình (2) có ít nhất một nghiệm thuộc đoạn [ m 3 3;1 ]. Câu III. (ĐH : 2,0 điểm; CĐ : 2,0 điểm ) 1. Tìm nghiệm thuộc khoảng )2;0( của phơng trình: .32cos 2sin21 3sin3cos sin += + + + x x xx x 5 2. Tính diện tích hình phẳng giới hạn bởi các đờng: .3,|34| 2 +=+= xyxxy Câu IV.( ĐH : 2,0 điểm; CĐ : 3,0 điểm) 1. Cho hình chóp tam giác đều đỉnh có độ dài cạnh đáy bằng a. Gọi ABCS . ,S M và lần lợt N là các trung điểm của các cạnh và Tính theo diện tích tam giác , biết rằng SB . SC a AMN mặt phẳng ( vuông góc với mặt phẳng . ) AMN )( SBC 2. Trong không gian với hệ toạ độ Đêcac vuông góc Oxyz cho hai đờng thẳng: và . =++ =+ 0422 042 : 1 zyx zyx += += += tz ty tx 21 2 1 : 2 a) Viết phơng trình mặt phẳng chứa đờng thẳng )( P 1 và song song với đờng thẳng . 2 b) Cho điểm . Tìm toạ độ điểm )4;1;2( M H thuộc đờng thẳng 2 sao cho đoạn thẳng MH có độ dài nhỏ nhất. Câu V.( ĐH : 2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ Đêcac vuông góc Oxy , xét tam giác vuông tại , ABC A phơng trình đờng thẳng là BC ,033 = yx các đỉnh và A B thuộc trục hoành và bán kính đờng tròn nội tiếp bằng 2. Tìm tọa độ trọng tâm của tam giác . G ABC 2. Cho khai triển nhị thức: n x n n n x x n n x n x n n x n n x x CCCC + ++ + = + 3 1 3 2 1 1 3 1 2 1 1 2 1 0 3 2 1 22222222 L ( n là số nguyên dơng). Biết rằng trong khai triển đó C và số hạng thứ t 13 5 nn C= bằng , tìm và n20 n x . Hết Ghi chú: 1) Thí sinh chỉ thi cao đẳng không làm Câu V. 2) Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: Số báo danh: www.VNMATH.com bộ giáo dục và đào tạo kỳ thi tuyển sinh đại học, cao Đẳng năm 2002 đề chính thức Môn thi : toán, Khối B. (Thời gian làm bài : 180 phút) _____________________________________________ Câu I. (ĐH : 2,0 điểm; CĐ : 2,5 điểm) Cho hàm số : ( ) 109 224 ++= xmmxy (1) ( m là tham số). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi 1 = m . 2. Tìm m để hàm số (1) có ba điểm cực trị. Câu II. (ĐH : 3,0 điểm; CĐ : 3,0 điểm) 1. Giải phơng trình: xxxx 6cos5sin4cos3sin 2222 = . 2. Giải bất phơng trình: ( ) 1)729(loglog 3 x x . 3. Giải hệ phơng trình: ++=+ = .2 3 yxyx yxyx Câu III. ( ĐH : 1,0 điểm; CĐ : 1,5 điểm) Tính diện tích của hình phẳng giới hạn bởi các đờng : 4 4 2 x y = và 24 2 x y = . Câu IV.(ĐH : 3,0 điểm ; CĐ : 3,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Đêcac vuông góc Oxy cho hình chữ nhật ABCD có tâm 0; 2 1 I , phơng trình đờng thẳng AB là 022 =+ yx và ADAB 2 = . Tìm tọa độ các đỉnh DCBA ,,, biết rằng đỉnh A có hoành độ âm. 2. Cho hình lập phơng 1111 DCBABCDA có cạnh bằng a . a) Tính theo a khoảng cách giữa hai đờng thẳng BA 1 và DB 1 . b) Gọi PNM ,, lần lợt là các trung điểm của các cạnh CDBB , 1 , 11 DA . Tính góc giữa hai đờng thẳng MP và NC 1 . Câu V. (ĐH : 1,0 điểm) Cho đa giác đều n AAA 221 L ,2( n n nguyên ) nội tiếp đờng tròn () O . Biết rằng số tam giác có các đỉnh là 3 trong n2 điểm n AAA 221 ,,, L nhiều gấp 20 lần số hình chữ nhật có các đỉnh là 4 trong n2 điểm n AAA 221 ,,, L , tìm n . Hết Ghi chú : 1) Thí sinh chỉ thi cao đẳng không làm Câu IV 2. b) và Câu V. 2) Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: Số báo danh: www.VNMATH.com Bộ giáo dục và đào tạo Kỳ thi Tuyển sinh đại học ,cao đẳng năm 2002 Đề chính thức Môn thi : Toán, Khối D ( Thời gian làm bài : 180 phút ) _________________________________________ CâuI ( ĐH : 3 điểm ; CĐ : 4 điểm ). Cho hàm số : () 1x mx1m2 y 2 = (1) ( m là tham số ). 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) ứng với m = -1. 2. Tính diện tích hình phẳng giới hạn bởi đờng cong (C) và hai trục tọa độ. 3. Tìm m để đồ thị của hàm số (1) tiếp xúc với đờng thẳng x y = . Câu II ( ĐH : 2 điểm ; CĐ : 3 điểm ). 1. Giải bất phơng trình : ( ) x3x 2 . 02x3x2 2 . 2. Giải hệ phơng trình : = + + = + .y 22 24 y4y52 x 1xx 2x3 Câu III ( ĐH : 1 điểm ; CĐ : 1 điểm ). Tìm x thuộc đoạn [ 0 ; 14 ] nghiệm đúng phơng trình : 04xcos3x2cos4x3cos =+ . Câu IV ( ĐH : 2 điểm ; CĐ : 2 điểm ). 1. Cho hình tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABC); AC = AD = 4 cm ; AB = 3 cm ; BC = 5 cm . Tính khoảng cách từ điểm A tới mặt phẳng (BCD). 2. Trong không gian với hệ tọa độ Đêcac vuông góc Oxyz, cho mặt phẳng (P) : 02yx2 =+ và đờng thẳng m d: ()() () =++++ =+++ 02m4z1m2mx 01mym1x1m2 ( m là tham số ). Xác định m để đờng thẳng m d song song với mặt phẳng (P). Câu V (ĐH : 2 điểm ). 1. Tìm số nguyên dơng n sao cho 243C2 C4C2C n n n2 n 1 n 0 n =++++ . 2. Trong mặt phẳng với hệ tọa độ Đêcac vuông góc Oxy , cho elip (E) có phơng trình 1 9 y 16 x 22 =+ . Xét điểm M chuyển động trên tia Ox và điểm N chuyển động trên tia Oy sao cho đờng thẳng MN luôn tiếp xúc với (E). Xác định tọa độ của M , N để đoạn MN có độ dài nhỏ nhất . Tính giá trị nhỏ nhất đó . Hết Chú ý : 1. Thí sinh chỉ thi cao đẳng không làm câu V 2. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh : Số báo danh www.VNMATH.com bộ giáo dục và đào tạo Kỳ thi tuyển sinh đại học, cao đẳng năm 2002 Đáp án và thang điểm môn toán khối A Câu ý Nội dung ĐH CĐ I1 23 31 xxym +== Tập xác định Rx . )2(363' 2 =+= xxxxy , = = = 2 0 0' 2 1 x x y 10",066" ===+= xyxy Bảng biến thiên + 210x ' y + 0 0 + 0 " y y + lõm U 4 CT 2 CĐ 0 lồi = = = 3 0 0 x x y , 4)1( =y Đồ thị: ( Thí sinh có thể lập 2 bảng biến thiên) 1,0 đ 0,25 đ 0,5 đ 0,25 đ 1,5 đ 0,5đ 0,5 đ 0,5 đ - 1 1 2 3 x 0 2 4 y www.VNMATH.com I2 Cách I. Ta có 2332323 33033 kkxxkkxx +=+=++ . Đặt 23 3kka += Dựa vào đồ thị ta thấy phơng trình axx =+ 23 3 có 3 nghiệm phân biệt 43040 23 <+<<< kka ()( ) >+ < >++ < 021 30 0)44)(1( 30 2 2 kk k kkk k << 20 31 kk k Cách II. Ta có [ ] 03)3()(033 222323 =++=++ kkxkxkxkkxx có 3 nghiệm phân biệt 03)3()( 22 =++= kkxkxxf có 2 nghiệm phân biệt khác k << ++ >++= 20 31 033 0963 222 2 kk k kkkkk kk 5,0 đ 0,25 đ 0,25 đ 0,25đ 0,25 đ 5,0 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 3 Cách I. 3)(3)1(363 222' +=++= mxmmxxy , += = = 1 1 0 2 1 ' mx mx y Ta thấy 21 xx và 'y đổi dấu khi qua 1 x và 2 x hàm số đạt cực trị tại 1 x và 2 x . 