1. Trang chủ
  2. » Giáo án - Bài giảng

NÂNG CAO TOÁN 7 VÀ MỘT SỐ CHUYÊN ĐỀ

30 1,6K 10

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 1,7 MB

Nội dung

Giáo viên : Nguyễn Như Quảng 1 CHUYỀN ĐỀ BỒI DƯỠNG HSG TOÁN 7 PHẦN ĐẠI SỐ Chuyền đề 1: Các bài toán thực hiện phép tính: 1. Các kiến thức vận dụng : - Tính chất của phép cộng , phép nhân - Các phép toán về lũy thừa: a n = . n a a a 1 2 3 ; a m .a n = a m+n ; a m : a n = a m –n ( a ≠ 0, m ≥ n) (a m ) n = a m.n ; ( a.b) n = a n .b n ; ( ) ( 0) n n n a a b b b = ≠ 2 . Một số bài toán : Bài 1: a) Tính tổng : 1+ 2 + 3 +…. + n , 1+ 3 + 5 +…. + (2n -1) b) Tính tổng : 1.2 + 2.3 + 3.4 + … + n.(n+1) 1.2.3+ 2.3.4 + 3.4.5 + ….+ n(n+1)(n+2) Với n là số tự nhiên khác không. HD : a) 1+2 + 3 + + n = n(n+1) 1+ 3+ 5+ …+ (2n-1) = n 2 b) 1.2+2.3+3.4+ …+ n(n+1) = [1.2.(3 - 0) + 2.3.(4 - 1) + 3.4(5 – 2) + … + n(n + 1)( (n+2) – (n – 1))] : 3 = [ 1.2.3 – 1.2.3 + 2.3.4 – 2.3.4 +……+ n( n+1)(n+2)] : 3 = n(n+ 1)(n+2) :3 1.2.3 + 2.3.4+ 3.4.5 + ….+ n(n+1)(n+2) = [ 1.2.3(4 – 0) + 2.3.4( 5 -1) + 3.4.5.(6 -2) + ……+ n(n+1)(n+2)( (n+3) – (n-1))]: 4 = n(n+1)(n+2)(n+3) : 4 Tổng quát: Bài 2: a) Tính tổng : S = 1+ a + a 2 +… + a n b) Tính tổng : A = 1 2 2 3 1 . . . n n c c c a a a a a a − + + + với a 2 – a 1 = a 3 – a 2 = … = a n – a n-1 = k HD: a) S = 1+ a + a 2 +… + a n ⇒ aS = a + a 2 +… + a n + a n+1 Ta có : aS – S = a n+1 – 1 ⇒ ( a – 1) S = a n+1 – 1 Nếu a = 1 ⇒ S = n Nếu a khác 1 , suy ra S = 1 1 1 n a a + − − b) Áp dụng 1 1 ( ) . c c a b k a b = − với b – a = k Ta có : A = 1 2 2 3 1 1 1 1 1 1 1 ( ) ( ) ( ) n n c c c k a a k a a k a a − − + − + + − = 1 2 2 3 1 1 1 1 1 1 1 ( ) n n c k a a a a a a − − + − + + − = 1 1 1 ( ) n c k a a − Bài 3 : a) Tính tổng : 1 2 + 2 2 + 3 2 + …. + n 2 b) Tính tổng : 1 3 + 2 3 + 3 3 + … + n 3 HD : a) 1 2 + 2 2 + 3 2 + ….+ n 2 = n(n+1)(2n+1): 6 b) 1 3 + 2 3 + 3 3 + … + n 3 = ( n(n+1):2) 2 Giáo án Bồi dưỡng HSG toán 7 Giáo viên : Nguyễn Như Quảng 2 Bài 3: Thùc hiÖn phÐp tÝnh: a) A = 1 1 1 1 1 3 5 7 49 ( ) 4.9 9.14 14.19 44.49 89 − − − − − + + + + b) ( ) ( ) 12 5 6 2 10 3 5 2 6 3 9 3 2 4 5 2 .3 4 .9 5 .7 25 .49 125.7 5 .14 2 .3 8 .3 B − − = − + + HD : A = 9 28 − ; B = 7 2 Bài 4: 1, Tính: P = 1 1 1 2 2 2 2003 2004 2005 2002 2003 2004 5 5 5 3 3 3 2003 2004 2005 2002 2003 2004 + − + − − + − + − 2, Biết: 13 + 23 + . . . . . . .+ 103 = 3025. Tính: S = 23 + 43 + 63 + . . . .