1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bồi dưỡng kiến thức HSG lớp 7

29 503 11

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 29
Dung lượng 1,69 MB

Nội dung

CHUYỀN ĐỀ BỒI DƯỠNG HSG TOÁN 7 PHẦN ĐẠI SỐ Chuyền đề 1: Các bài toán thực hiện phép tính: 1. Các kiến thức vận dụng : - Tính chất của phép cộng , phép nhân - Các phép toán về lũy thừa: a n = . n a a a 1 2 3 ; a m .a n = a m+n ; a m : a n = a m –n ( a ≠ 0, m ≥ n) (a m ) n = a m.n ; ( a.b) n = a n .b n ; ( ) ( 0) n n n a a b b b = ≠ 2 . Một số bài toán : Bài 1: a) Tính tổng : 1+ 2 + 3 +…. + n , 1+ 3 + 5 +…. + (2n -1) b) Tính tổng : 1.2 + 2.3 + 3.4 + … + n.(n+1) 1.2.3+ 2.3.4 + 3.4.5 + ….+ n(n+1)(n+2) Với n là số tự nhiên khác không. HD : a) 1+2 + 3 + + n = n(n+1) 1+ 3+ 5+ …+ (2n-1) = n 2 b) 1.2+2.3+3.4+ …+ n(n+1) = [1.2.(3 - 0) + 2.3.(4 - 1) + 3.4(5 – 2) + … + n(n + 1)( (n+2) – (n – 1))] : 3 = [ 1.2.3 – 1.2.3 + 2.3.4 – 2.3.4 +……+ n( n+1)(n+2)] : 3 = n(n+ 1)(n+2) :3 1.2.3 + 2.3.4+ 3.4.5 + ….+ n(n+1)(n+2) = [ 1.2.3(4 – 0) + 2.3.4( 5 -1) + 3.4.5.(6 -2) + ……+ n(n+1)(n+2)( (n+3) – (n-1))]: 4 = n(n+1)(n+2)(n+3) : 4 Tổng quát: Bài 2: a) Tính tổng : S = 1+ a + a 2 +… + a n b) Tính tổng : A = 1 2 2 3 1 . . . n n c c c a a a a a a − + + + với a 2 – a 1 = a 3 – a 2 = … = a n – a n-1 = k HD: a) S = 1+ a + a 2 +… + a n ⇒ aS = a + a 2 +… + a n + a n+1 Ta có : aS – S = a n+1 – 1 ⇒ ( a – 1) S = a n+1 – 1 Nếu a = 1 ⇒ S = n Nếu a khác 1 , suy ra S = 1 1 1 n a a + − − b) Áp dụng 1 1 ( ) . c c a b k a b = − với b – a = k Ta có : A = 1 2 2 3 1 1 1 1 1 1 1 ( ) ( ) ( ) n n c c c k a a k a a k a a − − + − + + − = 1 2 2 3 1 1 1 1 1 1 1 ( ) n n c k a a a a a a − − + − + + − = 1 1 1 ( ) n c k a a − Bài 3 : a) Tính tổng : 1 2 + 2 2 + 3 2 + …. + n 2 b) Tính tổng : 1 3 + 2 3 + 3 3 + … + n 3 HD : a) 1 2 + 2 2 + 3 2 + ….+ n 2 = n(n+1)(2n+1): 6 b) 1 3 + 2 3 + 3 3 + … + n 3 = ( n(n+1):2) 2 Bài 3: Thùc hiÖn phÐp tÝnh: a) A = 1 1 1 1 1 3 5 7 49 ( ) 4.9 9.14 14.19 44.49 89 − − − − − + + + + b) ( ) ( ) 12 5 6 2 10 3 5 2 6 3 9 3 2 4 5 2 .3 4 .9 5 .7 25 .49 125.7 5 .14 2 .3 8 .3 B − − = − + + HD : A = 9 28 − ; B = 7 2 Bài 4: 1, Tính: P = 1 1 1 2 2 2 2003 2004 2005 2002 2003 2004 5 5 5 3 3 3 2003 2004 2005 2002 2003 2004 + − + − − + − + − 2, Biết: 13 + 23 + . . . . . . .+ 103 = 3025. Tính: S = 23 + 43 + 63 + . . . .+ 203 Bài 5: a) TÝnh 115 2005 1890 : 12 5 11 5 5,0625,0 12 3 11 3 3,0375,0 25,1 3 5 5,2 75,015,1 +             −−+− ++− + −+ −+ =A b) Cho 20052004432 3 1 3 1 3 1 3 1 3 1 3 1 ++++++=B Chøng minh r»ng 2 1 <B . Bài 6: a) Tính :       −       + +       −− 7 2 14 3 1 12: 3 10 10 3 1 4 3 46 25 1 230. 