1. Trang chủ
  2. » Giáo án - Bài giảng

Linear filters and edge detection

83 200 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 83
Dung lượng 6,39 MB

Nội dung

CS223b: COMPUTER VISON Linear Filters and Edge Detection • convolution • shift invariant linear s y stem y • Fourier Transform • Aliasin g and sam p lin g gpg • scale representation •ed g e detection g Reading: Chapters 7, 8, Forsyth & Ponce book [...].. .Linear Filters • Linear filtering: g – Form a new image whose pixels are a weighted sum of original pixel values, values using the same set of weights at each point 1 – Center origin of the kernel F at each pixel location – Multiply weights by corresponding pixels – Set resulting value for each pixel 1 1 1 • Represent the linear weights as an image, F • F i called... Efficient Implementation • Both the BOX filter and the Gaussian filter are separable into two 1D convolutions: – Fi convolve each row with a 1D filter First l h ih fil – Then convolve each column with a 1D filter Differentiation and convolution • Recall, for 2D function, f(x,y): f  f x   , y f x, y   lim     0  x    • This is linear and shift invariant, so must be the result... called convolution 1 1 Convolution 1 1 1 • Image, R, resulting from convolution of F with image H, where u,v range i h over kernel pixels: Rij   H iu, jv Fuv , u,v Warning: the textbook mixes up H and F d Slide credit: David Lowe (UBC) Slide credits for these examples: Bill Freeman, David Jacobs Convolution I 10 11 10 0 0 1 9 10 11 1 0 1 10 9 10 0 2 1 11 10 9 10 9 11 9 10 11 9 99 11 10 9 9 11 . COMPUTER VISON Linear Filters and Edge Detection • convolution • shift invariant linear s y stem y • Fourier Transform • Aliasin g and sam p lin g gpg • scale representation •ed g e detection g Reading:. represented as a matrix of integer values il p i xe l Source: S. Seitz Filters Filters • Linear filtering: • Linear filtering: – Form a new image whose pixels are a weighted sum of original. the ima g es g •Features (edges, corners, blobs…) M dif h i ti M o dif y or en h ance i mage proper ti es - super-resolution, in-painting, de-noising Linear Filters • Linear filterin g : g –

Ngày đăng: 26/01/2015, 10:09

TỪ KHÓA LIÊN QUAN