+ 203 Bài 5: a) TÝnh 115 2005 1890 : 12 5 11 5 5,0625,0 12 3 11 3 3,0375,0 25,1 3 5 5,2 75,015,1 +             −−+− ++− + −+ −+ =A b) Cho 20052004432 3 1 3 1 3 1 3 1 3 1 3 1 ++++++=B Chøng minh r»ng 2 1 <B . Bài 6: a) Tính :       −       + +       −− 7 2 14 3 1 12: 3 10 10 3 1 4 3 46 25 1 230. 6 5 10 27 5 2 4 1 13 b) TÝnh 1 1 1 1 2 3 4 2012 2011 2010 2009 1 1 2 3 2011 P + + + + = + + + + HD: Nhận thấy 2011 + 1 = 2010+2 = …. 2012 2010 1 1 1 1 2011 1 2 2011 MS⇒ = + + + + + + − 2012 2012 2012 2011 2 2011 = + + + − = 1 1 1 1 2012( ) 2 3 4 2012 + + + + c) 10099 4321 )6,3.212,1.63( 9 1 7 1 3 1 2 1 )10099 321( −++−+− −       −−−+++++ =A Bài 7: a) TÝnh gi¸ trÞ cña biÓu thøc: Giáo án Bồi dưỡng HSG toán 7 Giáo viên : Nguyễn Như Quảng 3 50 31 . 93 14 1. 3 1 512 6 1 6 5 4 19 2 . 3 1 615 7 3 4. 31 11 1                   −       −+       −− =A b) Chøng tá r»ng: 2004 1 2004 1 3 1 3 1 2 1 1 2222 >−−−−−=B Bài 8: a) TÝnh gi¸ trÞ cña biÓu thøc: 25 13 :)75,2(53,388,0: 25 11 4 3 125505,4 3 4 4:624,81 2 2 2 2           −         +       +       − =A b) Chøng minh r»ng tæng: 2,0 2 1 2 1 2 1 2 1 2 1 2 1 2 1 20042002424642 <−++−+−+−= − nn S Chuyên đề 2: Bài toán về tính chất của dãy tỉ số bằng nhau: 1. Kiến thức vận dụng : - . . a c a d bc b d = ⇔ = -Nếu a c e b d f = = thì a c e a b e b d f b d f ± ± = = = ± ± với gt các tỉ số dều có nghĩa - Có a c e b d f = = = k Thì a = bk, c = d k, e = fk 2. Bài tập vận dụng Dạng 1 Vận dụng tính chất dãy tỉ số bằng nhau để chứng minh đẳng thức Bài 1: Cho a c c b = . Chứng minh rằng: 2 2 2 2 a c a b c b + = + HD: Từ a c c b = suy ra 2 .c a b= khi đó 2 2 2 2 2 2 . . a c a a b b c b a b + + = + + = ( ) ( ) a a b a b a b b + = + Bài 2: Cho a,b,c ∈ R và a,b,c ≠ 0 thoả mãn b 2 = ac. Chứng minh rằng: c a = 2 2 ( 2012 ) ( 2012 ) a b b c + + HD: Ta có (a + 2012b) 2 = a 2 + 2.2012.ab + 2012 2 .b 2 = a 2 + 2.2012.ab + 2012 2 .ac = a( a + 2.2012.b + 2012 2 .c) (b + 2012c) 2 = b 2 + 2.2012.bc + 2012 2 .c 2 = ac+ 2.2012.bc + 2012 2 .c 2 = c( a + 2.2012.b + 2012 2 .c) Suy ra : c a = 2 2 ( 2012 ) ( 2012 ) a b b c + + Giáo án Bồi dưỡng HSG toán 7 Giáo viên : Nguyễn Như Quảng 4 Bài 3: Chøng minh r»ng nÕu d c b a = th× dc dc ba ba 35 35 35 35 − + = − + HD : Đặt a c k b d = = ⇒ a = kb, c = kd . Suy ra : 5 3 (5 3) 5 3 5 3 (5 3) 5 3 a b b k k a b b k k + + + = = − − − và 5 3 (5 3) 5 3 5 3 (5 3) 5 3 c d d k k c d d k k + + + = = − − − Vậy dc dc ba ba 35 35 35 35 − + = − + Bài 4: BiÕt 2 2 2 2 a b ab c d cd + = + với a,b,c, d ≠ 0 Chứng minh rằng : a c b d = hoặc a d b c = HD : Ta có 2 2 2 2 a b ab c d cd + = + = 2 2 2 