6 5 10 27 5 2 4 1 13 b) TÝnh 1 1 1 1 2 3 4 2012 2011 2010 2009 1 1 2 3 2011 P + + + + = + + + + HD: Nhận thấy 2011 + 1 = 2010+2 = …. 2012 2010 1 1 1 1 2011 1 2 2011 MS⇒ = + + + + + + − 2012 2012 2012 2011 2 2011 = + + + − = 1 1 1 1 2012( ) 2 3 4 2012 + + + + c) 10099 4321 )6,3.212,1.63( 9 1 7 1 3 1 2 1 )10099 321( −++−+− −       −−−+++++ =A Bài 7: a) TÝnh gi¸ trÞ cña biÓu thøc: 50 31 . 93 14 1. 3 1 512 6 1 6 5 4 19 2 . 3 1 615 7 3 4. 31 11 1                   −       −+       −− =A b) Chøng tá r»ng: 2004 1 2004 1 3 1 3 1 2 1 1 2222 >−−−−−=B Bài 8: a) TÝnh gi¸ trÞ cña biÓu thøc: 25 13 :)75,2(53,388,0: 25 11 4 3 125505,4 3 4 4:624,81 2 2 2 2           −         +       +       − =A b) Chøng minh r»ng tæng: 2,0 2 1 2 1 2 1 2 1 2 1 2 1 2 1 20042002424642 <−++−+−+−= − nn S Chuyên đề 2: Bài toán về tính chất của dãy tỉ số bằng nhau: 1. Kiến thức vận dụng : - . . a c a d bc b d = ⇔ = -Nếu a c e b d f = = thì a c e a b e b d f b d f ± ± = = = ± ± với gt các tỉ số dều có nghĩa - Có a c e b d f = = = k Thì a = bk, c = d k, e = fk 2. Bài tập vận dụng Dạng 1 Vận dụng tính chất dãy tỉ số bằng nhau để chứng minh đẳng thức Bài 1: Cho a c c b = . Chứng minh rằng: 2 2 2 2 a c a b c b + = + HD: Từ a c c b = suy ra 2 .c a b= khi đó 2 2 2 2 2 2 . . a c a a b b c b a b + + = + + = ( ) ( ) a a b a b a b b + = + Bài 2: Cho a,b,c ∈ R và a,b,c ≠ 0 thoả mãn b 2 = ac. Chứng minh rằng: c a = 2 2 ( 2012 ) ( 2012 ) a b b c + + HD: Ta có (a + 2012b) 2 = a 2 + 2.2012.ab + 2012 2 .b 2 = a 2 + 2.2012.ab + 2012 2 .ac = a( a + 2.2012.b + 2012 2 .c) (b + 2012c) 2 = b 2 + 2.2012.bc + 2012 2 .c 2 = ac+ 2.2012.bc + 2012 2 .c 2 = c( a + 2.2012.b + 2012 2 .c) Suy ra : c a = 2 2 ( 2012 ) ( 2012 ) a b b c + + Bài 3: Chøng minh r»ng nÕu d c b a = th× dc dc ba ba 35 35 35 35 − + = − + HD : Đặt a c k b d = = ⇒ a = kb, c = kd . Suy ra : 5 3 (5 3) 5 3 5 3 (5 3) 5 3 a b b k k a b b k k + + + = = − − − và 5 3 (5 3) 5 3 5 3 (5 3) 5 3 c d d k k c d d k k + + + = = − − − Vậy dc dc ba ba 35 35 35 35 − + = − + Bài 4: BiÕt 2 2 2 2 a b ab c d cd + = + với a,b,c, d ≠ 0 Chứng minh rằng : a c b d = hoặc a d b c = HD : Ta có 2 2 2 2 a b ab c d cd + = + = 2 2 2 2 2 2 2 2 ab a ab b cd c cd d + + = = + + 2 2 2 ( ) ( ) ( ) a b a b c d c d + + = + + (1) 2 2 2 2 a b ab c d cd + = + = 2 2 2 2 2 2 2 2 ab a ab b cd c cd d − + = = − + 2 2 2 ( ) ( ) ( ) a b a b c d c