1. Trang chủ
  2. » Giáo án - Bài giảng

dang 3 chuong dao dong co hoc ( co dap an

3 384 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 1,56 MB

Nội dung

T V T VẬT LÝ 12 CHƯƠNG 1 :DAO ĐỘNG CƠ HỌC Dang 3 : biến thiên chiều dài và lực đàn hồi Giảng viên Bách Khoa thầy Trịnh Văn Thành dd:0974236501 mail:thanhgiabkhn@gmail.com Nhận trực tiếp gia sư tại nhà (khu vực nội thành Hà Nội phụ huynh hs có nhu cầu xin vui lòng liên hệ vào số máy trên) Câu1: Một vật có m=100g dao động điều hoà với chu kì T=1s, vận tốc của vật khi qua VTCB là v o =10  cm/s, lấy  2 =10. Hợp lực cực đại tác dụng vào vật là A. 0,2N B. 4,0N C. 2,0N D. 0,4N Câu 2: Một con lắc lò xo dao động điều hoà theo phương thẳng đứng với tần số góc  = 20rad/s tại vị trí có gia tốc trọng trường g=10m/ 2 s . Khi qua vị trí x=2cm, vật có vận tốc v = 40 3 cm/s. Lực đàn hồi cực tiểu của lò xo trong quá trình dao động có độ lớn A. 0,1(N) B. 0,4(N) C. 0(N) D. 0,2(N) Câu 3: Một lò xo nhẹ đầu trên gắn cố định, đầu dưới gắn vật nhỏ m. Chọn trục Ox thẳng đứng, gốc O ở vị trí cân bằng của vật. Vật dao động điều hoà trên Ox với phương trình x=10sin10t(cm), lấy g=10m/s 2 , khi vật ở vị trí cao nhất thì lực đàn hồi của lò xo có độ lớn là A. 0(N) B. 1,8(N) C. 1(N) D. 10(N) Câu 4: Một con lắc lò xo treo thẳng đứng gồm vật nặng có khối lượng m=100g và lò xo khối lượng không đáng kể. Chọn gốc toạ độ ở VTCB, chiều dương hướng lên. Biết con lắc dao động theo phương trình: x=4sin(10t-  /6)cm. Lấy g=10m/s 2 . Độ lớn lực đàn hồi tác dụng vào vật tại thời điểm vật đã đi quãng đường s=3cm (kể từ t=0) là A. 1,2N B. 1,6N C. 0,9N D. 2N Câu 5 Một vật khối lượng 1 kg dao động điều hòa với phương trình: x = 10sin  t (cm). Lực phục hồi tác dụng lên vật vào thời điểm 0,5s là:A. 0,5 N. B. 2N. C. 1N D. Bằng 0. Câu 6 Lực tác dụng gây ra dao động điều hòa của một vật luôn Mệnh đề nào sau đây không phù hợp để điền vào chỗ chấm trên?A. biến thiên điều hòa theo thời gian. B.hướng về vị trí cân bằng. C.có biểu thức F = -kx D.có độ lớn không đổi theo thời gian. C©u 7: Con lắc lò xo khối lượng m = 2kg dao động điều hoà theo phương nằm ngang. Vận tốc của vật có độ lớn cực đại bằng 0,6m/s. Chọn thời điểm t = 0 lúc vật qua vị trí x 0 = 3 2 cm và tại đó thế năng bằng động năng. Tính chu kỳ dao động của con lắc và độ lớn của lực đàn hồi tại thời điểm t = 20  s. A. T = 0,314s; F = 3N. B. T = 0,628s; F = 6N C. T = 0,628s; F = 3N. D. T = 0,314s; F = 6N Câu 8: Trong dao động điều hoà của con lắc lò xo: A. Khi lò xo có chiều dài ngắn nhất thì lực đàn hồi có giá trị nhỏ nhất B. Khi lò xo có chiều dài cực đại thì lực đàn hồi có giá trị cực đại C. Khi lò xo có chiều dài ngắn nhất thì vận tốc có giá trị cực đại D. Khi lò xo có chiều dài cực đại thì vận tốc có giá trị cực đại Câu 9 : Trong dao động điều hoà của con lắc lò xo A. Lực đàn hồi cực tiểu F đhmin = k( l  - A) B. Lực đàn hồi cực đại F đhmax = k( l  + A) C. Lực đàn hồi không đổi D. Lực phục hồi cực đại F phmax = k( l  + A) Câu 10: Tìm kết luận SAI về lực tác dụng lên vật dao động điều hoà A. luôn hướng về vị trí cân bằng B. luôn cùng chiều vận tốc C. luôn cùng chiều với gia tốc D. luôn ngược dấu với li độ Câu 11: Trong dao động điều hoà khi vật đổi chiều chuyển động thì A. Lực tác dụng đạt giá trị cực đại B. Lực tác dụng có độ lớn bằng 0 C. Lực tác dụng đổi chiều D. Lực tác dụng có giá trị nhỏ nhất Câu12 Vật có khối lượng 200g treo vào lò xo có độ cứng 100N/m. Kích thích con lắc dao động với biên độ 3cm, cho g=10m/s 2 . Lực đàn hồi cực đại và cực tiểu của lò xo là : T V T VẬT LÝ 12 CHƯƠNG 1 :DAO ĐỘNG CƠ HỌC Dang 3 : biến thiên chiều dài và lực đàn hồi Giảng viên Bách Khoa thầy Trịnh Văn Thành dd:0974236501 mail:thanhgiabkhn@gmail.com Nhận trực tiếp gia sư tại nhà (khu vực nội thành Hà Nội phụ huynh hs có nhu cầu xin vui lòng liên hệ vào số máy trên) A. 3N, 1N B. 5N, 1N C. 3N, 0N D. 5N, 0N Câu13: Một con lắc lò xo thẳng đứng có chiều dài tự nhiên là l 0 =30cm, k=100N/m, khối lượng vật năng là 200g, năng lượng dao động E=80mJ. Tìm chiều dài cực đại và cực tiểu của lò xo? A. 35cm vµ 25cm B. 40cm vµ 20cm C. 36cm vµ 28cm D. 34cm vµ 26cm Câu14:Một lò xo có chiều dài l 0 =40cm độ cứng k=200N/m được treo vật m=2kg, g=10m/s 2 .Tại t=0 cho vật đến vị trí lò xo không biến dạng rồi buông nhẹ. Chọn gốc toạ độ là VTCB, chiều duơng huớng lên. Khi lò xo có chiều dài 45cm lần đầu thì vận tốc của vật là: A. scmv /350 B. scmv /350 C. scmv /345 D. scmv /345 Câu15 : Treo một con lắc lò xo có độ cứng k = 200 N/m, vật m= 3 kg trên trần một ôtô đang chạy với gia tốc không đổi. Khi đó trục của lò xo lệch góc  = 30 0 so với phương thẳng đứng. Lấy gia tốc rơi tự do g = 10 m/s 2 . Độ giãn của lò xo là: A. 5 3 l cm   B.  l = 7,5 cm C. 10 3 cm l  D.  l = 5 cm câu16: Cho hệ con lắc lò xo thẳng đứng gồm vật m treo vào một lò xo có độ cứng k .Ở vị trí cân bằng ;lò xo giãn một đoạn Δl 0 .Kích thích cho hệ dao động .Tại một vị trí có li độ x bất kì của vật m ,lực tác dụng của lò xo vào điêm treo của cả hệ là : A. Lực hồi phục F = - k x B. Trọng lực P = m g C. Hợp lực F = -k x + m g. D. Lực đàn hồi F = k ( Δl 0 + x ). Câu 17: Một con lắc lò xo thẳng đứng có k=50N/m, m=500g, lấy g=π 2 =10m/s 2 . Từ vị trí cân bằng kéo vật xuống một đoạn 4cm rồi truyền cho vật vận tốc đầu 40 3 cm/s hướng lên thì vật dao động điều hoà. Chọn trục toạ độ thẳng đứng hướng xuống, gốc O tại vị trí cân bằng của dao động, gốc thới gian lúc vật bắt đầu dao động.Lực đàn hồi cực tiểu tác dụng lên giá treo là: A. 1N. B. 0 C. 9N D. 100N Câu 18 :Có hai con lắc đơn mà chiều dài của chúng hơn kém nhau 22 cm. Trong cùng một khoảng thời gian con lắc này làm được 5 dao động thì con lắc kia làm được 6 dao động. Chiều dài của mỗi con lắc là: A. 31cm và 9 cm B. 72 cm và 50 cm C. 31cm và 53 cm D. 72 cm và 94 cm Câu 19: Hai lò xo giống hệt nhau, chiều dài tự nhiên , độ cứng ghép nối tiếp rồi treo thẳng đứng vào một điểm cố định. Khi treo vào đầu dưới một vật rồi kích thích cho vật dao động với biên độ . Lấy . Chiều dài tối đa và tối