2 2 2 2 2 ab a ab b cd c cd d + + = = + + 2 2 2 ( ) ( ) ( ) a b a b c d c d + + = + + (1) 2 2 2 2 a b ab c d cd + = + = 2 2 2 2 2 2 2 2 ab a ab b cd c cd d − + = = − + 2 2 2 ( ) ( ) ( ) a b a b c d c d − − = − − (2) Từ (1) và (2) suy ra : 2 2 ( ) ( ) a b a b a b a b c d c d a b b a c d c d c d d c + −  =  + − + − = ⇒  + − + −  =  + −  Xét 2 TH đi đến đpcm Bài 5 : Cho tØ lÖ thøc d c b a = . Chøng minh r»ng: 22 22 dc ba cd ab − − = vµ 22 22 2 dc ba dc ba + + =       + + HD : Xuất phát từ d c b a = biến đổi theo các hướng làm xuất hiện 2 2 2 2 2 2 2 2 2 2 2 2 2 ( ) ab a b a c a b a b cd c d b d c d c d − + + = = = = = − + + Bài 6 : Cho d·y tØ sè b»ng nhau: d dcba c dcba b dcba a dcba 2222 +++ = +++ = +++ = +++ TÝnh cb ad ba dc ad cb dc ba M + + + + + + + + + + + = HD : Từ d dcba c dcba b dcba a dcba 2222 +++ = +++ = +++ = +++ Suy ra : 2 2 2 2 1 1 1 1 a b c d a b c d a b c d a b c d a b c d + + + + + + + + + + + + − = − = − = − ⇒ a b c d a b c d a b c d a b c d a b c d + + + + + + + + + + + + = = = Nếu a + b + c + d = 0 ⇒ a + b = -( c+d) ; ( b + c) = -( a + d) ⇒ cb ad ba dc ad cb dc ba M + + + + + + + + + + + = = -4 Giáo án Bồi dưỡng HSG toán 7 Giáo viên : Nguyễn Như Quảng 5 Nếu a + b + c + d ≠ 0 ⇒ a = b = c = d ⇒ cb ad ba dc ad cb dc ba M + + + + + + + + + + + = = 4 Bài 7 : a) Chøng minh r»ng: NÕu cba z cba y cba x +− = −+ = ++ 4422 Th× zyx c zyx b zyx a +− = −+ = ++ 4422 b) Cho: d c c b b a == . Chøng minh: d a dcb cba =       ++ ++ 3 HD : a) Từ cba z cba y cba x +− = −+ = ++ 4422 ⇒ 2 2 4 4a b c a b c a b c x y z + + + − − + = = ⇒ 2 2(2 ) 4 4 2 2 a b c a b c a b c a x y z x y z + + + − − + = = = + + (1) 2( 2 ) (2 ) 4 4 2 2 a b c a b c a b c b x y z x y z + + + − − + = = = + + (2) 4( 2 ) 4(2 ) 4 4 4 4 4 4 a b c a b c a b c c x y z x y z + + + − − + = = = − + (3) Từ (1) ;(2) và (3) suy ra : zyx c zyx b zyx a +− = −+ = ++ 4422 Bài 8: Cho zyx t yxt z xtz y tzy x ++ = ++ = ++ = ++ chøng minh r»ng biÓu thøc sau cã gi¸ trÞ nguyªn. zy xt yx tz xt zy tz yx P + + + + + + + + + + + = HD Từ zyx t yxt z xtz y tzy x ++ = ++ = ++ = ++ ⇒ y z t z t x t x y x y z x y z t + + + + + + + + = = = ⇒ 1 1 1 1 y z t z t x t x y x y z x y z t + + + + + + + + + = + = + = + ⇒ x y z t z t x y t x y z x y z t x y z t + + + + + + + + + + + + = = = Nếu x + y + z + t = 0 thì P = - 4 Nếu x + y + z + t ≠ 0 thì x = y = z = t ⇒ P = 4 Bài 9 : Cho 3 số x , y , z khác 0 thỏa mãn điều kiện : y z x z x y x y z x y z + − + − + − = = Hãy tính giá trị của biểu