d − − = − − (2) Từ (1) và (2) suy ra : 2 2 ( ) ( ) a b a b a b a b c d c d a b b a c d c d c d d c + −  =  + − + − = ⇒  + − + −  =  + −  Xét 2 TH đi đến đpcm Bài 5 : Cho tØ lÖ thøc d c b a = . Chøng minh r»ng: 22 22 dc ba cd ab − − = vµ 22 22 2 dc ba dc ba + + =       + + HD : Xuất phát từ d c b a = biến đổi theo các hướng làm xuất hiện 2 2 2 2 2 2 2 2 2 2 2 2 2 ( ) ab a b a c a b a b cd c d b d c d c d − + + = = = = = − + + Bài 6 : Cho d·y tØ sè b»ng nhau: d dcba c dcba b dcba a dcba 2222 +++ = +++ = +++ = +++ TÝnh cb ad ba dc ad cb dc ba M + + + + + + + + + + + = HD : Từ d dcba c dcba b dcba a dcba 2222 +++ = +++ = +++ = +++ Suy ra : 2 2 2 2 1 1 1 1 a b c d a b c d a b c d a b c d a b c d + + + + + + + + + + + + − = − = − = − ⇒ a b c d a b c d a b c d a b c d a b c d + + + + + + + + + + + + = = = Nếu a + b + c + d = 0 ⇒ a + b = -( c+d) ; ( b + c) = -( a + d) ⇒ cb ad ba dc ad cb dc ba M + + + + + + + + + + + = = -4 Nếu a + b + c + d ≠ 0 ⇒ a = b = c = d ⇒ cb ad ba dc ad cb dc ba M + + + + + + + + + + + = = 4 Bài 7 : a) Chøng minh r»ng: NÕu cba z cba y cba x +− = −+ = ++ 4422 Th× zyx c zyx b zyx a +− = −+ = ++ 4422 b) Cho: d c c b b a == . Chøng minh: d a dcb cba =       ++ ++ 3 HD : a) Từ cba z cba y cba x +− = −+ = ++ 4422 ⇒ 2 2 4 4a b c a b c a b c x y z + + + − − + = = ⇒ 2 2(2 ) 4 4 2 2 a b c a b c a b c a x y z x y z + + + − − + = = = + + (1) 2( 2 ) (2 ) 4 4 2 2 a b c a b c a b c b x y z x y z + + + − − + = = = + + (2) 4( 2 ) 4(2 ) 4 4 4 4 4 4 a b c a b c a b c c x y z x y z + + + − − + = = = − + (3) Từ (1) ;(2) và (3) suy ra : zyx c zyx b zyx a +− = −+ = ++ 4422 Bài 8: Cho zyx t yxt z xtz y tzy x ++ = ++ = ++ = ++ chøng minh r»ng biÓu thøc sau cã gi¸ trÞ nguyªn. zy xt yx tz xt zy tz yx P + + + + + + + + + + + = HD Từ zyx t yxt z xtz y tzy x ++ = ++ = ++ = ++ ⇒ y z t z t x t x y x y z x y z t + + + + + + + + = = = ⇒ 1 1 1 1 y z t z t x t x y x y z x y z t + + + + + + + + + = + = + = + ⇒ x y z t z t x y t x y z x y z t x y z t + + + + + + + + + + + + = = = Nếu x + y + z + t = 0 thì P = - 4 Nếu x + y + z + t ≠ 0 thì x = y = z = t ⇒ P = 4 Bài 9 : Cho 3 số x , y , z khác 0 thỏa mãn điều kiện : y z x z x y x y z x y z + − + − + − = = Hãy tính giá trị của biểu thức : B = 1 1 1 x y z y z x      + + +  ÷  ÷ ÷      Bài 10 : a) Cho các số a,b,c,d khác 0 . Tính T =x 2011 + y 2011 + z 2011 + t 2011 Biết x,y,z,t thỏa mãn: 2010 2010 2010 2010 2010 2010 2010 2010 2 2 2 2 2 2 2 2 x y z t x y z t a b c d a b c d + + + = + + + + + + b) Tìm