1. Trang chủ
  2. » Giáo án - Bài giảng

Feature detectors and descriptors

73 293 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 73
Dung lượng 3,47 MB

Nội dung

Feature detectors and descriptors Fei-Fei Li Feature Detection Feature Description Matching / Indexing / Recognition local descriptors – (invariant) vectors detected points – (~300) coordinates, neighbourhoods database of local descriptors e.g. DoG e.g. SIFT e.g. Mahalanobis distance + Voting algorithm [Mikolajczyk & Schmid ’01] Some of the challenges… • Geometry – Rotation – Similarity (rotation + uniform scale) – Affine (scale dependent on direction) valid for: orthographic camera, locally planar object • Photometry – Affine intensity change (I → a I + b) Detector Descrip- tor Intensity Rotation Scale Affine Harris corner 2 nd moment(s) Mikolajczyk & Schmid ’01, ‘02 2 nd moment(s) Tuytelaars, ‘00 2 nd moment(s) Lowe ’99 (DoG) SIFT, PCA- SIFT Kadir & Brady, 01 Matas, ‘02 others others Detector Descriptor Intensity Rotation Scale Affine Harris corner 2 nd moment(s) Mikolajczyk & Schmid ’01, ‘02 2 nd moment(s) Tuytelaars, ‘00 2 nd moment(s) Lowe ’99 (DoG) SIFT, PCA- SIFT Kadir & Brady, 01 Matas, ‘02 others others An introductory example: Harris corner detector C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988 Harris Detector: Basic Idea “flat” region: no change in all directions “edge”: no change along the edge direction “corner”: significant change in all directions Harris Detector: Mathematics [ ] 2 , (,) (, ) ( , ) (, ) xy Euv wxy Ix uy v Ixy= + +− ∑ Change of intensity for the shift [u,v]: Intensity Shifted intensity Window function or Window function w(x,y) = Gaussian1 in window, 0 outside Harris Detector: Mathematics [ ] (,) , u Euv uv M v  ≅   For small shifts [u,v] we have a bilinear approximation: 2 2 , (, ) x xy xy xy y I II M wxy II I  =    ∑ where M is a 2×2 matrix computed from image derivatives: Harris Detector: Mathematics [ ] (,) , u Euv uv M v  ≅   Intensity change in shifting window: eigenvalue analysis λ 1 , λ 2 – eigenvalues of M direction of the slowest change direction of the fastest change (λ max ) -1/2 (λ min ) -1/2 Ellipse E(u,v) = const [...]... (x L , Σ I , L , Σ D , L ) = M L Σ I , L = tM L and µ (x R , Σ I , R , Σ D , R ) = M R −1 Σ I , R = tM R Σ D , L = dM L −1 −1 Σ D , R = dM R −1 Then by normalising: − x′L → M L 1/ 2 x L We get: and − x′R → M R 1/ 2 x R x′L → Rx′R so the normalised regions are related by a pure rotation See also [Lindeberg & Garding ’97] and [Baumberg ’00] Interest point detectors Harris-Affine [Mikolajczyk & Schmid ’02]... Interest point detectors Harris-Affine [Mikolajczyk & Schmid ’02] • Adds invariance to affine image transformations • Initial locations and isotropic scale found by Harris-Laplace • Affine invariant neighbourhood evolved iteratively using the 2nd moment matrix μ: g (Σ ) = 1 2π xT Σ −1x exp(− ) 2 Σ L(x, Σ) = g (Σ) ⊗ I (x) µ (x, Σ I , Σ D ) = g (Σ I ) ⊗ ((∇L(x, Σ D ))(∇L(x, Σ D ))T ) Interest point detectors. ..Harris Detector: Mathematics Classification of image points using eigenvalues of M: λ2 “Edge” λ2 >> λ1 “Corner” λ1 and λ2 are large, λ1 ~ λ2 ; E increases in all directions λ1 and λ2 are small; E is almost constant in all directions “Flat” region “Edge” λ1 >> λ2 λ1 Harris Detector: Mathematics Measure of corner response: = det M − k ( trace M )... others Yes Yes Scale Affine No No Interest point detectors Harris-Laplace [Mikolajczyk & Schmid ’01] • Adds scale invariance to Harris points – Set si = λsd – Detect at several scales by varying sd – Only take local maxima (8-neighbourhood) of scale adapted Harris points – Further restrict to scales at which Laplacian is local maximum Interest point detectors Harris-Laplace [Mikolajczyk & Schmid ’01]... Harris Detector: Some Properties • Quality of Harris detector for different scale changes Repeatability rate: # correspondences # possible correspondences C.Schmid et.al “Evaluation of Interest Point Detectors IJCV 2000 Detector Descriptor Intensity Rotation Harris corner 2nd moment(s) Mikolajczyk & Schmid ’01, ‘02 2nd moment(s) Tuytelaars, ‘00 2nd moment(s) Lowe ’99 (DoG) SIFT, PCASIFT Kadir & Brady,... moment(s) Lowe ’99 (DoG) SIFT, PCASIFT Kadir & Brady, 01 Matas, ‘02 others others Affine Invariant Detection • Take a local intensity extremum as initial point • Go along every ray starting from this point and stop when extremum of function f is reached I (t ) − I 0 f f (t ) = t 1 points along the ray t ∫ I (t ) − I 0 dt o • We will obtain approximately corresponding regions T.Tuytelaars, L.V.Gool “Wide . Feature detectors and descriptors Fei-Fei Li Feature Detection Feature Description Matching / Indexing / Recognition local descriptors – (invariant) vectors detected. E(u,v) = const Harris Detector: Mathematics λ 1 λ 2 “Corner” λ 1 and λ 2 are large, λ 1 ~ λ 2 ; E increases in all directions λ 1 and λ 2 are small; E is almost constant in all directions “Edge”. others An introductory example: Harris corner detector C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988 Harris Detector: Basic Idea “flat” region: no change in all directions “edge”: no

Ngày đăng: 26/01/2015, 10:06

TỪ KHÓA LIÊN QUAN

w