thức : B = 1 1 1 x y z y z x      + + +  ÷  ÷ ÷      Bài 10 : a) Cho các số a,b,c,d khác 0 . Tính T =x 2011 + y 2011 + z 2011 + t 2011 Biết x,y,z,t thỏa mãn: Giáo án Bồi dưỡng HSG toán 7 Giỏo viờn : Nguyn Nh Qung 6 2010 2010 2010 2010 2010 2010 2010 2010 2 2 2 2 2 2 2 2 x y z t x y z t a b c d a b c d + + + = + + + + + + b) Tỡm s t nhiờn M nh nht cú 4 ch s tha món iu kin: M = a + b = c +d = e + f Bit a,b,c,d,e,f thuc tp N * v 14 22 a b = ; 11 13 c d = ; 13 17 e f = c) Cho 3 s a, b, c tha món : 2009 2010 2011 a b c = = . Tớnh giỏ tr ca biu thc : M = 4( a - b)( b c) ( c a ) 2 Mt s bi tng t Bi 11: Cho dãy tỉ số bằng nhau: 2012 2012 2012 2012a b c d a b c d a b c d a b c d a b c d + + + + + + + + + + + + = = = Tính cb ad ba dc ad cb dc ba M + + + + + + + + + + + = Bi 12: Cho 3 s x , y , z, t khỏc 0 tha món iu kin : y z t nx z t x ny t x y nz x y z nt x y z t + + + + + + + + = = = ( n l s t nhiờn) v x + y + z + t = 2012 . Tớnh giỏ tr ca biu thc P = x + 2y 3z + t Dng 2 : Vn dng tớnh cht dóy t s bng nhau tỡm x,y,z, Bi 1: Tỡm cp s (x;y) bit : = = 1+3y 1+5y 1+7y 12 5x 4x HD : p dụng tính chất dãy tỉ số bằng nhau ta có: + + = = = = = = 1+3y 1+5y 1+7y 1 7y 1 5y 2y 1 5y 1 3y 2y 12 5x 4x 4x 5x x 5x 12 5x 12 => 2 2 5 12 y y x x = vi y = 0 thay vo khụng tha món Nu y khỏc 0 => -x = 5x -12 => x = 2. Thay x = 2 vào trên ta đợc: 1 3 2 12 2 y y y + = = =>1+ 3y = -12y => 1 = -15y => y = 1 15 Vậy x = 2, y = 1 15 thoả mãn đề bài Bi 3 : Cho a b c b c a = = v a + b + c 0; a = 2012. Tớnh b, c. HD : t 1 a b c a b c b c a a b c + + = = = = + + a = b = c = 2012 Bi 4 : Tỡm cỏc s x,y,z bit : 1 2 3 1y x x z x y x y z x y z + + + + + = = = + + Giỏo ỏn Bi dng HSG toỏn 7 Giáo viên : Nguyễn Như Quảng 7 HD: Áp dụng t/c dãy tỉ số bằng nhau: 1 2 3 2( ) 1 2 ( ) y x x z x y x y z x y z x y z x y z + + + + + − + + = = = = = + + + + (vì x+y+z ≠ 0) Suy ra : x + y + z = 0,5 từ đó tìm được x, y, z Bài 5 : Tìm x, biết rằng: 1 2 1 4 1 6 18 24 6 y y y x + + + = = HD : Từ 1 2 1 4 1 6 2(1 2 ) (1 4 ) 1 2 1 4 (1 6 ) 18 24 6 2.18 24 18 24 6 y y y y y y y y x x + + + + − + + + + − + = = = = − + − Suy ra : 1 1 1 6 6 x x = ⇒ = Bài 6: T×m x, y, z biÕt: zyx yx z zx y yz x ++= −+ = ++ = ++ 211 (x, y, z 0≠ ) HD : Từ 1 1 1 2 2( ) 2 x y z x y z x y z z y x z x y x y z + + = = = + + = = + + + + + − + + Từ x + y + z = 1 2 ⇒ x + y = 1 2 - z , y +z = 1 2 - x , z + x = 1 2 - y thay vào đẳng thức ban đầu để tìm x. Bài 7 : T×m x, y, z biÕt 216 3 64 3 8 3 zyx == vµ 122 222 =−+ zyx