số tự nhiên M nhỏ nhất có 4 chữ số thỏa mãn điều kiện: M = a + b = c +d = e + f Biết a,b,c,d,e,f thuộc tập N * và 14 22 a b = ; 11 13 c d = ; 13 17 e f = c) Cho 3 số a, b, c thỏa mãn : 2009 2010 2011 a b c = = . Tớnh giỏ tr ca biu thc : M = 4( a - b)( b c) ( c a ) 2 Mt s bi tng t Bi 11: Cho dãy tỉ số bằng nhau: 2012 2012 2012 2012a b c d a b c d a b c d a b c d a b c d + + + + + + + + + + + + = = = Tính cb ad ba dc ad cb dc ba M + + + + + + + + + + + = Bi 12: Cho 3 s x , y , z, t khỏc 0 tha món iu kin : y z t nx z t x ny t x y nz x y z nt x y z t + + + + + + + + = = = ( n l s t nhiờn) v x + y + z + t = 2012 . Tớnh giỏ tr ca biu thc P = x + 2y 3z + t Dng 2 : Vn dng tớnh cht dóy t s bng nhau tỡm x,y,z, Bi 1: Tỡm cp s (x;y) bit : = = 1+3y 1+5y 1+7y 12 5x 4x HD : p dụng tính chất dãy tỉ số bằng nhau ta có: + + = = = = = = 1+3y 1+5y 1+7y 1 7y 1 5y 2y 1 5y 1 3y 2y 12 5x 4x 4x 5x x 5x 12 5x 12 => 2 2 5 12 y y x x = vi y = 0 thay vo khụng tha món Nu y khỏc 0 => -x = 5x -12 => x = 2. Thay x = 2 vào trên ta đợc: 1 3 2 12 2 y y y + = = =>1+ 3y = -12y => 1 = -15y => y = 1 15 Vậy x = 2, y = 1 15 thoả mãn đề bài Bi 3 : Cho a b c b c a = = v a + b + c 0; a = 2012. Tớnh b, c. HD : t 1 a b c a b c b c a a b c + + = = = = + + a = b = c = 2012 Bi 4 : Tỡm cỏc s x,y,z bit : 1 2 3 1y x x z x y x y z x y z + + + + + = = = + + HD: p dng t/c dóy t s bng nhau: 1 2 3 2( ) 1 2 ( ) y x x z x y x y z x y z x y z x y z + + + + + + + = = = = = + + + + (vỡ x+y+z 0) Suy ra : x + y + z = 0,5 t ú tỡm c x, y, z Bi 5 : Tỡm x, bit rng: 1 2 1 4 1 6 18 24 6 y y y x + + + = = HD : T 1 2 1 4 1 6 2(1 2 ) (1 4 ) 1 2 1 4 (1 6 ) 18 24 6 2.18 24 18 24 6 y y y y y y y y x x + + + + + + + + + = = = = + Suy ra : 1 1 1 6 6 x x = ⇒ = Bài 6: T×m x, y, z biÕt: zyx yx z zx y yz x ++= −+ = ++ = ++ 211 (x, y, z 0 ≠ ) HD : Từ 1 1 1 2 2( ) 2 x y z x y z x y z z y x z x y x y z + + = = = + + = = + + + + + − + + Từ x + y + z = 1 2 ⇒ x + y = 1 2 - z , y +z = 1 2 - x , z + x = 1 2 - y thay vào đẳng thức ban đầu để tìm x. Bài 7 : T×m x, y, z biÕt 216 3 64 3 8 3 zyx == vµ 122 222 =−+ zyx Bài 8 : Tìm x , y biết : 2 1 4 5 2 4 4 5 9 7 x y x y x + − + − = = Chuyên đề 3: Vận dụng tính chất phép toán để tìm x, y 1. Kiến thức vận dụng : - Tính chất phép toán cộng, nhân số thực - Quy tắc mở dấu ngoặc, quy tắc chuyển vế - Tính chất về giá trị tuyệt đối : 0A ≥ với mọi A ; , 0 , 0 A A A A A ≥  =  − <  - Bất đẳng thức về giá trị tuyệt đối : A B A B+ ≥ + dấu ‘=’ xẩy ra khi AB ≥ 0; A B A B− ≥ − dấu ‘= ‘ xẩy ra A,B >0 ( 0) A m A m m A m ≥  ≥ ⇔ >  ≤ −  ; ( ) A m A m hay m A m A m ≤  ≤ ⇔ − ≤ ≤  ≥ −  với m > 0 - Tính chất lũy thừa của 1 số thực : A 2n ≥ 0 với mọi A ; - A 2n ≤ 0 với mọi A A m = A n ⇔ m = n; A n = B n ⇒ A = B (nếu n lẻ ) hoặc A = ± B ( nếu n chẵn) 0< A < B ⇔ A n < B n ; 2. Bài tập vận dụng Dạng 1: Các bài toán cơ bản Bài 1: Tìm x biết a) x + 2x + 3x + 4x + … + 2011x = 2012.2013 b) 1 2 3 4 2011 2010 2009 2008 x x x x− − − − + − = HD : a) x + 2x + 3x + 4x + … + 2011x = 2012.2013 ⇒ x( 1 + 2 + 3 + ….+ 2011) = 2012.2013 2011.2012 . 2012.2013 2 x⇒ = 2.2013 2011 x⇒ = b) Nhận xét : 2012 = 2011+1= 2010 +2 = 2009 +3 = 2008 +4 Từ 1 2 3 4 2011 2010 2009 2008 x x x x− − − − + − = ( 2012) 2011 ( 2012) 2010 ( 2012) 2009 ( 2012) 2008 2011 2010 2009 2008 x x x x− + − + − + − + ⇒ + + = 2012 2012 2012 2012 2 2011 2010 2009 2008 1 1 1 1 ( 2012)( ) 2 2011 2010 2009 2008 1 1 1 1 2 : ( ) 2012 2011 2010 2009 2008 x x x x x x − − − − ⇒ + + − = − ⇒ − + + − = − ⇒ = − + + − + Bài 2 Tìm x nguyên biết a) 1 1 1 1 49 1.3 3.5 5.7 (2 1)(2 1) 99x x + + + + = − + b) 1- 3 + 3 2 – 3 3 + ….+ (-3) x = 1006 9 1 4 − Dạng 2 : Tìm x có chứa giá trị tuyệt đối • Dạng : x a x b+ = + và x a x b x c+ ± + = + Khi giải cần tìm giá trị của x để các GTTĐ bằng không, rồi so sánh các giá trị đó để chia ra các khoảng giá trị của x ( so sánh –a và –b) Bài 1 : Tìm x biết : a) 2011 2012x x− = − b) 2010 2011 2012x x− + − = HD : a) 2011 2012x x− = − (1) do VT = 2011 0,x x− ≥ ∀ nên VP = x – 2012 0 2012x≥ ⇒ ≥ (*) Từ (1) 2011 2012 2011 2012( ô ) 2011 2012 (2011 2012) : 2 x x v ly x x x − = − =   ⇒ ⇒   − = − = +   Kết hợp (*) ⇒ x = 4023:2 b) 2010 2011 2012x x− + − = (1) Nếu x ≤ 2010 từ (1) suy ra : 2010 – x + 2011 – x = 2012 ⇒ x = 2009 :2 (lấy) Nếu 2010 < x < 2011 từ (1) suy ra : x – 2010 + 2011 – x = 2012 hay 1 = 2012 (loại) Nếu x 2011≥ từ (1) suy ra : x – 2010 + x – 2011 = 2012 ⇒ x = 6033:2(lấy) Vậy giá trị x là : 2009 :2 hoặc 6033:2 Một số bài tương tự: Bài 2 : a) T×m x biÕt 431 =++− xx b) T×m x biÕt: 426 22 +=−+ xxx c) T×m x biÕt: 54232 =−−+ xx Bài 3 : a)T×m c¸c gi¸ trÞ cña x ®Ó: xxx 313 =+++ b) Tìm x biết: 2 3 2x x x− − = − Bài 4 : tìm x biết : a) 1 4x − ≤ b) 2011 2012x − ≥ Dạng : Sử dụng BĐT giá trị tuyệt đối Bài 1 : a) Tìm x ngyên biết : 1 3 5 7 8x x x x− + − + − + − = b) Tìm x biết : 2010 2012 2014 2x x x− + − + − = HD : a) ta có 1 3 5 7 1 7 3 5 8x x x x x x x x− + − + − + − ≥ − + − + − + − = (1) Mà 1 3 5 7 8x x x x− + − + − + − = suy ra ( 1) xẩy ra