23)( 2 11 +== mmxyy và 23)( 2 22 ++== mmxyy Phơng trình đờng thẳng đi qua 2 điểm cực trị ( ) 23;1 2 1 + mmmM và ( ) 23;1 2 2 +++ mmmM là: ++ = + 4 23 2 1 2 mmymx mmxy += 2 2 Cách II. 3)(3)1(363 222' +=++= mxmmxxy , Ta thấy 0'09)1(99' 22 =>=+= ymm có 2 nghiệm 21 xx và 'y đổi dấu khi qua 1 x và 2 x hàm số đạt cực trị tại 1 x và 2 x . Ta có 23223 )1(33 mmxmmxxy +++= () .23363 33 1 222 mmxmmxx m x ++++ = Từ đây ta có mmxy += 2 11 2 và mmxy += 2 22 2 . Vậy phơng trình đờng thẳng đi qua 2 điểm cực trị là mmxy += 2 2 . 1,0 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 1,0 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25đ 0,25 đ 0,25 đ II 1. Với 2=m ta có 051loglog 2 3 2 3 =++ xx Điều kiện 0>x . Đặt 11log 2 3 += xt ta có 06051 22 =+=+ tttt . 2 3 2 1 = = t t 5,0 đ 0,25 đ 0,1 đ 0,5 đ www.VNMATH.com 3 1 = t (loại) , 3 3 2 32 33log3log2 ==== xxxt 3 3 =x thỏa mãn điều kiện 0>x . (Thí sinh có thể giải trực tiếp hoặc đặt ẩn phụ kiểu khác) 0,25 đ 0,5 đ 2. 0121loglog 2 3 2 3 =++ mxx (2) Điều kiện 0>x . Đặt 11log 2 3 += xt ta có 0220121 22 =+=+ mttmtt (3) .21log13log0]3,1[ 2 33 3 += xtxx Vậy (2) có nghiệm ]3,1[ 3 khi và chỉ khi (3) có nghiệm [] 2,1 . Đặt tttf += 2 )( Cách 1. Hàm số )(tf là hàm tăng trên đoạn ][ 2;1 . Ta có 2)1( =f và 6)2( =f . Phơng trình 22)(22 2 +=+=+ mtfmtt có nghiệm [] 2;1 .20 622 222 22)2( 22)1( + + + + m m m mf mf Cách 2. TH1. Phơng trình (3) có 2 nghiệm 21 ,tt thỏa mãn 21 21 << tt . Do 1 2 1 2 21 <= + tt nên không tồn tại m . TH2. Phơng trình (3) có 2 nghiệm 21 ,tt thỏa mãn 21 21 tt hoặc 21 21 tt () 200242 mmm . (Thí sinh có thể dùng đồ thị, đạo hàm hoặc đặt ẩn phụ kiểu khác ) 0,1 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,1 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ III 1. 5 32cos 2sin21 3sin3cos sin += + + + x x xx x . Điều kiện 2 1 2sin x Ta có 5 = + + + x xx x 2sin21 3sin3cos sin 5 + +++ x xxxxx 2sin21 3sin3cos2sinsin2sin =5 = + +++ x xxxxx 2sin21 3sin3cos3coscossin 5 x x xx cos5 2sin21 cos)12sin2( = + + Vậy ta có: 02cos5cos232coscos5 2 =++= xxxx 2cos =x (loại) hoặc ).