Bài 8 : Tìm x , y biết : 2 1 4 5 2 4 4 5 9 7 x y x y x + − + − = = Chuyên đề 3: Vận dụng tính chất phép toán để tìm x, y 1. Kiến thức vận dụng : - Tính chất phép toán cộng, nhân số thực - Quy tắc mở dấu ngoặc, quy tắc chuyển vế - Tính chất về giá trị tuyệt đối : 0A ≥ với mọi A ; , 0 , 0 A A A A A ≥  =  − <  - Bất đẳng thức về giá trị tuyệt đối : A B A B+ ≥ + dấu ‘=’ xẩy ra khi AB ≥ 0; A B A B− ≥ − dấu ‘= ‘ xẩy ra A,B >0 ( 0) A m A m m A m ≥  ≥ ⇔ >  ≤ −  ; ( ) A m A m hay m A m A m ≤  ≤ ⇔ − ≤ ≤  ≥ −  với m > 0 - Tính chất lũy thừa của 1 số thực : A 2n ≥ 0 với mọi A ; - A 2n ≤ 0 với mọi A A m = A n ⇔ m = n; A n = B n ⇒ A = B (nếu n lẻ ) hoặc A = ± B ( nếu n chẵn) 0< A < B ⇔ A n < B n ; 2. Bài tập vận dụng Dạng 1: Các bài toán cơ bản Giáo án Bồi dưỡng HSG toán 7 Giáo viên : Nguyễn Như Quảng 8 Bài 1: Tìm x biết a) x + 2x + 3x + 4x + … + 2011x = 2012.2013 b) 1 2 3 4 2011 2010 2009 2008 x x x x− − − − + − = HD : a) x + 2x + 3x + 4x + … + 2011x = 2012.2013 ⇒ x( 1 + 2 + 3 + ….+ 2011) = 2012.2013 2011.2012 . 2012.2013 2 x⇒ = 2.2013 2011 x⇒ = b) Nhận xét : 2012 = 2011+1= 2010 +2 = 2009 +3 = 2008 +4 Từ 1 2 3 4 2011 2010 2009 2008 x x x x− − − − + − = ( 2012) 2011 ( 2012) 2010 ( 2012) 2009 ( 2012) 2008 2011 2010 2009 2008 x x x x− + − + − + − + ⇒ + + = 2012 2012 2012 2012 2 2011 2010 2009 2008 1 1 1 1 ( 2012)( ) 2 2011 2010 2009 2008 1 1 1 1 2 : ( ) 2012 2011 2010 2009 2008 x x x x x x − − − − ⇒ + + − = − ⇒ − + + − = − ⇒ = − + + − + Bài 2 Tìm x nguyên biết a) 1 1 1 1 49 1.3 3.5 5.7 (2 1)(2 1) 99x x + + + + = − + b) 1- 3 + 3 2 – 3 3 + ….+ (-3) x = 1006 9 1 4 − Dạng 2 : Tìm x có chứa giá trị tuyệt đối • Dạng : x a x b+ = + và x a x b x c+ ± + = + Khi giải cần tìm giá trị của x để các GTTĐ bằng không, rồi so sánh các giá trị đó để chia ra các khoảng giá trị của x ( so sánh –a và –b) Bài 1 : Tìm x biết : a) 2011 2012x x− = − b) 2010 2011 2012x x− + − = HD : a) 2011 2012x x− = − (1) do VT = 2011 0,x x− ≥ ∀ nên VP = x – 2012 0 2012x ≥ ⇒ ≥ (*) Từ (1) 2011 2012 2011 2012( ô ) 2011 2012 (2011 2012): 2 x x v ly x x x − = − =   ⇒ ⇒   − = − = +   Giáo án Bồi dưỡng HSG toán 7 Giỏo viờn : Nguyn Nh Qung 9 Kt hp (*) x = 4023:2 b) 2010 2011 2012x x + = (1) Nu x 2010 t (1) suy ra : 2010 x + 2011 x = 2012 x = 2009 :2 (ly) Nu 2010 < x < 2011 t (1) suy ra : x 2010 + 2011 x = 2012 hay 1 = 2012 (loi) Nu x 2011 t (1) suy ra : x 2010 + x 2011 = 2012 x = 6033:2(ly) Vy giỏ tr x l : 2009 :2 hoc 6033:2 Mt s bi tng t: Bi 2 : a) Tìm x biết 431 =++ xx b) Tìm