dấu “=” Hay 1 7 3 5 3 5 x x x ≤ ≤  ⇒ ≤ ≤  ≤ ≤  do x nguyên nên x ∈ {3;4;5} b) ta có 2010 2012 2014 2010 2014 2012 2x x x x x x− + − + − ≥ − + − + − ≥ (*) Mà 2010 2012 2014 2x x x− + − + − = nên (*) xẩy ra dấu “=” Suy ra: 2012 0 2012 2010 2014 x x x − =  ⇒ =  ≤ ≤  Các bài tương tự Bài 2 : Tìm x nguyên biết : 1 2 100 2500x x x− + − + + − = Bài 3 : Tìm x biết 1 2 100 605x x x x+ + + + + + = Bài 4 : T×m x, y tho¶ m·n: x 1 x 2 y 3 x 4− + − + − + − = 3 Bài 5 : Tìm x, y biết : 2006 2012 0x y x− + − ≤ HD : ta có 2006 0x y− ≥ với mọi x,y và 2012 0x − ≥ với mọi x Suy ra : 2006 2012 0x y x− + − ≥ với mọi x,y mà 2006 2012 0x y x− + − ≤ ⇒ 0 2006 2012 0 2012, 2 2012 0 x y x y x x y x − =  − + − = ⇒ ⇒ = =  − =  Bài 6 : T×m c¸c sè nguyªn x tho¶ m·n. 2004 4 10 101 990 1000x x x x x= − + − + + + + + + Dạng chứa lũy thừa của một số hữu tỉ Bài 1: Tìm số tự nhiên x, biết : a) 5 x + 5 x+2 = 650 b) 3 x-1 + 5.3 x-1 = 162 HD : a) 5 x + 5 x+2 = 650 ⇒ 5 x ( 1+ 5 2 ) = 650 ⇒ 5 x = 25 ⇒ x = 2 b) 3 x-1 + 5.3 x-1 = 162 ⇒ 3 x -1 (1 + 5) = 162 ⇒ 3 x – 1 = 27 ⇒ x = 4 Bài 2 : Tìm các số tự nhiên x, y , biết: a) 2 x + 1 . 3 y = 12 x b) 10 x : 5 y = 20 y HD : a) 2 x + 1 . 3 y = 12 x ⇒ 2 1 1 2 3 2 3 2 3 x y x y x x x − − + = ⇒ = Nhận thấy : ( 2, 3) = 1 ⇒ x – 1 = y-x = 0 ⇒ x = y = 1 b) 10 x : 5 y = 20 y ⇒ 10 x = 10 2y ⇒ x = 2y Bài 3 : Tìm m , n nguyên dương thỏa mãn : a) 2 m + 2 n = 2 m +n b) 2 m – 2 n = 256 HD: a) 2 m + 2 n = 2 m +n ⇒ 2 m + n – 2 m – 2 n = 0 ⇒ 2 m ( 2 n – 1) –( 2 n – 1) = 1 ⇒ (2 m -1)(2 n – 1) = 1 ⇒ 2 1 1 1 2 1 1 n m m n  − =  ⇒ = =  − =   b) 2 m – 2 n = 256 ⇒ 2 n ( 2 m – n - 1) = 2 8 Dễ thấy m ≠ n, ta xét 2 trường hợp : + Nếu m – n = 1 ⇒ n = 8 , m = 9 + Nếu m – n ≥ 2 thì 2 m – n – 1 là 1 số lẻ lớn hơn 1, khi đó VT chứa TSNT khác 2, mà VT chỉ chứa TSNT 2 suy ra TH này không xẩy ra : vậy n = 8 , m = 9 Bài 4 : Tìm x , biết : ( ) ( ) 1 11 7 7 0 x x x x + + − − − = HD : ( ) ( ) ( ) ( ) 1 11 1 10 7 7 0 7 1 7 0 x x x x x x x + + + − − − =   ⇔ − − − =   ( ) ( ) ( ) 1 10 8 6 1 10 7 0 1 ( 7) 0 7 0 7 ( 7) 1 7 1 7 0 10 x x x x x x x x x x x +    ÷   =   =  + − = − − = − = ⇒ = − = ⇒   ⇔ − − − =     ⇔      ⇔   Bài 5 : Tìm x, y biết : 2012 2011 ( 1) 0x y y− + − = HD : ta có 2011 0x y− ≥ với mọi x,y và (y – 1) 2012 ≥ 0 với mọi y Suy ra : 2012 2011 ( 1) 0x y y− + − ≥ với mọi x,y . Mà 2012 2011 ( 1) 0x y y− + − = ⇒ 2011 0 2011, 1 1 0 x y x y y − =  ⇒ = =  − =  Các bài tập tương tự : Bài 6 : Tìm x, y biết : a) 2012 5 (3 4) 0x y+ + − = b) 2 2 (2 1) 2 8 12 5.2x