thiểu của lò xo trong quá trình dao động là: A. B. C. D. Câu 20 :Một con lắc lò xo gồm một quả nặng có khối lượng m = 0,2 kg treo vào lò xo có độ cứng k = 100 N/m. Cho vật dao động điều hoà theo phương thẳng đứng với biên độ A = 3 cm. Lực đàn hồi cực tiểu có giá trị là: A. 3 N B. 2 N C. 1 N D. 0 Câu 21:Một con lắc lò xo gồm quả cầu m = 100g dao động điều hòa theo phương ngang với phương trình: Độ lớn lực phục hồi cực đại là: A. 4N B. 6N C. 2N D. 1N . src=" 738 8rNAt9tRYqHUKkoSoN1KLTUwm46TOAWKrDrV58A8z9JWCMRRCOLJlNYpIEl6vXYEJNstWcRPp+dFNgdGF1kQugYkaC6dVNlJ0eN8ZsvSAmUR9XoDIAzDi+xUCKTI5EomtuoDrk4n8wmwyMZxInVrca/bBtK2ybMFMBqdR3EADPqdspgDgTHa6CVXiHsjiEZVlkqJiVQL+Dh0EEZAGARhJKZWgDZAuCqWc42VpZRRSvbkljDjlhiz/A/WugqwrtTKAmEUGiMHpSwLoK6cMnIXhbqp0EMMtLouIRYAk5Nn+S2+G5m84+Tl5eXl5eXl5fXHApzqKpOatDJ3gY0BhRavYDorZ/MF0Gt1EhPK8lqqtWJjpG2pnbakiuyZ5y9FYQBopaR7Rylkua9RJkqBMDTtbgvIFvl8OgPm82x0MWk4J0qATqeHawrDpMDM2Xwxz4HpeJZnOWCMsXUNdLut69evAGtrgyA0QJ7neVYC43FxenwO7OV7cj6LbD4eXwDnF6ezSQGEutWK28Cl3Z2t7U0gjqOyygXJxMmJgjTLF8DDvbv3H94CxuOLKHZAENFAB3WZl0AlZXhlVRQWCExS5xrIssLZPtDpdNb60jhUFZkBTrNqnpXAIivHkyOg1Q4vXV4H+v2hitpAllXj0QzI80r6huI4lHJBpZSiALTRCiWcE0fiAWqlDGCMCsNY+K2pD8wqbQCMYVnX15Thad3UVZZlEQQBTYGfFObVUtfnnBVELMs8CjWgtNU6kR+9KcPTdlmP5x71OC3RSA6htdbKLMHpo1r1bvmn1MvLy8vLy8vL68mDExYpn6uqqq4cYIJE7JciL4usBLLFQtbQcRAKTgRtFSch0ElbQRIKTti6kKW30g6wzs1mOUBdNz1OnY6YSJGJe+3B44t755StHbCYLySIIssKWZ0bE3a7XSCO0rW1NWB/fz9txUC /35 c2KnDLAr9ZnlXAwf5xUcrK24m7NVxbb6VtIEnSbqcPpK1wfX0NGAz6cjkW81meS1FcISkOVTmR1qNW2h/0toDjk2o+mwFBYaUkTyldKoB+bwNI+p3xaA5MxvNRVgF1RbfTA7CprTSQF9V0kgHaOClWzHNb5gaIBp3AdIDRxSLLx0CWZ2EUAEa1puNzII+qKJQCv8YyiqJIvmar1bI1iK0EQG1LKdVTSkVhAkShK6oaUATSiYTR8ssao5asYrNszmP5E0EQSPuTc8gPWhSF0SFQ5Ng6kx9LDmpMgLTDObVEoAafHu9xao6l 1CO4 8rzk5eXl5eXl5eX1xxCcWu2+FEMVZV1WNVDnTnpjqhJba+D8bNLtdoD2WqfVigGjQNXAIl/oKmvW58t+FdUUfbH0GJBCrDwvZPVsdCALbqVCK5tYZ4wDqrKcTafAYp43tBYm0pDT68Ris1y7etUYiW5T1pZAli9mswVQFZWs6fv97mS8ABaLRZkXQCuNNzc2gO2tDakZU0oJCdR1NZ1NgMW0zJsGIbVMTSiExJQ2nfYQKIrq9PQAmIzHti6Bsip7vT6wuT4EBr2NuhwBs8mx+DmtfjdOO4KQeZ4BRam1iQETKlcrQFdlWY+Bs/PFPH8IxDHdfgIMButRYgBbl0HYBbRSQZgCSRwLXo5Gs9EoB+J40e21G4DVmsZxMoCpm/wPnFq1G2ltALVsdiptuayOa05V4jcApRM5Z62NeGtlGTinl9zbxDvID6+VVhLlp8xH7jnV2JYopZrzQUsAoEX5Cj0vLy8vLy8vL68/juCU51oa/ReLaj7PgLyoa5rM8aIsgdPTMSoE0jSvbA1UxdxRAZ122um2gHbaWhW5CfAEYSgL9zov8qwAFvPCOQVgC/GXqgqpxyuKQvLZ1oe9drsF9Pt9WdMv5rlkORRF9ZE0NqWc9M+YYGVdmMBoYH29kyQZkGVZU3QXRfJNZ7O5wEZRFEsAKOXoVVUJ/oVhEEkUeNAEP1ircBGgSbvtHWA4uJy2pAQxSJIUkP+djCZnxzPZstftA1GUSGSdrcEFDTE2YXq1kIYxyfbWVWA0Pro4HwGtdqCNAaydBoFsoztpFyiLYjqZAUVxXlYFEARm0O8B7VZrNhGYnFdVAURR2Om0gTRNg1ADWgVR2JLLZUwNaOOERZW2YAGUE5urzkpJpS/LXHYYx7H4hEmSuFpIuLEijdbCxkprOXml9PJX0+iA70jnk0QJSdUzwtmrjAphp4agEv+oenl5eXl5eXl5PUmpbFxmswo4Pj0/2D8GzsfjyjZrVlnFVlUVRgbodlob 631 ga2MwWOsCSRI1Mdg07f3O2bqqGxqROUJ1U6ZlrRM/ZzaeXVyMgfF4VpUSBRFGUQCEkVtbGwDDtaFE57naLbIcGF1MRuNxszqXYUGKVSp3FIVAq5XGcQsoS7JMivfy5dChpjNH8Ak4O7sQJCiKQv5YlmWe57KxdAGhKwl+CMNQtjHGpGkqX1g2ds6NRhcspxutttRaJWkiFJHlAjNZU/9WlxKqoQOrtQW0qZWW2PTpZHIKzLORxEWsDXthqIGyLNppG5hMJsdHh8B0PhWb65lnr69vrIFE2NVAXiwkkwOs1MEZYyRpsNPuGZ0sf7MaQNklgiLnozSdTgvJfK8qGqR5FIgH4Ewr7gFhGIdBBJjArIruVHMFGxZCK6U13xk13mCSUxLbWNVOCLYsS7mGAk6vPf8f+GfVy8vLy8vLy8vrSYLT+HQWmABYZNnhwSFweHg4nc9ofAAlq9j19XVgZ2dnfW0N6PY6Ykc45+qyBsqsmozHwGw6K8qioZGqBlrttN/vA0mSCKiAa/c6AFaK5oii6ODgIXB08vDOnVvA5atXn7pyFUg7nf/nC18AqqIaDNeATqt9cnYKbAw314ZrQFWW09kMqKtqY2MXWMzdbJoB8/lCvJR2uyVdQHESy1eeziYyf2k8Hi8WC1niCyQURS5QVFYly1A4WfDHcRLHEc0UowoIgqCxR5BUjCbau142d6HsxfgUsKq2VQ0UdWGrEnCqDgINmED1ey3AhMbZElDGGa2A6Xwyn00BYwiMA2pbCp6krbjX6QJhpMsyB7J8JvHrJnBRYIAw1EKVaRq3Oy3BXamRy7KF1ONZa6UM0hgt36WuK6kz5LGZts2Mpkd54joKU+HeIAiXbzVcJI6TNkYmRBlj5J2yEtsS51zTz5bP59MpEBg1Ho+FDIVOZXLX9 73+ V/yz6uXl5eXl5eXl9STBaTHOhY7qum5QoSxlZRyGobQAFUUpq+rVSrqqGhdisVgIC1WLKlvkwktivJRVk+6gdbNw11rJfk5OTpaHCM7Pz4Hd3d3XPv4qYOuixgJH+/sf3Hgf2Nvbk0yIS5cubW5uAg/294/294EHDx7M53Nga2srSRIhga3NS0AYtCWaYjFfCAmEYRgnMdBudWTjXq8nC/c8z5emyiOTTbpusjJvQsbnc2GMIDDyca2bzpxFNn+8M6eua/l7XddNzp4tsnwKBImJwgiwrsrzBVDXpQkAglCLw6MUeSFleJkQSm0rIZZ+v9PvtoCyyuQiG6MkTtC5ejGfAovFpD/oCTjFgQHiJGhG0GpqK55b2et15aDiFIVRIIWRztm6EheoFgTSWslbxmgjtXZGSfi4VlqyEI0xEtxnzCPHyS27m+QiKKUcWv6vXPb5fD4ajYRg66oQtC6LpmltZWEB/8oP/xf+WfXy8vLy8vLy8nqS4FTO61Xj0CMjoXmzMQ/q8nGcaEwVeTEej8UiGJ1crOLdxCsIgkBG4trlHNX5fC75dZPJRJbyYRjeun0DuHfvnpg/P/ETPyFzhE5OTno9Gf9qxLD68pe//MbX/xB47rnnvv/7vw944eWX/+kXvwj8/u///ubWOhDH8a2bd4Cnrj03GAzlfIR8wiCWdL66trJeHwyGKy+lIR+rlo5T0/40XcyLIgNms5mcoXNOEgXjOF5BgphaoqJoiNG6hhCyYtHpxkDcCgW6nKsX2RzIsrlD8FL1B21hITliUeYSpF6WuYBTt9ce9No0oX+V7Ee8o7LKFjMBp9n6xhAIIxVJhIZpBjFpjfQ4BUEQx3L9A5m+FQSmSYlQTV2lUki71wqc5DaRLyv+kjFG+tmUMstQvuaFUqp2DUzKVbLWlpUVTJUreXFxMR5P5SLI/RDEQZVXwDyfyzzfylXAZ/7s3/TPqpeXl5eXl5eX15MEpw/eudFEhEdhGMqIIVZ0FIYBMBgMVlnSEpTnHBL/fXExGl1cALPxdAVI4lOlaZqmiQCGLKarqprPxUspWu1U1tkSBZGm6b1794F 333 135 Xc9/fQ1+XirlQLW1hJE8f777+/tPQTmi5nEHly5ckUK1W7cuFFVNXB2ep6mbYEEgaJeb21rawuIwqZi0JhQ/J8oipcZerWEVayq7Iq6ms+nwHQyr+oCCMNIdjgajc7PT4HNrU2p/WtcuGwmoJIkiXzxss60ZDCETZ2bdXVdS3xfk2keRmaxmABhaJaNW06q+PKiiWiP46guM+ElOQcTqIbZlJXRumWZm0ADcWJacQQEoZF8C2Maxy8IjREW0m4160mSxINAB2L1GCUh5iZoAgah6XF6bDBUsOpEkhAHrbRM5tVKWyWhGtYsL440es1mMwHXyWQinwqjyGKBytnpaCy8Kq1zZV0B/9HP/l3/rHp5eXl5eXl5eT1BBaOL0Ucm56ySoKMokhzwbJGJidRqtWTdX5alNAWVRbH0E+qVVyN9S/P5LEnjJTg1RodUiN25c/iNb34N2N3dffrpp4AsSy9d2kHC9FQAHB0f3Lp1G7i4OBsOh8D1Z54Ww+TZZ5994YXngTgJT09PgTt3bt29exc4PNyXc375Y8+NJxP5XkWeA3c/fO/9D94CBv1hu9MFWml7Z2cXCEKKfI44J4FuSECW8kUeL/FDDDTnlEDaYK0zWGshQ3uRrzwHarcocul9otNJARO1w8gBTlsxW87PTyWEMI7DqgKYL+ZW/CXJ5QYTqETFQBBq6zRQlAtqydLQTUtSsJqJRBrLCFonKRF1Xdal5ByWEvwQhmb5KbMcblsK7draKjRglZZMRVs7AZ66chjhJSNMpTWK5i1J+6htVZVN5IZYanEcF01a42LFojJP+ezsTC5CkiTtdgdwSmVZAUznMyndnM/n+qMGqJeXl5eXl5eXl9cTk/rgzQ+WwQZOXIggCKSxRGutmi4XLavhVrsl1kpe5JPxBBiNR0JQk9Fo1dgjyBEEgRhWQRDIwj1JkpUHJTSS5/ntO7eAo8MjyfJ+7rmXpGqrLMuyWffXi8UcODk5fvDwHtDpdF588QXgqaeuiTlT17VsPJvNpNLvrbffvH37phxiZ2cHGAyGgnaT8XQyEXq56PfWBAil9qzfH2xvbwFRlEjLVuWc1N3leb4y4sR6KstSrpg2Wr6pfM2qqqUBKQiMmHjKOOlxCpNQyvDOL07F0UrTyLoKmEzOxYWrqmxZ6de0lsVJKDV7RVFUeSknvOw3a0Id+