(2 32 1 cos Zkkxx +== 1,0 đ 0,25 đ 0,25 đ 0,25 đ 1,0 đ 0,25 đ 0,25 đ 0,25 đ www.VNMATH.com 2. Vì ( 0x ; ) 2 nên lấy 3 1 =x và 3 5 2 =x . Ta thấy 21 , xx thỏa mãn điều kiện 2 1 2sin x . Vậy các nghiệm cần tìm là: 3 1 =x và 3 5 2 =x . (Thí sinh có thể sử dụng các phép biến đổi khác) Ta thấy phơng trình 3|34| 2 +=+ xxx có 2 nghiệm 0 1 =x và .5 2 =x Mặt khác ++ 3|34| 2 xxx [] 5;0 x . Vậy ()()() dxxxxdxxxxdxxxxS ++++++=++= 1 0 3 1 22 5 0 2 343343|34|3 () dxxxx +++ 5 3 2 343 ()( )() dxxxdxxxdxxxS +++++= 5 3 2 3 1 2 1 0 2 5635 5 3 23 3 1 23 1 0 23 2 5 3 1 6 2 3 3 1 2 5 3 1 ++ ++ += xxxxxxxS 6 109 3 22 3 26 6 13 =++=S (đ.v.d.t) (Nếu thí sinh vẽ hình thì không nhất thiết phải nêu bất đẳng thức ++ 3|34| 2 xxx [] 5;0x ) 0,25 đ 1,0 đ 0,25 đ 0,25 đ 0,25 đ 0,25đ 0,25 đ 1,0 đ 0,25 đ 0,25 đ 0,25 đ 0,25đ IV 1. 1đ 1đ x 5 1 0 -1 y 3 3 2 1 8 -1 www.VNMATH.com S N I M C A K B Gọi K là trung điểm của BC và MNSKI = . Từ giả thiết MN a BCMN , 22 1 ==// BC I là trung điểm của SK và MN . Ta có = SACSAB hai trung tuyến tơng ứng ANAM = AMN cân tại A MNAI . Mặt khác ()( ) ()( ) () () SKAISBCAI MNAI AMNAI MNAMNSBC AMNSBC = . Suy ra SAK cân tại 2 3a AKSAA == . 244 3 222 222 aaa BKSBSK === 4 10 84 3 2 22 2 222 aaaSK SASISAAI == == . Ta có 16 10 . 2 1 2 a AIMNS AMN == (đvdt) chú ý 1) Có thể chứng minh MNAI nh sau: () () AIMNSAKMNSAKBC . 2) Có thể làm theo phơng pháp tọa độ: Chẳng hạn chọn hệ tọa độ Đêcac vuông góc Oxyz sao cho h a S a A a C a BK ; 6 3 ;0,0; 2 3 ;0,0;0; 2 ,0;0; 2 ),0;0;0( trong đó h là độ dài đờng cao SH của hình chóp ABCS. . 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ www.VNMATH.com [...]... x +4 Câu 5 (1 điểm) Cho x, y, z là ba số dơng và x + y + z 1 Chứng minh rằng 1 1 1 x2 + + y2 + + z2 + x2 y2 z2 82 HếT Ghi chú: Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh: Số báo danh: www.VNMATH.com Bộ giáo dục và đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2003 - Môn thi : toán khối B Thời gian làm bài: 180 phút Đề chính thức _ Câu 1 (2... x + 2) n Tìm n để a3n 3 = 26n Hết -Ghi chú: Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh: Số báo danh: www.VNMATH.com Bộ giáo dục và đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2003 đáp án thang điểm đề thi chính thức Môn thi : toán Khối A Nội dung điểm 2điểm 1 điểm Câu 1 1) 1 x2 + x 1 = x x 1 x 1 + Tập xác định: R \{ 1 } Khi... số tổ hợp chập k của n phần tử) Hết Ghi chú: Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh Số báo danh www.VNMATH.com Bộ giáo dục và đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2003 Môn thi: toán Khối D Thời gian làm bài: 180 phút _ Đề chính thức Câu 1 (2 điểm) x2 2 x + 4 (1) x2 2) Tìm m để đờng thẳng d m : y = mx +... ;y0 = 7 7 - Khi đó M 2 7 ;0 , N 0; 21 và GTNN (MN) = 7 - Đẳng thức xảy ra x 0 = ( ) ( ) -Hết 1/4 www.VNMATH.com Bộ giáo dục và đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2003 Môn thi : toán khối A đề chính thức Thời gian làm bài : 180 phút _ mx 2 + x + m (1) (m là tham số) x 1 1) Khảo sát sự biến thi n và vẽ đồ thị hàm số (1) khi m = 1 2) Tìm... n = 7 ta có x2 1 2 C 3 7 4 0,25 đ 0,25 đ 3 3x 2 = 140 35.2 2 x 2.2 x = 140 2 x 2 = 4 x = 4 0,5 đ www.VNMATH.com Bộ giáo dục và đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2002 Đáp án và thang điểm đề thi chính thức Môn toán, khối b Câu I ý 1 Nội dung ĐH CĐ y = x 4 8 x 2 + 10 là hàm chẵn đồ thị đối xứng qua Oy x=0 Tập xác định x R , y ' = 4 x 3 16 x = 4 x... z ) + + 80( x + y + z )2 162 80 = 82 x y z Vậy P 82 0,25 đ 0,5 đ 1 3 Ghi chú: Câu này còn có nhiều cách giải khác (Dấu = xảy ra 0, 25 đ khi x = y = z = ) www.VNMATH.com Bộ giáo dục và đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2003 đáp án thang điểm đề thi chính thức Môn thi : toán Khối B Nội dung Câu 1 1) Đồ thị hàm số (1) có hai điểm phân biệt đối xứng nhau qua gốc tọa độ tồn tại x0... giả thi t thì: 0,25 đ www.VNMATH.com 3 2 C 2 n = 20C n (2n )! 3!(2n 3)! = 20 n! n(n 1) 2n.(2n 1)(2n 2) = 20 2!(n 2)! 6 2 2n 1 = 15 n = 8 Chú ý: Thí sinh có thể tìm số hình chữ nhật bằng các cách khác Nếu lý luận đúng để đi n(n 1) đến kết quả số hình chữ nhật là thì cho điểm tối đa phần này 2 0,5 đ www.VNMATH.com Bộ giáo dục và đào tạo Kỳ thi tuyển sinh Đại học , cao đẳng năm 2002 Môn Toán, ... tâm tam giác đều A1 BC1 có cạnh bằng a 2 Gọi I là trung điểm của A1 B thì IG là đờng vuông góc chung của A1 B và B1 D , nên 1 1 3 a d ( A1 B, B1 D ) = IG = C1 I = A1 B = 3 3 2 6 Chú ý: Thí sinh có thể viết phơng trình mặt phẳng (P ) chứa A1 B và song song với B1 D là: x + 2 y + z a = 0 và tính khoảng cách từ B1 (hoặc từ D ) tới (P ) , hoặc viết phơng trình mặt phẳng (Q ) chứa B1 D và song song với... 0 Cho hai mặt phẳng ( P) và (Q) vuông góc với nhau, có giao tuyến là đờng thẳng Trên lấy hai điểm A, B với AB = a Trong mặt phẳng ( P) lấy điểm C , trong mặt phẳng (Q) lấy điểm D sao cho AC , BD cùng vuông góc với và AC = BD = AB Tính bán kính mặt cầu ngoại tiếp tứ diện ABCD và tính khoảng cách từ A đến mặt phẳng ( BCD) theo a Câu 4 ( 2 điểm) 1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm... B H O A I C x D Khoảng cách từ I đến đờng thẳng AB bằng 5 AD = 5 và 2 5 2 Do đó A, B là các giao điểm của đờng thẳng AB với đờng tròn tâm I và bán 5 kính R = Vậy tọa độ A, B là nghiệm của hệ : 2 x 2y + 2 = 0 2 2 x 1 + y 2 = 5 2 2 Giải hệ ta đợc A( 2;0 ), B(2;2 ) (vì x A < 0 ) C (3;0 ), D( 1;2 ) IA = IB = Chú ý: Thí sinh có thể tìm tọa độ điểm H là hình chi u của I trên đờng thẳng . Nam vnMath.com Dịch vụ Toán học info@vnmath.com Sách Đại số Giải tích Hình học Các loại khác Chuyên đề Toán Luyện thi Đại học Bồi dưỡng HSG Đề thi Đáp án Đại học Cao học Thi lớp 10 Olympic Giáo. chỉ thi cao đẳng không làm câu V 2. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh : Số báo danh www.VNMATH.com bộ giáo dục và đào tạo Kỳ thi tuyển sinh đại học, cao đẳng năm 2002 . ® 0,25 ® 0,5 ® www.VNMATH.com Bộ giáo dục và đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2002 Đáp án và thang điểm đề thi chính thức Môn toán, khối b Câu ý Nội dung ĐH CĐ I 1