y x− + − − = − Chuyên đề 4: Giá trị nguyên của biến , giá trị của biểu thức : 1 . Các kiến thức vận dụng: - Dấu hiệu chia hết cho 2, 3, 5, 9 - Phân tích ra TSNT, tính chất của số nguyên tố, hợp số , số chính phương - Tính chất chia hết của một tổng , một tích - ƯCLN, BCNN của các số 2. Bài tập vận dụng : * Tìm x,y dưới dạng tìm nghiệm của đa thức Bài 1: a) T×m c¸c sè nguyªn tè x, y sao cho: 51x + 26y = 2000 b) T×m sè tù nhiªn x, y biÕt: 22 23)2004(7 yx −=− c) T×m x, y nguyªn biÕt: xy + 3x - y = 6 [...]... 5b + 6c M 17 nếu a - 11b + 3c M 17 (a, b, c Z) Bi 6 : a) Chứng minh rằng: 3a + 2b M 17 10a + b M 17 (a, b Z ) b) Cho đa thức f ( x) = ax 2 + bx + c (a, b, c nguyên) CMR nếu f(x) chia hết cho 3 với mọi giá trị của x thì a, b, c đều chia hết cho 3 17 17 17 17 HD a) ta cú 17a 34 b M v 3a + 2b M 17a 34b + 3a + 2b M 2(10a 16b)M 10a 16bM vỡ (2, 7) = 1 10a + 17b 16bM 10a + bM 17 17 17 ... tc 3m/s Hi di cnh hỡnh vuụng bit rng tng thi gian vt chuyn ng trờn bn cnh l 59 giõy Bi 2 : Ba lớp 7A,7B,7C có 94 học sinh tham gia trồng cây Mỗi học sinh lớp 7A trồng đợc 3 cây, Mỗi học sinh lớp 7B trồng đợc 4 cây, Mỗi học sinh lớp 7C trồng đợc 5 cây, Hỏi mỗi lớp có bao nhiêu học sinh Biết rằng số cây mỗi lớp trồng đợc đều nh nhau Bi 3 : Một ô tô phải đi từ A đến B trong thời gian dự định Sau khi đi... cho 7 HD : Vi n < 3 thỡ 2n khụng chia ht cho 7 Vi n 3 khi ú n = 3k hoc n = 3k + 1 hoc n = 3k + 2 ( k N * ) Xột n = 3k , khi ú 2n -1 = 23k 1 = 8k 1 = ( 7 + 1)k -1 = 7. A + 1 -1 = 7. A M7 Xột n = 3k +1 khi ú 2 n 1 = 23k+1 1 = 2.83k 1 = 2.(7A+1) -1 = 7A + 1 khụng chia ht cho 7 -Xột n = 3k+2 khi ú 2n 1 = 23k +2 -1 = 4.83k 1 = 4( 7A + 1) 1 = 7 A... rằng: A = 3638 + 4133 chia hết cho 7 HD: a) Ta cú 101998 = ( 9 + 1)1998 = 9.k + 1 ( k l s t nhiờn khỏc khụng) 4 = 3.1 + 1 Suy ra : A = 101998 4 = ( 9.k + 1) ( 3.1+1) = 9k -3 chia ht cho 3 , khụng chia ht cho 9 b) Ta cú 3638 = (362)19 = 129619 = ( 7. 185 + 1) 19 = 7. k + 1 ( k N*) 4133 = ( 7. 6 1)33 = 7. q 1 ( q N*) Suy ra : A = 3638 + 4133 = 7k + 1 + 7q 1 = 7( k + q) M7 Bi 5 : a) Chứng minh rằng: 3n... nht 12 x 15 nh nht v 12 x 15 > 0 x = 2 Vy Max C = 3 23 8 (1 + ) = khi x = 2 4 9 3 7n 8 có giá trị lớn nhất 2n 3 7n 8 7 2 (7 n 8) 7 14n 16 7 5 HD : Ta cú 2n 3 = 2 7( 2n 3) = 2 14n 21 = 2 (1 + 14n 21) 7n 8 5 ln nht thỡ ln nht 14n 21 > 0 v 14n 21 cú giỏ tr nh 14n 21 2n 3 21 3 nht n > = v n nh nht n = 2 14 2 * Dng vn dng A 0, A ,... -d) Tìm mọi số nguyên tố thoả mãn : x2-2y2=1 HD: a) T 51x + 26y = 2000 17. 