oNut90WlHLWAlk+zxdzwNpSECiKAqERR12WBaA0wksoJ/1LYWikbSkIzUfeiqJAwMlhy6ICyqrIspng3yocYtUON88KYDwe53khP80iz4Gqalq2Op12XVvg6OSkqApgkTctc3Vdr4o5gb/87/2mf1a9vLy8vLy8vLyeJDj93m9/XlaxSZJIglmn05HV6irbIMsyMSjCMFz2tKhVfrfkR88XUwGnsizFcdK6wQljjDhOcRzff3APOD05feHF54GNjQ2Z0aS1kmrAmzduS4x4mqa7l7aBbrcri+k8z1f7OTg4AA4PD4QxNjY2n3r6qhx0f/+hUIeEy1VlfXxyAuzv7+/v7wNhEF6/fh3Q2ohhledNAsR0Om84pN+XGraXPvZKHKdLuDLyBcUwybImoUFrLS/kmlhbNykRtlqGQ5RS1IdB3CSBJSAImiGw1pZSmFfbUtgvTkKpYwyjxuyqKjsbzYEkieXjZVlEcQQMBr04DIGiyPJCUjoyV1dAkkTS3BUEJssWwHw+lZSIdjvtNpOmArGeiiKTEDzrqnZL0vlUFCZL7pKCxkq2qepMGwekaSyIuAp+qKqqrBumlS648/NzEwqd9gUaZ7PZYp4B82w+z6eApQ6E3+IgjdtAlATAT//4/+KfVS8vLy8vLy8vryeoYDKZiAuRZZnwyXg8luqvVXRemqaCE0mSiPUUBMEqLkIWylEUlaUTbKhrKfaz0hClVFMHmBeLS5d2gStXLn/xi18EnLOf/OQngcViIbT23PPPyJ6zLPvyl/+ZHOvTn/400Ot1hUzW19eleG97e7vdbgPf+ta3/s6v/13glVdekdyIslocHR0ADx48kG1+8FM/KMDzta997atf/SrwwgsvNCgVhp/61KeE8T73uc8BZ2dnn/nMnwO+8IUvnJ6eAS+//PIP/uAPAuAkXs85K+cTRYF8Zal2tFZl+RwYjUbCDHmZSZtWXTVGSns5i1YpwtAASRoIXDmM/KXX7wg4aa2lrq+qqk7SBZQyywS/Ul5UpVv1OMnV1iqKmwLLJIlTwLraNal6am24DoRhE6ZXVW45FLiSF865wBRAUAfOFoC1Tuumo2kVQthOInmxglupV8zzvGpa3hA2zrKss0xlnE6nwMnJieSSh5HBWSAMtIzzStM0Sb4jyNHLy8vLy8vLy8vrCUr9n//bb4rjFATBMhhNr/qdVilqYgeFYRNsbUwgUFSWlRR9BaGWcjJwUrEWRbGkkAehkb9Ya6WurygK8UzOzs729vaEu4Tfrl27tkq6kzPY29t78OAB0Gq1Jd1hZ2dH3pXhufLxDz/8EHjrrbdk6mt/0Ll8eQfY3t6RHIvj45PpdCJfR/qgJpOJdNTM5k2yRavVEiQDDg+OgKJ2cpSyLOX6tFot6fja2lzf2d0FnLVFWQJlJWZLOZ8vgMl0IoV5KKWMoGPj3bXbqQmETktBhV6/PZ2OZScS99DppDJ71zkro7Hq2kYmBqqq1vKLxBLbQFkWGgXEcZgXmfxYaSzsYZbb5OLmlVXeakWANqxGMzUAVlVyuVbFcsaYZSGilvY3a61cLuequNWEmMshnGu6nubzmUzWyotiNp3JRRiuD4Fer3d+NhJwkjstaUVBpIAgbOIr4jiW30h+6B//0/+9f1a9vLy8vLy8vLyeJDj97t//+6sep8ap0FoamYwJZdkax7G4EGVZL1Owmxg1a93S8bAS0t1ut8VdiaJYCsyKohB+6Ha748kFcH5+LjvsdjuXL18G5vO5OBU3b96SFfOVK1fEy6rrWgbXZlkmltHDhw9l4X7p0iVBKWvtap19cnIMnI6Ozs5OgJPDIwlVf/rp688++4yQwMXFBXC4fyAY0+v1xDv68MMPDw8P5aC1s8BT1693Ol1gOh4L41VlKUShHJKaEAdhmMSAzOdtd9oNRmglWOKg04QHJlLUd3JyfHF2KuC07AQzgoph2DhOSlE1LlAmZZDO1YFAaRJGUQwoE0j/UrDM+nPOKq0Ao01gBIAtVmoIK2l/cqrZpqxL+VSaxjLkCuekjFAp10R6LFMxVtWYUlIIFGWV5xVQ2yZRcBVYD8jXUUZrpYDZfD5fDlZuwv2WgfVlWXR7HUCZxmKKomi1DfBn/uW/7p9VLy8vLy8vLy+vJwlOv/nrn5O16erf+FfjiZxVq3q8ZWGYWxJUucziM6uo8VV0nlgoQRCKK2WtlejtVYhCHMfSbHPnzh2p41ob9l988UWg3e6IK3Xjg5tiEIHa3d0BdnZ2T06PgVbaFi/r7t0PP7x3Fxj016QIcGtr+/KVXeDkpAGn8Xgi+3n 4cO/ gYF8OceXKZeDKlauy58locuvWTcA51teHgFJ6tpgBf/TOO5JbAGq4NgA21zets8DZydl4OgKyeRansYASkJV5GMXAtWtXr117Cuh221EcAhcX59lsDjjsst1o1koTYGtrU/6iNXUTR7GQHykMjdBIli+UNEQ5K6nrZV1LKkOctuSarEoGlXIGBThqTTPHKQoEiXW1bLJqQvm0E8OwqpoWNaWaRqyqKmTkVJ4vkjQC1gYDqdisrD0/nwCjyUSYNgiCfr8nkPyo4LOW/rFmGwFIII6jpc1VGilc1E2UXxgG0jQlfWU//mP/tX9Wvby8vLy8vLy8niQ4fe5v/U+yCG63O1KBFkWRoNSqeM856qrpO5JWlqIol8V7obAQIFlzVVWJL4FrYg9ALbmrlo2jKJIFsdJIF9DR0dHh4QGwvr5+9epl4NKlK4Jbk8ns1q0bwIMHe6+//ioQx+nW1gYQRYlkLcxmi3fffRt4+HBfFu7PPvu80FG73RmPR8B0OhMyuX//wc2bN4DT0zMZA7Wzs/vyyy8B168/Ixvfvn1nNB0Dg83NvMqB0cX04d594GD/UIZaDfrDVjsGup1BkoZAviiA48MDSe0LAp3Eku6gbZUD7XZ65coV4PLly3JxRqOR2EL9fm++WACj0fn4/ALQho31DWC4vqacAmaLaafTopkuNQcms1lZ1YAJo6YdSLGsdVRiT60cJ0eNbSZEiUFkjKLxqeqlU2TFBaptKY5ft9teDt1qyiedc4vFTHgpz3MAY+ToaZrIzVOWxWQyEV56dLc1kNacYRCYwITyTaOkCQmU+yoIzHLGrgZ+8l//b/2z6uXl5eXl5eXl9STB6Vf/h/+m6TNJkn6/D6wNhnGSAHVVy7JYKSUpamVZLJfXStyVlQZrXUkhV2iHFIYhFXp53gSLK6WltSkMI+miCsNQWqSSJJF0vhs3Pjg43Adms/nVq1eAzc0tWT33ev3R6AL4+te/IWx2/enrL770orwl9YFZlt/78B5w48adk+MzoNvtfuITnwCuXr0qjseiyAURj46OZPrT/fv3xfiqqurylSvA888/3x30gb3jo3ff+zZwdHLczD7CZYsFMM+y+WIO9Lq9waAPbA03gY31YStKgMnF6OjwEJjPJ3GogFYrDoMAKIpChtJubm7u7u4CvV63aMI5LgRvNjc319fXAWvr+TwDijKv6grQoa5sDUyn8+lcLCwl6KKX4e9KI11PyllXS755tQKn5sdSTn7QqipWhZpFmQOLxUyK5TY319eGg+Y0Zs38YjGRyuV0YKvcitaEfKyr6qoGaltZK8ZjteyMspJIYYxehTTGrUDekgx0bZRkoMtYrT//b3zWP6teXl5eXl5eXnldxPYAACAASURBVF5PEpz+xn/1SxI612q1pFQviqIwjHlsyu1isZBsbrM0HbTWuGZQrDgnnU5LOnO63X6v1wHq2o1G50BRVE3Qdu2aoO04FZtLjiL7kW3iOL5z9zbwrW99S3qKlFI/8AM/APR6PeGcT37yk8I5v/Ebv7GxsQG8/vrrg8EA+PjHP350eAxEQToeTYHf/+IX3n33XeCll16S6Ly1jXVZr5+PLoQNiqK4d+8e8Oabb0pk9mg0euMbXweuPfPMxXgEjGfTylnAKkwQAJ1+b219KBu3khTIZ3Ng2B984rXXgcgEo5MzoNNOtjcGwLe/9bacTK/Xe /31 1+VK3vrgBnB0dPAjP/zDwmzb29s0Gd8SoXGy//AAWOTzTq8DmCiU4ML5fHE2ugDmi1x+miiKpCXM2so2UFQa5YAwbLqetEby+owxTeJ8Pl9STS14OR5fNMWTnZYYj7PZTNLwFouZbDNbTKWeMO2mvV4PiONIAkXKsli2w9XIPChsU5hXF4t5Li+Wbmfa7raBssybMHRbGSNznAzw 737 mb/pn1cvLy8vLy8vL60mC02f/u18SpyIImigIY5oKvbq2zUyesmreCsImwUA1IWy2rq1zQJJEUobX7XZlapC1SExcnpfy8bpu6sGCIGhoLW0vo/yaWU/zpdGRZZmE6b3zzjuyTF9bW9vc3AT6/b7g1uXLlyVM78aNG6v5S6++8hrQ7645q4BOryvL/a989Su3bt4CNne2n3/+eaDb7wluTWezRZ4Jz4xGY+Czn/0fD49PgCCMauUAHYWBDO2lzqsSMEksk6+Gw6GQGFUt+BRYgH6n2221gUjp7WEXCI0yy/D3k5MT4OLiIjJy3XryVp4v0qQNPPX01atXngKSNJIiwKxYLPIp0O51beWAw5Oj0XgKhHGcpi3ASQEe1HWtqIE4DMVha8WRRPmB1c0L19wHSklqRZYvpMRusZhL8IZSTdT4+fm5gLTWDTo6bH/QBlSotGpGPEkAYFmWzjqQOk3psFJiNIFdppnbZrByK8FIN10pv2xdW/Ek5c75iz/zq/5Z9fLy8vLy8vLyepLg9Ot/+7+srfgSdeM5WJqcPeekyEprs4wsX4ITalni9ShFTYLaojAKoxDAaVkEW2tl+RuG8bIezKwgLWpS1GLhN2utfLyubBgFQBhE9+7dBd5++92z81P5y/r6GjAcbggkDIcb1tXAt9799unpCZDGreeffw545pnnZBJulKRij9z+8N6t2zeB/f3D4eYQeOqp69//A98HfPtb7//8X/1PgTwrs0UJVFUhHlTc7XSGfaA1HCTdNpD2e0m3BQzXN4o8AzpJG8imk9HROfDc00899/SzQDYe3XzzTWB6fi7fdzgcrq2tCQ1K+dzBwYFk/Z2fn7fTNrC2NpBY87Is+90u0GqnL 730 HJB0klYqMXS6rCwwz7PJZCoQqJxFYs2NBtb6Pfm4VuR5E/OgQw0sJC0d4jiWoriqqoSmoihapTtI39f5+bnAVb/fl0ayMA6lDy2vc2Gq+XwmsA1uOTQ5WN4hTTmfajL50FoJ7LXbrayQgsNacLe2pbyQyIq/+Of/Z/+senl5eXl5eXl5PUlw+tyv/bL0q+BUY5ssy+eqqpIiK6VUwzk6VE3eAEJZtrYy+3U1dknr1TwoIzs0OpBAcKPDZf5EIp5DWS6z3VBS4hWGjwb4yGmkaSor+Lpueq6+8Y1v3Lp1i2YeVAJcvnxZzJ/xeCyu1KDX/fo3vg6cn53tXroEXLl29drTTwEbG5tl0ykUyH5Oz07/4EtfAmaz2cP9PeDGB3fnswwYdFMtzTatOO51gNb6IB32gbDTUqEB0k5bCtU2BkMgMmZyeg7MLyb9Vhu4vLHx2rVngPVORyZHff3rX7954yYQhuH21jbQ6XTSJJEX4tUcHR0dHhwCZVEmTRVl4MgBh+12esDulctbO7tAGEV1bYHK1pJ4MR6N82wGxFHUktA/nPx4KnDnkwtAhXo1rEl4qaqqpefT2INaa3mR57lUWqZp2rR7uUoSxmtlV6OchNZWqSFaa+leW6WGWGvllqurWm6VKA5NKOOkHt1IcoPJof/SX/Clel5eXl5eXl5eXk8UnH71b/1VhcweDaTaTSuznMlTs0whF/JRSjXBaE3XCg5kNR6YSImfoCT7GudYznpq5qUqTBRHQBI3K29tAtm4LMtSygKrWsb+tFsdsZ60bhb8URQt4SqUyLX33nvv299+D7hx4wMpA/vEJ77XGICqzF//+OuAc+6PvvlN4OzifDybAcPh+g//yI8A61ubURIDvV7vy1/9CvBzf/k/kS/Y6XQ2B0MgO59fjC+AM/KgnwDrm8PNq7vA+pWddNgD+rtbUpX21le/Cbh5tZ70gEHS21zfAj7zZ//M7TfeAE4fPJDurMuXL7/ysY8BVVG+/dZbwN07d/fuPQC6nU4SxsInOzs7QLvdHk0mwPnF6d7xfQCtojAB4qilMYCqbK/TBdY2hy9//FXApdpGGrDa6VoBQW31ogbKIh/ZGaCTVZp8KTOjHNhm6FO9tBmNzL2t6mJZfWfFDiqrPG1FQGlrV9WA085gAKusq2ugqAvtNFA7qXlEB0rOuaZSkhuhnIkaM0puLYe1tQNqWwH/4c/6cAgvLy8vLy8vL68nC06/+p+tyufkBa5JD7fOuiaEzajGZ1r+Z1lupVTjFBkdyx+V0o1XUDWWhVsdDL0q+WsgTRvZuCyb5haqqjkfZZah1ZHYSmnSxFdYi7RIlWUtG9+///CNN94Ajo+PZ7Mp0O93L1/eBVqtlmyztbOzKHLg7t0P9/b3ARNFr 