x biết: 426 22 +=+ xxx c) Tìm x biết: 54232 =+ xx Bi 3 : a)Tìm các giá trị của x để: xxx 313 =+++ b) Tỡm x bit: 2 3 2x x x = Bi 4 : tỡm x bit : a) 1 4x b) 2011 2012x Dng : S dng BT giỏ tr tuyt i Bi 1 : a) Tỡm x ngyờn bit : 1 3 5 7 8x x x x + + + = b) Tỡm x bit : 2010 2012 2014 2x x x + + = HD : a) ta cú 1 3 5 7 1 7 3 5 8x x x x x x x x + + + + + + = (1) M 1 3 5 7 8x x x x + + + = suy ra ( 1) xy ra du = Hay 1 7 3 5 3 5 x x x do x nguyờn nờn x {3;4;5} b) ta cú 2010 2012 2014 2010 2014 2012 2x x x x x x + + + + (*) M 2010 2012 2014 2x x x + + = nờn (*) xy ra du = Suy ra: 2012 0 2012 2010 2014 x x x = = Cỏc bi tng t Bi 2 : Tỡm x nguyờn bit : 1 2 100 2500x x x + + + = Bi 3 : Tỡm x bit 1 2 100 605x x x x+ + + + + + = Bi 4 : Tìm x, y thoả mãn: x 1 x 2 y 3 x 4 + + + = 3 Bi 5 : Tỡm x, y bit : 2006 2012 0x y x + HD : ta cú 2006 0x y vi mi x,y v 2012 0x vi mi x Suy ra : 2006 2012 0x y x + vi mi x,y m 2006 2012 0x y x + 0 2006 2012 0 2012, 2 2012 0 x y x y x x y x = + = = = = Bi 6 : Tìm các số nguyên x thoả mãn. 2004 4 10 101 990 1000x x x x x= + + + + + + + Dng cha ly tha ca mt s hu t Bi 1: Tỡm s t nhiờn x, bit : Giỏo ỏn Bi dng HSG toỏn 7 Giáo viên : Nguyễn Như Quảng 10 a) 5 x + 5 x+2 = 650 b) 3 x-1 + 5.3 x-1 = 162 HD : a) 5 x + 5 x+2 = 650 ⇒ 5 x ( 1+ 5 2 ) = 650 ⇒ 5 x = 25 ⇒ x = 2 b) 3 x-1 + 5.3 x-1 = 162 ⇒ 3 x -1 (1 + 5) = 162 ⇒ 3 x – 1 = 27 ⇒ x = 4 Bài 2 : Tìm các số tự nhiên x, y , biết: a) 2 x + 1 . 3 y = 12 x b) 10 x : 5 y = 20 y HD : a) 2 x + 1 . 3 y = 12 x ⇒ 2 1 1 2 3 2 3 2 3 x y x y x x x − − + = ⇒ = Nhận thấy : ( 2, 3) = 1 ⇒ x – 1 = y-x = 0 ⇒ x = y = 1 b) 10 x : 5 y = 20 y ⇒ 10 x = 10 2y ⇒ x = 2y Bài 3 : Tìm m , n nguyên dương thỏa mãn : a) 2 m + 2 n = 2 m +n b) 2 m – 2 n = 256 HD: a) 2 m + 2 n = 2 m +n ⇒ 2 m + n – 2 m – 2 n = 0 ⇒ 2 m ( 2 n – 1) –( 2 n – 1) = 1 ⇒ (2 m -1)(2 n – 1) = 1 ⇒ 2 1 1 1 2 1 1 n m m n  − =  ⇒ = =  − =   b) 2 m – 2 n = 256 ⇒ 2 n ( 2 m – n - 1) = 2 8 Dễ thấy m ≠ n, ta xét 2 trường hợp : + Nếu m – n = 1 ⇒ n = 8 , m = 9 + Nếu m – n ≥ 2 thì 2 m – n – 1 là 1 số lẻ lớn hơn 1, khi đó VT chứa TSNT khác 2, mà VT chỉ chứa TSNT 2 suy ra TH này không xẩy ra : vậy n = 8 , m = 9 Bài 4 : Tìm x , biết : ( ) ( ) 1 11 7 7 0 x x x x + + − − − = HD : ( ) ( ) ( ) ( ) 1 11 1 10 7 7 0 7 1 7 0 x x x x x x x + + + − − − =   ⇔ − − − =   ( ) ( ) ( ) 1 10 8 6 1 10 7 0 1 ( 7) 0 7 0 7 ( 7) 1 7 1 7 0 10 x x x x x x x x x x x +    ÷   =   =  + − = − − = − = ⇒ = − = ⇒   ⇔ − − − =     ⇔      ⇔   Bài 5 : Tìm x, y biết : 2012 