3.x = 2.( 1000 13 y) do 3, 17 l s NT nờn x M2 m x NT x = 2 Li cú 1000 13y M51 , 1000 13y > 0 v y NT y = b) T 7( x 2004)2 = 23 y 2 (1) do 7( x2004)2 0 23 y 2 0 y 2 23 y {0, 2,3, 4} Mt khỏc 7 l s NT 13 y 2 M7 vy y = 3 hoc y = 4 thay vo (1) suy ra : x= 2005 ,y =4 hoc x = 2003, y = 4 x 1 = 1 x 1... -Xột n = 3k+2 khi ú 2n 1 = 23k +2 -1 = 4.83k 1 = 4( 7A + 1) 1 = 7 A + 3 khụng chia ht cho 7 Vy n = 3k vi k N * * Tỡm x , y biu thc cú giỏ tr nguyờn, hay chia ht: Bi 1 Tìm số nguyên m để: a) Giá trị của biểu thức m -1 chia hết cho giá trị của biểu thức 2m + 1 b) 3m 1 < 3 HD : a) Cỏch 1 : Nu m >1 thỡ m -1 < 2m +1 , suy ra m -1 khụng chia ht cho 2m +1 Nu m < -2 thỡ m... 1) = 2 y 2 hoc x +1 = 2 y x = 3 x 1 = y y = 2 do VP = 2y2 chia ht cho 2 suy ra x > 2 , mt khỏc y nguyờn t Bi 2 a) Tỡm cỏc s nguyờn tha món : x y + 2xy = 7 b) Tỡm x, y Ơ bit: 25 y 2 = 8( x 2012)2 HD : a) T x y + 2xy = 7 2x 2y + 2xy = 7 (2x - 1)( 2y + 1) = 13 b) T 25 y 2 = 8( x 2012)2 y2 25 v 25 y2 chia ht cho 8 , suy ra y = 1 hoc y = 3 hoc y = 5 , t ú tỡm x 1 1 1 + = Bi 3 a) Tìm giá... -Bi 5 : Tìm tổng các hệ số của đa thức nhận đợc sau khi bỏ dấu ngoặc trong biểu thức: A(x) = (3 4 x + x 2 ) 2004 (3 + 4 x + x 2 ) 2005 HD : Gi s A( x) = ao + a1x + a2x2 + + a4018x4018 Khi ú A(1) = ao + a1 +a2 + .+ a4018 do A(1) = 0 nờn ao + a1 +a2 + .+ a4018 = 0 Bi 6 : Cho x = 2011 Tính giá trị của biểu thức: x 2011 2012 x 2010 + 2012 x 2009 2012 x 2008 + 2012 x 2... + 1) = 3n ì 2n ì5 = 3n ì 2n1 ì 10 10 10 n n = 10( 3 -2 ) n+2 n+ 2 n n Vy 3 2 + 3 2 M 10 vi mi n l s nguyờn dng Bi 2 : Chng t rng: 2004 A = 75 (4 + 42003 + + 42 + 4 + 1) + 25 l s chia ht cho 100 HD: A = 75 (42004 + 42003 + + 42 + 4 + 1) + 25 = 75 .( 42005 1) : 3 + 25 = 25( 42005 1 + 1) = 25 42005 chia ht cho 100 Bi 3 : Cho m, n N* v p l s nguyờn t tho món: m+n p = p (1) m 1 Chng minh . ) 1 11 7 7 0 x x x x + + − − − = HD : ( ) ( ) ( ) ( ) 1 11 1 10 7 7 0 7 1 7 0 x x x x x x x + + + − − − =   ⇔ − − − =   ( ) ( ) ( ) 1 10 8 6 1 10 7 0 1 ( 7) 0 7 0 7 ( 7) 1 7 1 7 0 10 x x x x x x x. đều chia hết cho 3 HD a) ta cú 17a 34 b 17M v 3a + 2b 17 17 34 3 2 17 2(10 16 ) 17a b a b a b + + M M M 10 16 17a b M vỡ (2, 7) = 1 10 17 16 17 10 17a b b a b + +M M b) Ta có f(0). Bi 2 : Ba lớp 7A,7B,7C có 94 học sinh tham gia trồng cây. Mỗi học sinh lớp 7A trồng đợc 3 cây, Mỗi học sinh lớp 7B trồng đợc 4 cây, Mỗi học sinh lớp 7C trồng đợc 5 cây,. Hỏi mỗi lớp có bao

Ngày đăng: 22/11/2014, 13:04

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w