732 GvCpH/yhP3zja8DP//xfqUoLdAe9clYA61Ey2BgCars7dQtBst5aFxjubqhOBATrg43tbaCaFMD8ZJztT4DydNZWEfDas89++nteBTYHncn5BfDWN/7oww9uAvU8lxzuwDI5H8n+K1cD2hidRkDa6/Q3hkB3rb9xaRuYF8WiVsDZ2fhg7wgICXbXNoAwDo5nZ8A8qMx6B7jyzFPPPfU8sN1eiycWyBeLMzcFCrOa5tRkhaNWP5dtjD5bSj6eXY5+Atcgs7NKC1qXzW/t3OoHFw/KWmv/f8woATagqAqM3Hp2+dlmHLPo3/+Zv+GfVS8vLy8vLy8vrycJTr/2a//5aqm6fPFowaqaIT9OMvQe/+BHduSskeQ9pZbcZZtqq+/8mLQ2NVV8WgfLEahNr1RAUzEYRc1gosBEyyi/ZrW9s 737 1ltvAdevPytnOJnMJF7vnXfe+dKX/gBwrpaWIWPMpz/9aeD9Gx+IgXPt+jNBGMrGEkkXx+mf+tEfBX7u 537 uzt09Ocqw3wHcYiEZCVWipULv8pXdyayZ+rp1dQdI1wfzugBUGAHVZG6PJ8CVeHAl6ACL4xOrcmA2HfW7PYC8vPve+4DJq91OD6jGk5YOgdgYmSBcG5WpCihCpdIIUK24v74BXH3xxeOiAmbOPfPiq8BsNv+jr3wNOD853b68Bexev2JTA3z7xs2Hdx8AVzZ2/6VPfhp47ZVXy7YGpuVUgh+sreTyOlcLwebL9qeqajLojVGCu0HY3Ax1XToqHiuxc86t0vmWbWxGRk6txjeFYSj8DFb2XNZV5YolOAl+O7mdpHDvZ//Nv+6fVS8vLy8vLy8vrycJTp/73C8s3QOWXoFu6vGWhXl1bVektMyNUI9AyyrAWqWXjpPMCLL1R8HJWrfazyMWatwtJ9nZSRhJ6aAxZtkrFcinnJU9sFhkGxubwGQyTeIEiONkOp3RNEQBvPnmN2/dvgWMRxPxqS5duSwvitoKZfUHg8l0Cnzpy18plm1dt27fRpyraQb0WomcmA6UTHbqb26srQ2BVhCLqZJRzygA24uAcj4fVgr4vo2r39veAsZ7B/cuToAHp0cn4zPZWxpHgFpkZpwB3axYKxywpoKeNkAcBsQaKAI3VxUwcdb0B8CRta0XrgPt60+fOgsEre722gZgs2J8cgLsH+5dLCZAp99fW9sEjNVu0TQORb0YaK91ZVRUu5OKYViWxTLSoxJokdQNIAwDuYBhGMiNYV0p4RAmYMlC7rFhTc1kp9Vf5J5RetkyZ7QxAaAMs2y2BCe591gamAA//ZO/4p9VLy8vLy8vLy+vJ6ggTkIQvNHyYgVFzjkBg0A9/pfGTVpu3KBQGMa6yY1QglS1ctLB8qjsqnauWUO7JVLZVUGWFH3l5bxxpWwQEgIW2/TYVFVZVMJmD/buCS/lZQbouZF8tkUxl2N9z/d+z/d +3/ cCH9y88c477wAf3rsrvVtbO7tVVQityaioH/mTPxREIfCF3/9CoAFee+WV2WIK3N274yoLaGsm4ylwPJ720nPgWn+rl7SA3rAbJxFwmi+A0Nk/9fHvAZ4lSu4cAnv3P/zyt98FDqs6qy3QbqnhoAuE2E6sgG63p0sLRLXqFBboZfXazAFrOkysAabK3h6PgB/70R86v7QO/NP7D+/NJ8A8Cu 93+ sDOcGstSoGPvfBSnCbAJFvsnZwCh6dn0jgUhdG2bgEXpxfHB8dAXVfSftbv94Qqe72O1EOupuU+BkVOajiNCqTETmFt3cB2Y066WlJDqqp+5GU2r2wTABE24exGB6EpkSpRC+BY1vcp/5B6eXl5eXl5eXk9eam/ 93/ 8orS1rBwnZ5VrPCj5L3XtHivkaxwnASeppwJwgWxibYNbq/08Ohi6CaRWDVwJhfFYFl8chDL5VClVVTVQ5OUyfK8ZBKSWU6ScQ5bXSq323LxIkqTxN5SRerCDg4Pbt28DB0dHYqoYE1y6dAno9QYyKipJku2dHWA2nf72P/6HwEW5SFsxUF9kJ6cjIA+Myy2wY3qpCgDTjbaevQQEW20gWExfJQKeNfHRex8Av/uHb76vNTCxTurxWnUdYYEuathOgE6oU2qgj9vWIXDVxNeIgO1S97IacLW7MAB7qZ6/9BQw+JM/UDz/FHBjdP7ejTvA8cFRfjEB1gd9iU3XaRx2O4BJUqcNECj98M4dYHIxsrYChsOhjLRyWCneq+uy3+8Dm5vrV69dBrrdrkSNF0Uht0pdl/N8DmjT/BC1LcUp0lotizDL5U+zImR0U9W5bKzStnEp1Wqu1IqZHPAzn/ll/6x6eXl5eXl5eXk9SXD6B//wl+yqib9emkjN4rUJfqhr+9hkpxUULR2BBoFM4xU41zhETn0HNIExwUf345T4VEYH2mig1x3IB6y1RVECRVHWlX0cnPK8WBZ06aagi2Xc3zK1wpa21WovAawCgqBhs/Pz0f7+PnD79m15az5btFotYG1tTfjh+Pj0xddfBqpY37pzG/jml9+wSgN1K72ydRl4prX+/PXrwOCpnSqwgHE1cPb2u9fuj4Cvfv7z99wUsIPewwsL7J2Mx8UUSKKgrQyQ1NVAOWCjts8kXWDduqFWQFsrEwDo0GnJPcfsug5wVlTHW2tA9tyV/V4bOFFq6/JTwEsfe9mggJs3P3jz/XeAw9Gpljmz3W6n3QfaadKPE0AvzcC8yE9OjoGzs1O5SoNBTxLeUbYociDPM/Ggnn76aQHOKIkX2RxASz0nWbaQS2pMQ7AoJ39Z5ZU7Z5c/FiuQVoHlOyv0GrjSAJ/5qV/4593EyttSXl5eXl5e/yJo9S/1Xl5/DBWEkZaqubp2tYTqOfVoPeq+wz2w1sq7zgGruAgN1NWjbZYVeo8G6QpEWVuuxuYu25/0MtNPi3nl7KN1sGvC0O0ysW1ZMWjVchsjk4VQpvEnlF0CmyvLHNA6kIX7YrEQJOh2u1KNdu3atXfffRe4d+fe/sM9YO/BQ0nw+7Ef+7F33nwbCNOk3WkDv/yLf+ 23/ 69/BPzOP/uDfeuA518c7B3dB+xWVJYFMEQBW5l+Nd4C3i+i3x+fA4fj87RqAa+89Op5MQM++PCDzOVA6ghKgOd6XcYjYKBaV1tdIAnU1OXAWb6YUAJaBTaMgHlo8m4CDK9c 237 hWeAgL7996w7wd/73v/fSSy8C/Y3BT/70nwOyqvydz/8u8P 633 8viGXCunN3ZBrq9jlzqsixfeOEFYGtrQ3y5L3/lSzLT9sqVSzKlajgcdrtd4O 133 vy//8nngUuXL/+JP/EpQC+z7IfDdbmAzrnRaARcXJzJZVc0sY3KNLRmjFmCk3ON12SX95UFuR+sf0q9vLy8vLy8vLyeuNTv/t4vN6Nsl9OWnFuFOii3muPUoMyjD64cnsayyOpl9Z1b1dGtNm4+bamXx2rYS5vlwFO1rPRrtlcyFBdpfJG3mj2HQfyRjIrHkgCbF0aFUlfmaidr+pXfZUyzyu+0u+PxCDg8OHrw4AFw44MbksW3WCw+/vrrQK/bl12Wrn7mlReBPNI 333 sfOHrnRqfXBtgdxEEAfLy1Cbw0Mc/fmAL/4Iv/+LPlHeCDiBYKiHQo05b6aRTVJRDNF915AfSy8tkwBoZFtYkBtpJ4kKZAYlRZ58BFXR+HEXAfNVsfAP1XX9147TUgGG5lVQ0s8uLo5BAYzUezKgO2L22/8rGXgU6UPnj/DnDz/fc+3LsPYGQ6Fq1W2mS+t2IxmtrtVIBzb+/h4eEhUJSZENTW1qZsnBfl8fEp0O52h+tDGsuuD3Q6HfESy7KUwVCrG0ipppPJupWTaXUgQG4/8g9O8uKn/+1f8M+ql5eXl5eXl5fXkwSn3/m9v+YacKFuWpqQOULUrsYCoY4sDbtU0r9UUS+bWlzjJrlVHtqSfMxj6XwNzixn+6ym/eglFNllpZ+qmyGrWOl/ccqJK4WWv1Bb6xp3TF6oZV66QcvRtTLNEZYc6NwyzE0HUvJXW9v0U9nmK2fT7NsfvA8c7u3fvXMXCI0Zrq8BT12/HqYxcLGY9tst4OnhlgRt3z5+cH5wDFxSKfBSuh7eOgbeuvHeP8n3gP2YWe0AVxPWAC3LMAqBS73eRhwDaVkF8xyIppNNAK4F0bUgBdZrWlkpzHYjroAH3fRs/RJw2O4exilAN93Y6ABXr2w8fXkLsHU5WuTA6dn52fEpQFHtDvrAznY/dxNg/2j/6FBAsUBZIAho9yKg22sVlQVM0EqiIRCE/cW8bnY4OgXKfHHp0hbQ63XSNAWyLBuNJ4LNa4MBMByuP/XUdQCtAoks10qG7ZZVKVykjarqTH6rZah9czsJdP30T3tw8vLy8vLy8vLyeqLg9Pk/+JVHw5oENB6RxipD75GJtCqfa3yqZW5EXdQfqb8C9REva9X19LgZtTyuakr+nF7OjFL/X9uw5K4GipYn/V1f7JHJoVcpEUuQawItXON7UVXNGQYmkoOMLiYnp8fAzTs3z87OgMV83u90gd2d7UG7J8xnixJY6/Z2t7aAg4d7wBtf+WqgDbC1sfng3n3gg4cHh9MZsJoHrBWtKATW0rhlQiApyivdLrBpwi1tgGg0iWczoI9K5YwDTqs5MBn0zMe+H5hu7RxoBRxnp9n0AbDe1etpAHQ73bi7BUxm5b29feDs4jh0OZBEeZLmQJLobnsN6PbaUWSAvBidjw6Bi3GWtHaBjfXtfu9ZwLr+IgPIizxMNdAftCcXF8DDBw9OTs6AVruzvd3kbchgKGvZPzgEgiCQ/rGdnZ31zaH8RVI6yrKokc4otYwGaWr0alsCf+Hf+cV/3k3se5y8vLy8vLz+hZDvcfL6Yw1Ov/elX1mWxD3qLPouXno0G/cj6Q62do1V9AhU1HclQHzXY/DYON3lqvcRODn3nTOjrPpI4dYj8nGruL+Gjlb56K5sir7Uso1q1ZS1+nhVWVmeV5VdzngNpXQNqGoLVJq9g33gw9t3Htx/APQ63WyRAf1Od3N9Axh0u4f7e0AapcCVK5em5xPgD7/29eOjA2CwuX6RZcDxxfl4NAFcUVEKBdJVAMNWtJG2gEEQrocR0A/DntZAUFf5eARczOfd61eAwXPXL7/6cWBu7MViDNT1rJqeAIl2t2/dBealOpo54HSRl0YBcUslcQkEbtaLFJDGtt0G6PRUfy0ABv2412sBSdqejkvg+MQ+uH8KzGbJxtYGcPXa9ThqA5NZdXK2AEzYipOW/LJCUPv7h/NFBoRhtLNzCWi1WmEUAUWRi1OHcv1BHxgMBtu7Ow0UL3PqgyAC4jgEfuoz/7F/Vr28vLy8vLy8vJ4kOP3BG3995efIcJ6VQbQCp1X898r8+W4oUk4/QinbdLA0RtAy6U6xDCh/LHDPPYrgE3BSK6x6ZDR9J3at8gIe66dSjzGeAnTNsnRQrWhtWQ7Y9EQVRSEHVaoxOowxjYFWVZV1QE1TOohzs/kcePDhgw/v3QPKopCUuYvTs2euPwNsbm4C0/FkOpkAOzs7URACb7/3ra+9+U2g3em04gSoFvnkdAwsRhOKAgidSqTdyJCGAdBNk3aaAK007ne7QB1H2y9+DNCtaGOjBcRq0UtKIFHlw9u3gIOD0+OzErj5cPz+3gQoTNBd7wBpi0jnQKznCQ4YDpLhugGStA6DBdDpqp3dFNjcjPtDDVR20uv3gFYyvHenAL75tWz/wxIo7MbG1eeAtD+I4hTIFnmeVYDWQRjFgFbm7of3gPliIUHnQRgMh0Og3+/KjbBYzPO8FLiSkr9OpyPbyHzen/q3/pJ/Vr28vLy8vLy8vJ4kOH3j25/9qIlkG/vF1s2//0vS9OMw8/gk3CVprCbwfJcrZZv9GEnX/g7gWVpGj2DJKMxHTvIjJ11XH /34 dw7tdYCxehVNvtzzo9LB5YihSk5bKRWGIRCG8ZLNVgEZQVk0bppEI0wmk6qywNtvv/3Nb34T+J6Pf0KS6MbjCfDyKx/b2doG7t+/Lx+8/uwz/fUh8Fu/9VvvvvkWsLuxtTUYAid7B9OLC2DQ7p5fnAL9fr+BUu3WNzeAS1eutLst4HgyK8I2kKTB9zy/CTx3tTMIpsDFycMbH9wGZgvzxrt78P+yd+fRcVb3+cCfe9 939 tFo9SLktYEAsoHEtkwwsQFDYxKatKQxSROTquHYbUh7OKHtKZieEwMnThpSwCFAYtqw59cChaQJSUMxFgY7EElusC3Z2I6xjcGyZGsbabZ3ub8/7jujsTZLshbLfj6n1Rlm3pm5emcmnkffe78XBz7sPtziAnCASBgAAgamxABgzoxCvQWwz3DDEQWgpCQ4fVoEQGmxGQx3AxBG66zzAaCkDGXTACAcjJruRwCkumbv3xkGULf9xOv1+wAgWGCYfgCxWNHcOecDKC+vON7SCmDP3nc/+tGLdCjt7OoCcOTIkaamJgBCKp2LiouLS4rL9MuXSCQBdHS06/dFOBwC8PCPn+VnlYiIiIgmMjjVNfwwlysGOiiXoHI1qFyCypWncpvk5h3s9lorZRi+Xmul1Emt9wwAjtOzF5NXLFKy1yKW7H64eUHOzZ/dJwDA9nqg53f56xWcXNf15vXlhqGk3g5YCCmUBCAcqR8nt7UuhNAbTHV3dSdTKQA7duxKpdIAfKYPQHcyqfsAlpaV6RpUR7zT1CuaiouFrQAc/MMf3t2xC0AkGCwKFwCwMhkd3qKFsdJpUwAEwsFQYQGAUKwgYaUBdKUyJ9pTANpajgTdJgBzp5sL5lcAyNiJwx+2Afif13cebnEAtLS5XXEA8EtZYCgAYaFKogBQUuQzwwJAICTDYQnAMJyA6QIoLQnMmV0EYHqFKJ+RBnDeLLt4mgQQ9LnJriAAn5zbdaIMwG9ePdLlXAigqc1sbW0HcOJEa6I7DSAcjpaWTQUQiUQN0wdAAbpNn5RS/6bd3V1NzccAdHZ22hlHn5+pU6cBKCiI6le5u7sLwCMbn+FnlYiIiIgmMjjt2Lex1wKk/IVDuWuy0/B6MkYuSukLlu3mru8TnER2yl8u3og+q568zXYNYeavttLD6HWwbfVtWp0ffvQaJ5WrYuXyW9/gpLv8KQVXNxJU3sa+AlIqAcBQfr18y1VKeHv1GnryoXKV401uhG07AHY37gGw/8AB3RwimU7prXtLp5TpdT6u66a6uwEURQumlpQAiLe3vdvYCKDtROuMmTMABEKhUEEEgC8Q9EciAILRqCMBIGO7kCaAkJlJNDcAiAbifzjwDoCkIzqVH0CnHf19QzuAzo4EEi6AkEIECoBfqHBAAohEZbgQAKKFqrAwCCDolwYsAIZ0oyETQCjkTpkSBbBgUfllC84DUFiKVOYEgLSTtFNJAAcOhX76nw4AJecVxIoARKNRxxYAOjrix5pbABw/0arb2RcWFhYVFwOIRMJ6ZyfvnAM+n0/H1Hg8rluft7W1ZTeGKgHw9P/7GT+rRERERDSRwWnv+0/0CjP58996ZaHcHLlc9nAcR99k59KIk+u85/SazpeXf2Rep3JvA1xvbZIyehW1Tl6/BORVt3quVDI/RAGA1dO7r1dxLDd4IZALTrkL2Q59XpATjtGnFtez5ZReFSYNs6sr4WUqQErz0KHDAPb/YX9ba4eOYfFEEsDUqdP+aPZsAAZUZ3sbgKDfN33qFACGIfbteReAgtLFFiEMXzAEoKAgFisqAmAGfEk3DSAcsvyZYwA+Pn/Ob3/7BoD/2/2H+j2dAJKuPxyeDiAWKjJTSQDHP3w/Hk8BMP0wCoIApOFOiTkAwn4nVhAEUFQUKC70A4hGZchvAzBkJhSMAXCdhG1LAKa/44/OnwHggoujxVMkgGjRJQ9uOAggmZ6dTmcAuI4yzQCAUCjiD4YBBALBeGe3zkLHW3WTiS7DkABisVhBUQGAYCDgkz79njFNE0AgENDlqa6uLgAP//gpflaJiIiIaAKZfn8gLzz0nkeXvWDoyCGlF5OU610jhLdwCLmNmKSbPbhnTZFXTTJ9Pa3vTu4SISD0DD2R3Ygpr9W4yrWU0NcYjusd4maPdXOxyQs8rnB6NZlwXdtxBQDlCt3P3JBSP7JSTn4u0pkKQldFDMcLhK7OM47j6kVfUkphSACJVCpcGEF2DmE6lSqZXgJg2ZxlTUebARx475DZLGimxgAAIABJREFUkQCQyGR+987/AfCb8qKPXgDAHw590N4CoLsrft7cGQD8pmmlLQCZlBXv7ATQeqIllUgAMMKGirgAhM9UrgXgvUMfNDXFAXS22tIyAFidqrO1DUDcOl5ougCml8YqKkoBtFpWc8oFkMi0h2wFwCdhW0EA6YS/21QATDMdjCQBhAqs0jIDQKI71X48AKD5hN2dbAOwq6HVdlMA5nykwO+fBsDwFwQDDoBU2tJNNboSCSfeDcA0fXr5U3Fpyaw5s/XL0XyiBcDx4y1HjzYDSCa6S4uKAESikWgkAsB2Mvo19wd8/JQSERER0YQTR1pf0pPT+rYRz1VmctfkFZG8dGTbtp6IBeWz9dIjJ62XApmGqyNHxnYyjgIgfP6uZAZArLAonUgCMJSyUkkAU4qK9DIhmEGdWPKDk+stZHJ6hnpyplKqZ6g6jEnHyE4vdPUxrgNLOQCkK5QUACLBsOU6ADJpO5PJeBkvG8ly0/BM06dv0jUQw/Dp5hmZVFpvpJvb/Fd6sVDpnhOO49iOrZ86kbABHDx4+IMPPgAgoPR0tVQqFY1GAMyZM0cKAOiMdwYCAQDFhUXBYAhAJpNpaTkGoKu7w1VxAD6/ioRCAHyG2XqiA8C+/QcPHWoG0NHh2LrRuYLfEAD8fkOaJgDTF4rGCgHEigOudRyAnen0CwmgIOyLRSSAkmJRUmQD8AW7y6ZJAOGwMv0mgGCw0LbDAA6/Hz96NAVAibKuzHkAhFEWCuom5iE9ZiGEnr5o27ZegZbJZPRbJRAIRKMFAILBYHYfrcz7HxwGEO/qSnR1A4AUsWgBgHA0AuCJJ57jZ5WIiIiIJjI4fdDWe/VI35Z3tm33XR3UKzjZDvT6fjvVbTtpAFIoaQoAwvAp6QOQceBKHwAoQweV0sKYnU4A8Cnl0z33hN9RAv31ljhp3Hq5lHBzu/fmRqjLSXZa6TVaUsHxwpXIBjBXX3BtNxgOAbBtt62tTX+5D+llRb5gxrEB+PyhlpYWAIZh6E7Z6XRa9zYIByOdnZ3I9jwAIJXMH7DjOPrkKFckEzaAwsLi9vZ2AP/3f//X3NwMYMqUKYYhALz//vtTp04FsGjRoiNHjgCIx+O66VwgENBbxyZTnV0dxwA0t3yg+3fHYkWuowAcOHBw/76DANrbLb8PABIJ3eccAggGpX4c0/ADMP1OLAYAc+eWO+kUgLYTzWWFIQDFhcLn6wRQXKwCIReAL4BQGADCBeGy0rkASkrmdHZKAPsPdL+9/TiAtB3VBcNgMKh7DxYUFISCEX3e9Oy7dDrd3d2ts6Ke/ejz+YLBoL6g5+w5jqPn5h07duzo0aMA9BmurW3gZ5WIiIiIJjI4vX/ixZOiyMkJSl+wLGug4OQ4jleZye6S5GYyViYJAHD1N2YlfbqbQzBaFE9mAEjhzb9SaSsWDgDwG7Kt5TiAwliRFF7zup4g520M5V3oaYaunFyPiuxvoSf7IZN2zWz3cx1s3Oy2Uq7j5K7RtSOloIcKIdPpFID2to7OeByA5arZc+YAPSumDMPQ+7cawtQnLRecDBgnDc913WzZSjk6PFi5TKVbch8+fDiR6AYQDof1TclksqysDMC0adP0E6VSKb1hVDgSKIoGABxtOqKXUXV2duoW6lKYJ060ATjW1NLU1K4H7OgSoOsN3pAIBPSusrKk1A9AwI2GAwBKi6KRkM6ZXX5fHEAonC4q8eJgLGYC8PkjChEABQUzlBsFcPiD9IfNfgAuojoiJpPdqVQGgGkaOuzFYrFoNKrPmz5dmUxGb+iUyaR1gpLSqwHGYrGCggIAUspkMglAn4ENGx7jZ5WIiIiIJjI4HT7+X7nIlNf1TvUJACcllvzJe958PNcVUvfvtl3H0l+UdbOEzkS6tTMJ4MEf/NuMOXN0cNIT8wJCXLP0SgAXfuQjBaEgACnyG5QL6Cl7egpcbu6eq3RIcxzlOBZ0D3RlI6+hhZVRPr+eYod0Oq3v5fOZevC63iWlN+nOkF6zini861jTMQDd3d16Kl1nd+JXv/4VgD+54U9mzJwJwLasiooKAB+8/6GuCGUyltfi4uQG6PnBybIVgFTS8uKcgA4GrusmuhMAjh07dqz5GABDGoFAMJcZAMycOVNXZtpaT+jzU1QY00mvubl 537 79AI4da9ZTCgtjxe3tHfp3OXGiHUA8ntLByeeDXodmO/AZABAKmlOnxgBMKYmZhgXAZ2SKiiSAWKEwjAQABVv6FIBYQWlh4XkAfL7C7i4AaO8UaacEQNo2Mxl9/r3JnJmMV19KJLvDoRCAYChYUBAFEI1GdMkOUDpzOo6bSKZ1Xso1C9HnX/+aDz307/ysEhEREdEEMnN97foJVdnrTdPs0y6i54KjM4ydMUwJwLVc6foAmMJQ0gDg84l0Og6g+fjxT3/2zwEYZqCluRlAyGcWlkwBcOjwkVkzzwMQLSgwTAHg3Xffra2tBdDeHjf1I2ef9MYb/zwYCOiDraQCEAiFfvHL/wbg9wXaOzsBWLaqmDUTQFdXou14C4BAILRw4ccBRCIFHzQdA7Bz507d8zoWi33ssssA+GORaaGZABobGpqPfgjASmWuvXY5ACFFZ2cHgIKCgq7uLgAzZ82wMpn8EyVcnJwqIYQCIKX+fwSCQZ3iMhkrEg0DsCxL7xz1kdgflVeUA2hrazt69BgAF0rXao61NOucWVJSUjG1HMDxluP6cYqKShZffiWARHdq//79AA4cOKgTS3FxYdmUaQDa29s//PBDAPG4ZRgAEAyZdsYGkEjahw63Amhqai0rLQAwa0axMsIAOruTtmsDKC4uM2QQQDxhWnYQgGGatm0AUCLk80cBSL/PH9ArmizLsgBIwwwEwwBKRKk3Qy+d1EU8IVQ4HAYQixXoSprP5y8JRQBkMhl991xW1xGXiIiIiGiCg5O3qWt/lFK5FUR901TuP/XiloCpdI/pjGvrDU+lkpC6w3U4GNCLWzJvvPEmgGTKKorFAPikmFk+DcCFc2dHokEAZtgfjUUBlHROnTarAkBBWUq3Geju6tYj2XfwoE4UU6dM0/PobMt67qWfA7hyyScrL5kPYMfuvb946ikAf/a5G8s/cj6AZ5999g8fHAEwb/78/3ruOQBfv/XW483