2011 ( 1) 0x y y− + − = HD : ta có 2011 0x y− ≥ với mọi x,y và (y – 1) 2012 ≥ 0 với mọi y Suy ra : 2012 2011 ( 1) 0x y y− + − ≥ với mọi x,y . Mà 2012 2011 ( 1) 0x y y− + − = ⇒ 2011 0 2011, 1 1 0 x y x y y − =  ⇒ = =  − =  Các bài tập tương tự : Bài 6 : Tìm x, y biết : a) 2012 5 (3 4) 0x y+ + − = b) 2 2 (2 1) 2 8 12 5.2x y x− + − − = − Giáo án Bồi dưỡng HSG toán 7 [...]... = 7k + 1 + 7q 1 = 7( k + q) M7 Bi 5 : a) Chứng minh rằng: 3n + 2 2n + 4 + 3n + 2n chia hết cho 30 với mọi n nguyên dơng b) Chứng minh rằng: 2a - 5b + 6c M 17 nếu a - 11b + 3c M 17 (a, b, c Z) Bi 6 : a) Chứng minh rằng: 3a + 2b M 17 10a + b M 17 (a, b Z ) b) Cho đa thức f ( x) = ax 2 + bx + c (a, b, c nguyên) CMR nếu f(x) chia hết cho 3 với mọi giá trị của x thì a, b, c đều chia hết cho 3 17 17 17. .. * ) Xột n = 3k , khi ú 2n -1 = 23k 1 = 8k 1 = ( 7 + 1)k -1 = 7. A + 1 -1 = 7. A M7 Xột n = 3k +1 khi ú 2 n 1 = 23k+1 1 = 2.83k 1 = 2.(7A+1) -1 = 7A + 1 khụng chia ht cho 7 Xột n = 3k+2 khi ú 2n 1 = 23k +2 -1 = 4.83k 1 = 4( 7A + 1) 1 = 7 A + 3 khụng chia ht cho 7 Vy n = 3k vi k N * * Tỡm x , y biu thc cú giỏ tr nguyờn, hay chia ht: Bi 1 Tìm số nguyên m để: a) Giá trị của biểu thức m -1 chia... 17 17 HD a) ta cú 17a 34 b M v 3a + 2b M 17a 34b + 3a + 2b M 2(10a 16b)M 10a 16bM vỡ (2, 7) = 1 10a + 17b 16bM 10a + bM 17 17 17 b) Ta cú f(0) = c do f(0) M3 c M3 f(1) - f(-1) = (a + b + c) - ( a b + c) = 2b , do f(1) v f(-1) chia ht cho 3 2bM3 bM3 vỡ ( 2, 3) = 1 f(1) M3 a + b + c M3 do b v c chia ht cho 3 a M3 Vy a, b, c u chia ht cho 3 Bi 7 : a) Chứng minh rằng 102006 + 53 là một số. .. hỡnh vuụng bit rng tng thi gian vt chuyn ng trờn bn cnh l 59 giõy Bi 2 : Ba lớp 7A,7B,7C có 94 học sinh tham gia trồng cây Mỗi học sinh lớp 7A trồng đợc 3 cây, Mỗi học sinh lớp 7B trồng đợc 4 cây, Mỗi học sinh lớp 7C trồng đợc 5 cây, Hỏi mỗi lớp có bao nhiêu học sinh Biết rằng số cây mỗi lớp trồng đợc đều nh nhau Bi 3 : Một ô tô phải đi từ A đến B trong thời gian dự định Sau khi đi đợc nửa quãng đờng... a thc Bi 1: a) Tìm các số nguyên tố x, y sao cho: 51x + 26y = 2000 b) Tìm số tự nhiên x, y biết: 7( x 2004)2 = 23 y 2 c) Tìm x, y nguyên biết: xy + 3x - y = 6 d) Tìm mọi số nguyên tố thoả mãn : x2-2y2=1 HD: a) T 51x + 26y = 2000 17. 3.x = 2.( 1000 13 y) do 3, 17 l s NT nờn x M2 m x NT x = 2 Li cú 1000 13y M51 , 1000 13y > 0 v y NT y = b) T 7( x 2004)2 = 23 y 2 (1) do 7( x2004)2 0 23 y 2 ... phân số: C = 4 x 5 (x Z) a) Tìm x Z để C đạt giá trị lớn nhất, tìm giá trị lớn nhất đó b) Tìm x Z để C là số tự nhiên Bi 4 : 3 x +2 3 4.