HABw+dPhI8zEAi6oWtracAPD+saPeXkypJNp0uzkzEpkGoLS0RMctx7Z1Eczv94Klt+OT6+osBCGlF6UglADguMrnNwAYptDNCCFNYYQAOI4TFmEA4UhYbx3b2traeqIVgGU74UhUP87OXbsAlBQXB0NBAOlMOt7VDSAYDF508UUAKudVnjjRCmDv3r2HDh3SI583bx4A0+fTC6uajh7z+4L6SfU0PsPnZBwLwIct7a1dcQCmT82dOxtAZwJISACmEdA5Jxop8gfCAGzXSFkA4CivA4dhGoapNzJ2bNsCYFl2KBQGUBCL6TdPOpXUC5mONjVLYQAwfUZZaZn+LXRtzTCMXEmTn1IiIiIimvjgNMjSpl573eZfmX+MEi4Av8904AAQCvqrsyn8LnSlyNDd53yG76KLLtJfpvXGpoZyMpkkgESySxo2AH846NgOgPa29saGRgBHjnyou8y5jje9raiwZPq06QDC4Ug6lQYQjcTKp1UAmFI29eChIwCKS8qSyQwAn8+vp4GFQ1E9q7CjrT1j2QCOHT2m92C98KMXtra2ApAQU6ZOAVBx3nmHdeoonSIh9Hd6faosK+P3+/Q1OnZmMhnvhEg9MU8IL0EJ19F5Shl6DqHrCtcAIFyh5/UJ6SVPKaUQBgDLsgLBAIDy88oLCgoBNDU16ZYS8a6uCy/8KICDhw50xNv0OamqqtJnKZPM6LuXlpUCuHLqlTpK7dmz58j7H+o0oldPzZo1Z9+7f9Avn22nAWSs7pSVAeCXgYKiMgAlZcXRWCkAfzAg4QPQ1Z1q78gA6OjqKIgoAMFQxBcIATCgsj30LB11XNeVhgEg5PPl9RFxAJg+f1FxGQDHsZLJNIBUKnHw4EHk9ZaIxWK6KuWtPSMiIiIimtjgNMhtQngNynNVqfwaVHYPWV1KgQJM3cnbNEOBAAA4huW4XpSSEkB3V/zgewcA2JZz/FgTgMJoMCDPAxCLfqSiYrqXOpQAcNlFlTOmTANw9GhzS8txAKlUOrvDrM9NWgDCRtDuzgBwpZVoiwNwU/bM6RUAEpYVCxUAMJRRGC4AUBCK+GACCBqBKUWlABp+v8OyLQCmlBdccD6AgPCVlJQCcKzUxyrnA3CsjGkYAAzDl1t1oy8oB960NJndfref7n/e8izbdgEI6XVSNwyhl2MJkd0LWHrVPJ/PdF2hI5BOEcFgsKOjA0BHZ9t7B/cDCAYD4XAQQHd34rdvvQlg6pTphUWFADJpo7u7C4DP59NLsC6//PIZFUcBHDhwoLOzC0AikbnwoosApNMpn18AKC6LhcM+AC7cgN8EECko0BnPMAPQYc9IGzIJIJ2xuhIWgLbO4+FoCEAg4Nfrsnw+L4rnKkX6XOnxeM1CshuFGYZpGkEdgPU6qFQqodsbdnR06B6GugBFRERERDSxRFPHL7JbvvZd6aT03riABFydjnrXo5TSzepcuDoTuLYd9AcAOJaybBeA3x893t4F4EjT8Xd27gbQ0dkRDgYBhAKmbhM3s3xqWUkpgJnlc7K9qgO60XYikcz2WkAykQIghNc+wXXhODaA4qLSuvo6AB3t8dbODgBTZsxIWRaAthMnyqaUAfD7zER3N4ATx1sKolEAyURXV2cngFQyqZu5xQoKysvLAZQWFYULIgC6k925r/7Z7nlS9zYQ2R1vlZNd8ZXtPah3yO1pDqGUe3LfCKW8bulKQfejc103k7ayd9dP52R7S7jZMo7tZJIATrS2fPjBhwAgZHZKYaa7qxtAKByZPXM2AFfBsV0ALlTA9AOQhqkbUbR1dBzYfxCAz+8LRfwACmKhglgIQCgSDARC+mC9H5Rh+IXSUxNdNzfUjAUgnUl0d3cCUHD0WQoEAgF/SMckb/ai43ozGx3v7kopXWRzXVfXqRw3I+D9gvokZzIZvbpJ/3z55c38rBIRERHRRAanE 53/ C69bncoLRbm5efqLsoJQfWOVfgSvxzf0xrMQUAMdk+hOdSeSAJLJtI4WEoY0JIBwMBQORwFEojF4GSM7z82B7e0nq/Q1rqOgG3+7ytHTwCw7ndFNFzJ6z1m /36 c77+V+KSGEOHm3XCFFOp3U95LeNkQBPQ0PkK7rAJDS1MESyO/up3p+OW9jIi9RIK9pO7LpSAgBJb1Tkc2bPRdc71H1DsKucl0n9zgA4LpOLonpuW1QIp3OAGhrbzvR0gog3hXX4zF9pi5PSSkikRCA8vOm66JZe2ebaUgAwVBYOQaAeLxbH5xKpaThzUjU+y/5fD5d7zIMw7Jc/Vvogdm2rWtHjuvot0oymdQdIHK9HAKBgJ5g6fcFsoWm7K+aTenZF6QnSlmWpR+hZ2ssKQH85N+f5WeViIiIiCYyOLWlNumvsyKXcvISghcZlFdNgvdNHkq5Cvr7vtAHKQe5gAGo3hHLm7EmvaVA0pvtJuDLNjoHhAHAtoUuzriO0tPbHBvZC16UsizHe1KVW3OF7BZPUHqplRCqJzh5swr1AFU22EhDZtvh9QxVr3pSLnrmIuqxu8jd5F1Q3m9qW47+BXsHT6H0plIQytCbU0FlG6a7ysuHTu6aXEfv7JoyV+cu1/V2GXYdlUw6AKyMqwOG4zj6Xl1dXa0n2gB0dnak0ikABQURHQs7OzvCkSCAGTMqgsEAgLa2NsPwAyiIFuoXIh6P6zZ9UkpdRuvu7tbJJxAI+P1BeKu8vGl4uZ2Rvdcxe5YymbSuCiZTCa8cp9xgIAQgEPTrC6bP0GfcdR1k28frVXC5sqdt23oapE5QG3/8JD+rRERERDSBTMtRrrcHkXJ172zl7UYqBfQ0PEMY+iYhvYl5QkkXLgDpQnm7LeVP9XNPTlA9hQVdfJDS9BIFhP7m7TjK1vPTLOW4AoBjK13osK1ccPK2aXKdXN0mu3GTUsp7QO/Lt+MqvTMvlPflXEJ48U8JHQANG16uyUU9F0pKAIaQutbhunb2uZRy9dd9ndF6YpuUpjgpgSkYAnllJd2FIXtm9OnyLkC4InsvKb0oJnWgE1IP3XWlbtinlAgFwwB8htDbLlmWbRoOAJ8ZjoSKAFi2pZcJHTt21LIEgNLS6Xry3/59h3Vj92nTp4VDUcBrtgEgHA7r+lImk9HT8EKhkC4iJZNJvadtIpHQDRv0TwA+n8/KuDpu6t/U7wsFiiIAYm6RfhzbtuLxLgDdXalEt27XYQaDev1SwNSTHgUy6RQA0zD0zEPT5w8Yuqjl8lNKRERERGdAcErlcoXU/fEUjOyFbNKA19NAAMrbqyj3Vd6LKyc3NXd1JOj1ZK7r6MZxhvTlKkVe8cFxM2kbgO2Ytjf7ztUz9Gw7twpI6pjkOG7PFDghewKLl1pcABk77ahslUzoaYECUhfHvIKQ3zRU9hh4WVHo2pELr124gvTqVNC5Ca5wdbBUSulfXxpGrxViuSVP2V/TUY7OQrnDsv0kes6ckKYPJzd/z172XggFlbF0Gc0Q0tRRVpcHXSWF4W2fFQxFAVz2sYU6QdXV/S5WWADg/Asu0hs6HTnSFAq3AZg1y9tat6WlRZf+pk+fHo5GAbS2thaXlgDo7Oz0mQEAHR0dqXRahxl9cGFhoS8QQN7WVXldQwx/UAIwXV8gFAKQTqf1lr6pdDptWQCSab/uABHw+b3ueY5tObZ+ZXVw9ZmSn1IiIiIimvjglOpU2QUn0KlGGsKQfgButs+bm63HKGS76kFJ4ctGF500HC8p5abEQfbKTn6/t22UAlxvjpaXJAzT8MMAkEm6jpcEhJVtjWDpB1au7m8uDZ+3nkpJrwLmZi94IQvKMIX3OG5emAO8gpMCkFGu3nkJ2fqXkkLPGbOV0u0KoLzGGD0Lv7KNBIUSOrSYpulmg45Oat4FAXjNIYSjn8GrKsFFdvKjgHAVAOWdSLhQ3r2yFxylsyKcbM5yXKWXYDlCCUMCMPymdAwAjlIFQgCIJ1J6Q63LFixsaW4CcORoUyQcBRAIBQypALz33nu60UV5eXlhYSGAtrY2/VyFhYX6xQoGg4nuFIDi4uJ4PA6gvb1d30sp5feHAfh8Ph2BXNfVU+xy0/l8Pp/ubBEOh/Xcv3Q6nUqlAGQyGb3CCq5TXFQEwCe9CqRhGPrCIPuMERERERGNX3Da3/i+F5yyX1Klkf3yKg0hBYBQKKCPkVLoyoBhGj59wTB0S3MZFMoQAAyh/x+mkNDdw+F1RsjNV5Ou8mYDKmHDa3tg6Wlphg4LsKXjSgeALbNLq4TX3c4V3qy53AIhJe2eXaeE0hkjW7iRetWTcoW3LqtnCZYU2aYX3jZLwosnQkLHPyncbApSusddrrdErsxlyWyvPN18Aq4rXJ2glMwtwdI9J+Ag21UvN8cweyE7OdBbUaaU8hoVKtfRc/+Ea0kLgAvXMfUcuey5tWHDAeA4yowEAIT8Uq+DCvjFtOAMAKmU18LBSVu6ZXlJaane9Km5ufnAwfcAnHfeeRXnzdDX6PVFBQUFBYUxnWH8wQCAVDKlk49l26lMu36rWHaBzsY+XwBAIOhLZywAyPa6gHJ1xosWhGNFMQCOY6WSGQCZdDLe1aFDt980AYQi4YgZBiD93MeJiIiIiM6A4GRkV/wjt+lQdkUTsn/sb+tK6JuEEEJ6q3oMQ0cpE4YLQAYETAXAZ0jDr7e7NaQpABjSq5OY0qsLSQj94AakF2UcWLrfgJS2CQAuvDVXSkLpNtZuts0Dci3psh0g3J4 236 6XXqTKFsdynSTy5sVlu6tn/zv7CyLXSUJ6CUdkW9tJ17Wh97DVTSoglXIAZBzXe8Bcvwdvml92nIDP79fPk22vkWtlmB2BgqMcAK5UKjftTY/VdR2dxBxHBHXyhDf3z1U67RmOVJYBAI5r2TYAx3T0kwhDStvbgDjsCwMIWGYkHABgCPHewYMAIpHIxxcsANDU1PS72loAM2bM8OsCUSaTSnvbVenG4oXBYCCVAtDd3W3q9hiOFe9uByCS8PsCOmzrtuamaZp+nXiz/TDgZVFpSJ9fL5cKuU6hfsCuzjiAlrYTre1tAEyvySERERER0YQGp2BpKLsBq5DipA2dst/tETZzfReyVSkpe2ZSSQDwB3y6PCIhIHW8UUpY3hdm6QKwHDfbW0KHGrhCQuaeDgBEdm6WdABHADBtqds8KEfqDhCmNB29e6xSekEUHDi6muUKLziZMjedT69xEgrKa4MB17smu02V8BYRGZC6RiSV8GboZaecCVfZygcATq5DhrfqySeN7HRA5d3uugAcpZDt9aebfQNeDnNV397mSrdwcJRXGMtN+XOUdG0XgO0aQvn08+gw6Sqhg5MLuJYCYLveUygBpbuHu45jWQAsx9ZPIV3ldKcACMedO3cugLa2tnfffRdALBabP3++zjCHDx8GEA6Hp06drsOV/i27urr0pLuSkiLh1RLdXCcJvZCpvSPh93cDMAxDt53w+/3e/ldC6Ml7juNkK5lGKpUGUGAWhqMRAJmMZVkn9SUnIiIiIprI4FRSXtwTnLKNHoTIbdIK70J2SpvXIE94jd8gpK7MSMMQ2c2RsvPfsnu8Csd7XCl7prR 535 i9p1QuhHIB+AzD9fo1CL+Xl7w+e0rp1UAwDF+2tqPjA+AqR3mrbrycY8hsDz3pRUHVu1u6UipbaPLGYwBecMrmRzdjZ0eY6/TQs+GVdy9v4ZJXP3Jy+9V6660AuD5pwKtB6WE4Xo++bDoCYDuO9/iu114vtz2Ul6lc18tq2XaCKluzUi6yu+VCeYkvt22uqxDUv4LOIa7tGsUFAJTtJBNJAOfFIkVlpQDi8c4Tx1sBtDQdu+CjF+hUc+jQQQCO6xQWxgCcV36evtDcciyslzYpt6isCECxKNE99FLJVErv2ZVInDjWAiAQ8DaG8gf8/rAfQDRcYNkWAEchHPQDcB2lxxxSbl77ECIiIiKiCSYUv5kSERERERENii3LiIiIiIiIGJyIiIiIiIhOD3s9E52Lem3ZTEQ0GXG5ARGN69cn/o8OERERERHR4DhVj4iIiIiI6BQ4VY/oXMSpekR0FuCsGSIaT6w4ERERERERnQLXOBEREREREZ0CK05EREREREQMTkREREQ0TEIILoglYnAiIiIiIiJicCIiIsr+yZx/OCcarrq6umuvvZbngYjBiYiIzjgNDQ0rVqwQJ3vggQd27959yvvW1NRUV1f3DUibN2/W169Zs6aurq6uro7nmc78SN/Q0LBy5cpen4X58+e/8MILuY+DvnLatGmf+9znLrnkEiGElNIwjN7f86QUQpSXl3/xi19cuHDh0P+OUFVVdd1119XW1vLFImJwIiIiIiIiGipugEtERBOssbHx4YcffuSRR3RdCIDjOFLKI0eO3HfffS+99NLatWtnz5598cUX971v7i/oH/vYx2655ZZet06ZMiUSiUgp/X5/JBLhqaYzQV1d3b 333 vvOO+8M9HH4zne+8/bbb2/YsOGKK65wXReAlHL9+vXf+ta37r77bgD5nwXLsnw +38 c//vGpU6feeOONW7ZsWbZsWd+Hfe6554Y4vIaGhnvuueeSSy45//zz+akhYnAiIqIzyLx581avXt3vpKANGzZs3Ljx05/+NIDBNx7cvn379u3bAfzbv/1b7spwOGyapuM4hmEEg0GeaprwyPT9 739 /8+bNq1atmjVr1jPPPNPc3Nzvx+HFF1/s+55/8skn77jjjk2bNimlcjfpeXcf//jHKyoqamtrDx48GI/Hy8rKLr/8cgA6d+UOG8runclksrCwcOfOnStXrmxsbOSrRsTgREREZ6KFCxfmLi9atOiUq5J6fX0kOptUVVXlLr/00kuDfBy2b9/et+J6+vot8xKds7jGiYiIJt5jjz2W/x2x100jflifz2cYhp7LJ6WUkv/q0UR6+umnp02b9qUvfcm2bQB9y02nfM9v2rRpoJuqq6vD4fA777zz9NNP79279+ 233 z6dtFZbW8vOEEQMTkREdIZatGjRKa8ZFsuyHMfR85pc13VdV0r5sY997Prrry8vLx+kw1hra+sPfvCDlStXlpSUCCECgcCVV175hS984fOf//xFF11kmuaXv/xlvl40LLW1tYcPH37llVcWLly4atWqf/3Xfx38szCCj0M8Hk8kEn/4wx9++ctfbty4cQSDbGhouOmmm956662DBw/mL3ASQqxYseLuu+9+/vnnb7rpJt2sTwgRiUTuu+8+nbJuuumm3Gdq+vTpP/nJTzjTjxiciIiIiOjMsnTpUp4EIgYnIiKikUgkErZtSykfeughAIcPH/6nf/qnqVOnBoPBr3zlKz/72c9qamr6vePdd9/d0NAwZ86cxx57rKamZtOmTdddd51lWclkcs6cOTyxNCy1tbVr1qxZvHjxlClTnnrqqbFbOHTrrbdef /31 s2bN6uzs9Pl8P/vZz954441hPUJ+Z4i+tzY0NNxxxx07d+586qmn6uvrt2zZ8u1vf/udd95ZuXLlN7/5zb/4i7/Qs/s2b958/fXX33LLLfPmzeOrT2cTNocgIqKzVjKZzGQyurHY3Llz//Ef/zGVSpWXl69YsWL69OnxeBwD9Bl76KGHqqurP/vZz+YOuOaaaw4dOvTkk09iaK3JiHJ+/OMfd3R0fOpTnzp06JC+ZqAVfafv2muvDQQCu3btsizr97///RVXXPHWW2994hOfGOLdq6qqci0u8wOefs9LKaurq6urq/Pv8tOf/jT/SqVUTU2N/qQQnWUE/9efiIgm+J+i7Cqjfv9JGvzWwQ+rq6vbuHFje3t7a2trPB6XUoZCoVgsZprmrbfeunz58kEebfXq1WvWrEF2YYl+KL1qn/900nDf4YuBDrtcAAAgAElEQVQWLYrFYrW1tTquSymnTJly0UUXHTp06ODBg/lv3cH7hve9tdc1tbW1b7755oIFC/7nf/7nnXfe8fv9UsoXX3xx8IfVi5EOHTr03e9+F8Cdd97Z785p+kFef/11ALndoga5kh8WOsuw4kRERGctvcL+pptu6nvTIKmJaPKqqqqqqqrSMWaM9LvBbr9XEp1luMaJiIjOckqp4uLiWbNmzZgxY/PmzVOnTr3jjjsG3yFq8+bNR48eXbVq1a5du2pra7dv375+/fqtW7c+99xzDQ0NPKU0Kl5//fVcuWnUNTc3p9PpvXv37tmzp6qq6jOf+cyf/dmfDXRwV1dXIpFobW1taWnZsmULXxqifnGqHhERTfQ/RX3mxeUMfYLcIFOD8hdmlJaWPvrooz/60Y++/vWv33rrrRhgi08p5W 233 TZt2rQHHnigubm5oqLi3nvvraqq2r1797x58yorK/mq0ai88/u+Ywf/ONxxxx2bNm0aZKpe/sH/+7//++abbx44cODYsWOdnZ26NX+/I5FSKqUuuuiiu+66q7KycsGCBcMa8EBXglP16OzCqXpERERD1W+rMSIiYnAiIiIacw0NDQ8//HBVVdWaNWv0H6odx5FSHjly5L777jMM49e//vXs2bP1wfn71Y74j9k///nPf/jDH95444 233 357c3PzVVdd1esApdSDDz4IYOrUqXyBaJw/DuvXr//85z//D//wD3rjZgBSyvXr1+/du/fuu+/WvfWH6O6779ZdIgY6oLGxcf369fqjVFZWVlpaGgwGBzpYCFFdXa3n8uX3gRjoSn09lz/RWYNT9YiIaII1NjY+/PDDt9566+ 233 /7KK6/k33T//fdff /31 hw4dyvX4uuWWW9LpdCaTAfDcc8/pKUaRSOTyyy+PRCJvv/12c3NzLvwIIRYuXLhw4cL6+vr6+nrkNS676qqrCgoKampqurq6eiWx+vr6mpqaV1999ZVXXtFfW/Vd9K16SGO3FQ+d9fSbdvr06cuWLdu/f//27dvz 336 NjY1KqXXr1r3wwgv595o3b966dev0zkgXX3zx4A+So9fyDTLfNTcbVgih/yqxc+fOvpNR+/0oDfL5Wrp0aVlZ2RtvvHH8+HF+1aSz58PLU0BERBOrsrLy4YcfHuQABhU6pz4Ogx8wrM9Cr1VSozIAIgYnIiKiSeDmm282TfP5559//vnnx+gpFi1a1NbWtnbt2m3btv3+97/fvXv3vn37du/evXPnztra2g8++GDJkiWbNm3ia0FnAb0Vb21t7dtvv/3b3/72t7/9Lc8J0UA4VY+IiCaTmpqaa665Rl8eo3/C9ISlLVu2+P3+YDAYCARM03Qcx7KsVCp16NCh3/zmN/v3 73/ ttdf4ctCk/yKYbeKnlNIfqMWLF/O0EPWLzSGIiGgyufrqq8fniZYuXdrv9SUlJb/5zW+mT5/O14KI6JzCqXpERDSZ1NXVrV69eqyfZfXq1XV1df1ukqubSWzbto2vBU12DQ0Nq1atevXVV7dv3x7J4mkhYnAiIiIioh7JZDIUCr 333 nt//dd/zbNBxOBERERnlcWLF/t8vl27du3atWuMnqKhoaG9vf3mm2/es2ePbrKspdPpNWvWXHbZZX6//7777uNrQZNdrjNEbW1tZWXlvHnzdLtzImJwIiIiGh1LlizhSSAiOqewOQQREVFv8+fPT6VSX/3qV5HXu08IUVpaunHjRqYmOms89thja9as4XkgGgq2IyciIiIiIjqF/itOeguLsxjjIhERERERDR0rTkRERERERKfA5hBERERERESnwKl6REREREREp8CpekRERERERKfAqXpERDQku3fvvvHGG4UQUkopZUVFxVNPPbVnzx6eGSIiOhew4kREdG7/MyAEhjaBWUpZXV1dXV0NIBQKff/ 733 /rrbfWrl27dOlS13UBzJ8/n+eTiIjOVqw4ERERERERMTgREVF/6urq1qxZM/TjlVKPP/54/jX/9V//9Zvf/GbevHmXXnrpZZddxlNKREQMTkRENBI1NTXV1dVCiH67le7evVvfqlcNCSGuv/76mpqa8Vk4VFVVBaC2tra2tnbo91q2bNmyZcuqqqr+8z//E8BLL72kM5WerUdERMTgREREdJJFixbxJBAREYMTEQ1PQ0PDihUrxMkeeOCB3bt3n/qjKOXXvva1LVu2bNmyRU+gGqhGQZOIEGL58uW/+tWv/vRP//SWW27pdWtjY+O3vvWtt99+++mnn9Y1n9/97nehUOgb3/jGrl27hvK2Oc 236 0 033 fTWW28dPHgwEomM7EHq6upuvPFG/ZtKyX9QiIjorP5nnV31iE7f22+//cADD2zbtu0b3/jG4sWL9Zyrq666avPmzffff//+/fvvvPPOiy++eJA/z990003Hjx+3LKusrGzv3r0dHR 333 HNPVVXVJZdcwtM7qYOTEKKsrKylpQV9OtcJIVavXq1XGQkhFi5cWFtbK4TYuHHjY489hjHeqruuri73RI2NjRdffPHIfsE777zzxhtv1ENdvHgxX3QiIjpb8Q+ERGOFf5UgvfKnubn5lEcuXLgQ2UVH429kqYmIiIjBiYiGZ+PGjaZpfuITn6ivr+9109y5c//4j/+4rq7u6aefHuyjKKWUUikVCAS++MUv/uQnP5k3bx5P7FlPF3wmxMg6Q+TkOvJ95zvf4etIRETnAk7VIxqND1LeYqRen6nbbrvtBz/4Qb 839 X2EK6+8csaMGZWVlZ/4xCcKCwsvv/xyntuRqaur27Zt2xtvvLFp06a2tja /37 9o0aLy8nLXdRsbG/fv3+84DsaxKtjvJrOD7Dybf5MQ4jOf+cyVV155ySWXfO9 739 u6dau+/tprr9Wh5dVXX127dm3uvvfff/+KFSsqKysHGkxDQ8Ojjz76ox/96Otf//qtt96KvIpTQ0PDP//zP//85z/vNape/9nY2Lhu3bqdO3feddddF198sS6XERERnd1MngKiMbVhw4ZccDqlN998k2eMiIiI6AzEqXpEY+uWW275yle+snLlypUrV57+ozU0NHzxi1/UzSd6ye9pJoS44YYb1q9f/4tf/GLp0qW546+77jo9Nes 73/ lOr9Z/jY2NZ9Npf/rppxsaGubMmfPYY4/V1NRs2rTpuuuusywrmUzOmTNn8PuKkRq7XycSiTz77LOf+9znKisr6+rq6uvrt2zZ8id/8icbNmxYuXLlyy+//OKLL9bW1m7evPkv//Ivb7/99sHneSaTyUwm4zjOD3/4w143XXLJJcXFxTU1Na+//vpA78C//du/vfTSS6dNm/biiy8uXLhw0aJF43AGiIiIJhwrTkSjYJAZX/F43O/3R6PRwR/hr/7qr7Zu3WoYhuu6QoiKigrdVW/+/Pn6gMbGxocffviRRx5Zs2aNXpQy+BY6+qt2Y2PjmjVrNmzYAKC7u7u+vn7Dhg1vvvnmjBkzXnzxxZkzZ3Z1dT3xxBO 333 47zq5uFg899FB1dfVnP/vZ3O91zTXXHDp06Mknn5x0v6lSSkpZXV396KOP9rrppz/96bp1666++uoTJ04M/QGrqqpWr16t30WDtIXITRTMXfPWW29973vf27Fjx 733 3jt37lx+8ImIiMGJiEZHbW2tZVk7d+7U7cgHOfLxxx8HoKtGr 732 2pNPPnnLLbesXr169erVOiPNmzcv92X3lGltoK/at99+e3V19VNPPQVgWF+1J2OUNU0zHA7nEmZdXZ3f7z/NGDyBv87jjz/++OOPv/766wsWLNBXLl269Jvf/Oa3vvWt119/XW+mBODqq6/W4XAgue2bPvWpT/UtTO3atWv9+vVXXXUVgMWLF//d3/3d5s2br7nmGn3rFVdccfXVV1944YX33ntvMpnkB5yIiBiciGhi6I4FNTU1gx823LX4ua/a+Yb+VZvOHMuWLRvilaMb23jmiYiIuMaJaEzoxUh6gdOLL744gkf4whe+0N3d/cgjjzzyyCP6mscee2zo+/zoGoUuHQx+5Vlp8+bNR48eXbVq1a5du2pra7dv375+/fqtW7c+99xzDQ0N5/I7M5lMFhYW7ty5c/BFd7W1tRUVFTfffPPy5csNw+AnmoiIiO3IiUaTbrFw6NCh 