(3 x + 2) 3 12 x + 8 3 23 HD : C = 4 x 5 = 4 3.(4 x 5) = 4 12 x 15 = 4 (1 + 12 x 15 ) 23 C ln nht khi 12 x 15 ln nht 12 x 15 nh nht v 12 x 15 > 0 x = 2 Vy Max C = 3 23 8 (1 + ) = khi x = 2 4 9 3 7n 8 có giá trị lớn nhất 2n 3 7n 8 7 2 (7 n 8) 7 14n... Bi 4: a) Số A = 101998 4 có chia hết cho 3 không ? Có chia hết cho 9 không ? b) Chứng minh rằng: A = 3638 + 4133 chia hết cho 7 HD: a) Ta cú 101998 = ( 9 + 1)1998 = 9.k + 1 ( k l s t nhiờn khỏc khụng) 4 = 3.1 + 1 Suy ra : A = 101998 4 = ( 9.k + 1) ( 3.1+1) = 9k -3 chia ht cho 3 , khụng chia ht cho 9 b) Ta cú 3638 = (362)19 = 129619 = ( 7. 185 + 1) 19 = 7. k + 1 ( k N*) 4133 = ( 7. 6 1)33 = 7. q 1 (... nguyờn tha món : x y + 2xy = 7 b) Tỡm x, y Ơ bit: 25 y 2 = 8( x 2012)2 HD : a) T x y + 2xy = 7 2x 2y + 2xy = 7 (2x - 1)( 2y + 1) = 13 b) T 25 y 2 = 8( x 2012)2 y2 25 v 25 y2 chia ht cho 8 , suy ra y = 1 hoc y = 3 hoc y = 5 , t ú tỡm x 1 1 1 + = Bi 3 a) Tìm giá trị nguyên dơng của x và y, sao cho: x y 5 b) Tìm các số a, b, c nguyên dơng thoả mãn : a 3 + 3a 2 + 5 = 5b và a + 3 = 5c 5 1 1 1 xM... = khi x = 2 4 9 3 7n 8 có giá trị lớn nhất 2n 3 7n 8 7 2 (7 n 8) 7 14n 16 7 5 HD : Ta cú 2n 3 = 2 7( 2n 3) = 2 14n 21 = 2 (1 + 14n 21) 7n 8 5 ln nht thỡ ln nht 14n 21 > 0 v 14n 21 cú giỏ tr nh 14n 21 2n 3 21 3 nht n > = v n nh nht n = 2 14 2 * Dng vn dng A 0, A , A 0, A Bi 5 : Tìm số tự nhiên n để phân số A + B A + B , A, B du = xy ra khi A.B 0 A B A B , A, B du = xy ra... Vi c = 1 a = 2 v b = 2 a2 = Bi 4: Tìm các cặp số nguyên tố p, q thoả mãn: 2 52 p + 2013 = 52 p + q 2 2 2 HD : 52 p + 2013 = 52 p + q 2 2013 q 2 = 25 p 25 p 2013 q 2 = 25 p (25 p 1) Do p nguyờn t nờn 2013 q 2 M252 v 2013 q2 > 0 t ú tỡm c q Bi 5 : Tìm tất cả các số nguyên dơng n sao cho: 2n 1 chia hết cho 7 HD : Vi n < 3 thỡ 2n khụng chia ht cho 7 Vi n 3 khi ú n = 3k hoc n = 3k + 1 hoc n = . của x thì a, b, c đều chia hết cho 3 HD a) ta cú 17a 34 b 17M v 3a + 2b 17 17 34 3 2 17 2(10 16 ) 17a b a b a b + + M M M 10 16 17a b M vỡ (2, 7) = 1 10 17 16 17 10 17a b b a b + +M. = HD : ( ) ( ) ( ) ( ) 1 11 1 10 7 7 0 7 1 7 0 x x x x x x x + + + − − − =   ⇔ − − − =   ( ) ( ) ( ) 1 10 8 6 1 10 7 0 1 ( 7) 0 7 0 7 ( 7) 1 7 1 7 0 10 x x x x x x x x x x x +   . (36 2 ) 19 = 1296 19 = ( 7. 185 + 1) 19 = 7. k + 1 ( k N * ) 41 33 = ( 7. 6 1) 33 = 7. q 1 ( q N * ) Suy ra : 3338 4136 +=A = 7k + 1 + 7q 1 = 7( k + q) 7M Bi 5 : a) Chứng minh

Ngày đăng: 26/01/2015, 09:00

TỪ KHÓA LIÊN QUAN

w