737 3uwDuvPPO2bNnY0QbjPZqcZ77zyF+Zvs9fqAHGaQv9iQlpbztttumTZv2wAMPNDc3V1RU3HvvvVVVVbt37543b94grbp7nflhOWW7+b6nffXq1Xo3pNyKtbq6uo0bN+r9nXLHD+uFG/zV7PdJ+963rq5u/fr1L 730 0rDedURERGcxTtUjGnMjSE00Rkalt+G5YNGiRbpSyl55REREDE5Eo6yxsXH9+vXPPvssgE9+8pNr166dNWsWBi4XaH1v3bJly5YtWz71qU8VFhYWFhbmjtSFgrq6usH76ZE+mQ8++CCAqVOnnrGDbGhoWLdu3c 033 3zXXXcJIRYuXFhbW7t+/fq9e/c+//zz+Z0bhBDV1dXV1dVbtmzJX9EkhFi3bl3fK//+7//+9ddf10vmli9fnnu6Rx991DCMQCAQiUROObyamponnniC7yUiIiLvX1hOwCA6fW+99daDDz74xhtvfPWrX73sssv0l9dYLDZ79uzKyspe0ajXHDzd/q66uhrAsmXLampqfve 73+ 3ZswfArFmzli5dWlRUtHDhwvx25HqeVa5FRL+Tu3o97CBXDnL9JFVfX19TU/Pqq6++8sorruvm4oQ+Offff//1118/PmVAKaVSqrS09JOf/OTx48e3bdumx6B31tqxY4cQ4l/+5V+efPLJ3By5FStW3HHHHdOnT1dK6UEKIZYuXVpWVvbGG28cP3489y7q98olS5bMnDlz27Zt77//vr4mdwby3yd6Tmnfk5D/5sy1xV+0aNEll1zCjzkREZ3jWHEiGiuf/vSneRJoEJWVlbt37x7o1jGNdpw+SkRExOBENAGuuOKKZcuWLVq06NFHH+3o6NBXfulLX8o/Jve3/K997WvpdDqTyej/3LVr17p16/I73S1fvnzp0qWLFy8uKSnp7u7Of5CdO3euXbtW99bL7xxQWlq6cePGJUuW5K5ZunRpe3v7n//5n/eqUfS9cuHChatXr66vr9djOAuq0IsWLbrrrrvWrl27bt26YDAYCARM03Qcx7KsVCr1H//xH0uWLPnud7+7dOnSwbtEnGXy970lIiIiBieiM93NN9/8xBNP6KVQp3TttdfqC5WVlQ8//PCuXbt4Aofi29/+9ooVK/q96Utf+lJnZ+ff/M3fjENKzE2TG8jFF1/8xBNPDL6UqN9BDv1KbfB9b4fyCERERAxORHS6TufrZmVl5XPPPTfEg+fPn//f//3fIxvPcL9qT3ZLly7t9/q6ujq+Y4mIiGi4uAEu0QR48skneRLG1OrVq+vq6piRcoa47y0RERExOBGdKaLR6OrVq3kexk5DQ0N7e/vNN9+8Z8+e+vr63PW1tbVr1qypqqry+/2NjY26s9w5Qq+Lq62tra2tZWcIIiKiEWA7cqLxJqX8+te/fuuttwIYZLUJjVhjY6PrumvXrv3lL3+JPl001q9fv2TJEiklzqXmcro3ie4MwX3AiIiIRoBrnIjobFNZWXnKLhrnZtWFkYmIiGjEOFWPiIiIiIjoFDhVj4iIiIiI6BRYcSIiIiIiImJwIiIiIiIiYnAiIiIiIiJicCIiIiIiImJwIiIiIiIiYnAiIiIiIiJicCIiIiIiImJwIiIiIiIiYnAiIiIiIiIiBiciIiIiIiIGJyIiIiIiIgYnIiIiIiIiBiciIiIiIiIGJyIiIiIiIgYnIiIiIiIiBiciIiIiIiIGJyIiIiIiImJwIiIiIiIiYnAiIiIiIiJicCIiIiIiImJwIiIiIiIiYnAiIiIiIiJicCIiIiIiImJwIiIiIiIiYnAiIiIiIiIiBiciIiIiIiIGJyIiIiIiIgYnIiIiIiIiBiciIiIiIiIGJyIiIiIiIgYnIiIiIiIiBiciIiIiIqKzl8lTQNSbEMO+i1I8bURERERnMVaciIiIiIiIGJyIiIiIiIgYnIiIiIiIiBiciIiIiIiIGJyIiIiIiIgYnIiIiIiIiBiciIiIiIiIGJyIiIiIiIgYnIiIiIiIiIjBiYiIiIiIiMGJiIiIiIiIwYmIiIiIiIjBiYiIiIiIiMGJiIiIiIiIwYmIiIiIiIjBiYiIiIiIiMGJiIiIiIiIGJyIiIiIiIgYnIiIiIiIiBiciIiIiIiIGJyIiIiIiOi0vLyP54DBiYiIiIiIBraxHjdcgJf32bbNk8HgREREREREfTyzA2sW6uxkmuaZMipX9Vx+7T0A2H4UAFqTDE5ERERERDS+XnsPqy7FxnqdnYQQZ8Scve1HIYU3no31WD4XG+uxoBwb61ESwsZ6ADjcweBERERERERjL57xMomuOK1ZqJTSc/YmZjy6ypTLSHo82bH1/jmr0EtQ8QyDExERERERjZkCf6804lV4JiQ7tSZ1lamf8QyUnfTPAr83l4/BiYiIiIiIRl+fHNJT4bnhAm9N0fho6vLm4A00nsF/Lp+LZ3YwOBERERER0Wh77b2+CeSkCs+C8nHKTtuPYnq 030 Q0pIqT/rnqUmysv+eee86EUyuUUnyDEZ38sRDDvgs/R0RERDThbBem7CeBaPnXbD+KBeVjOJKmroFSU//jGfyn5ipIMYFnlxUnIiIiIqKzQr+pqd8Kz5jWnVL2YKlpWBWn/OOlgO0yOBGdSZQa9v8RERERTazhhoq6D8dqJC80jtUj/8cuBiciIiIiIjoNO46N5F5jUXdKWGP1O+pHTtkTc4YVERERERFNapajlFI/ruv/pzbQrfUfjuZIBnqWoY9nKMd3psf/HDM4ERERERFNfgNnDwCnSCajlZ2ebxhKFjr1eIZy/NE4gxMREREREQ3H0+8Mlj1OlaxGJzudSAw1Cw1lPEM5fnyzE4MTEREREdFktu/E4NljqBWe089Ogz/+pgO9j991bCjZabDxj2N2YnAiIiIiIprkRqvCczrZafCqV9Ia7L6/3Dvy8Y9XdmJwIiIiIiI6e1PTcNcUjSw76Vw00GM67qkfYeC62anHPy7ZicGJiIiIiGjS6tuPYethpU6u/wwtX/U+frTy29DpXnkjq5iNfXZicCIiIiIimpz6Jo38Pt06S4ysi51efXQ6+W1kGay/vupDHf8YZyehlOJ2YUREREREk9LGeqxZ6P3sy1WQop8jB/+pNXVhenSEIxloPEOhx9z3cYYy8uGOeTgk32xERERERGdhagJ0avrVr341jNS0sV4IgY31mB5FU9dQRtHS0tLP47gjLc/opNd3PEMZ/5DHPAKsOBERERERTULbj2JBeU9KyVWWBvLMDqy6dBgVp+HWcMai8jPcitPpVLpOGej4liMiIiIimnxyqamp69SpCcCqS/HMjmFUnIZcw/npT3960iO80Dhq8+WGW3HKHT8GdSdWnIiIiIiIJq2GZsybOozjh1J30oZbQRrrms9Yr9E6FVaciIiIiIgmrWGlJgyp7tRPhWfQutM999wzOqubBrB169YxXaPF4ERERERERH18af5I7vXf7w50y549e05OGGJ0x3vllVficxeO7pgZnIiIiIiIaFCmBICK2EjuO2Y9607hdCbdjdKYucaJiIiIiOic9PI+3HDBkNY4DWW9k741nkGBfwzHPNyugKPX5Y8VJyIiIiKic9INF+DlfUNa4zToeqcvf/nLPbeOaWoCht0VcPT2d2LFiYiIiIjoHNa3z542eD7pW8MZyz2UehtuxWk06k6sOBERERERncP69Nkb0r5JeTWcnuNfe2+cxjzcitNo1J1YcSIiIiIiOufl1520oawmyq/hjGfFafARDn7rSOtOrDgREREREZ3z8upOQ6o45dVweo4/3DGuYx5uxWkEdSfbzV1kxYmIiIiIiABk607a0PeczT9+/A 234 pTLeLMKT/HIukNg9jFZcSIiIiIiIgBe3WkYFadeFZ54ZgLGPNyKk/45qxDbjw72sE1dPanp5X1gxYmIiIiIiPoxWSpOfUc79PG/0IgvVPbzaNvex5KZPanphgvAihMREREREeVraWnp1WdvqBWncV7jlG+4FSf98wuV2Fh/2223YX8rAO/nxvq+qQmsOBERERERUT/67u80lIrT6e2VdLqGW3Ea/Pi81ARWnIiIiIiIqB999ncaUhe709sr6XQNt+I0yPEnpyaw4kRERERERAMaSt1JG429kkbT6VSc+qQmsOJEREREREQDGsJsvX4qNtOjaGieqCFv3br1tCpO/aUmACbfDERERERENKDPXTii+PI+5k2dkPFeeeWV+MhpTBf89Pn9Xs2KExERERERDex0Jt0NvlfSmTbmihgASNHvjVzjREREREREQzDcrnT65/ajWFB+xo257/gHmKGXw4oTERERERENwbC60uV+LiifsLrTwGPuPf5TpSaw4kRERERERMMw3IrTxNadXAUphlRxOhVWnIiIiIiIaMiGW3Ga2LqTFGjqGmxsL++zbXsoj8SKExERERERDdNwK04TW3caaDeqIczQ64lgfNGJiIiIiGh4hltxmti602mnJrDiREREREREIzTcitNw1hSNptfew/K5p5OawIoTERERERGN0HArTrnjt70/ruM87dQEVpyIiIiIiGgUDLfiNKL0MgpjG+nzsuJEREREREQjt3Xr1mFXnDbW44YL8PK+8Rjfa++dfmoCK05ERERERDQKhltxOu0kMyRNXZgeHZXnYsWJiIiIiIhO23ArTvqaMa07xTOjlZrAihMREREREY2a4Vacxq7uZLsw5Sg+PitOREREREQ0SoZbcRqjulM8M7qpicGJiIiIiOjsEs9M8AA+d+FI7vVBJwC4ozQbbt+JnsufPn9UHpLBiYiIiIhokmtoBoCN9QDw/3b2XH7tvQkYzPQoAIR9I7nvr/ePzhgWlANARQwApGBwIiIiIiI6hx3u8DLSvKn9T41bPrdnahyA1uT4jW3VpXhmR7+z9ZRSA87lG8U5e64a3XVTDE5ERERERJPQC42YVTiUZgw9QaUkNK41qAGyUz9rnMYiO41SoSlHnIPvMTYSJCIiIqLJa+vWrVc2BIfR/vuvF6kf1/Xf2m4cPLMDqy49RVe9vj+H29HBVaOelHoHJ6YIIiIiIqLJZ2Qbzub/HPuw0W926j/InU52StkImnjtPSyfO3a/BKfqERERERFNprx0iqluQ58aJwVS9niM+eQ5e4OtcRrBnL2mLgRNb0HXhDTDOIspIiIiIqLJ6Md1vS8P5efgxx+Nj9Pgn35HPymAYQz+l3styxrwMfedyD9yTIfPFEFERERENHlS03CDx1COH+fsNLLg19fzDeOWmhiciIiIiIgmg/yQMLLgccZkp5EHP11f2nSg9zFjn5oYnIiIiIiIznj5E9LGouKUH0vGzWgFv3FJTQxORERERERnNscdXpAYWcVJ/6z/cBx+oebm5pMKaKcT/MYrNTE4ERERERGd8UZWQRrZ8eOSnXoyz+kEv3FMTQxORERERERntr7Fmb5BQs+y0z/1aqXTr1CNg2yfvZEEv/FNTQxORERERERnsBOJwYKEbpMwkGxJZyQVqnGrOw0lO/UNfuOempRSQinFnZ2IiIiIiM7YHW97bw6rbT+KBeWnuO/hDswqHPBxBvo59Mcfo1+w1wa+f71I/biu55qX9+GGC8b/dZB8KxIRERERTT5DSTW51DQCdR+O0y+yfO7wjv/0+RNyvhmciIiIiIjOSCl74sew/eiYP8X5JUM9siIGAFJMyJngVD0iIiIiojNV36lrpzNRbWiz9XpPjRuHOXuughSnmDo4QTP0GJyIiIiIiM5sDc2YN/WkCPHMDqy6dJST2EBBJf+acchO8QwK/AMGuV/undjUxOBERERERHQGGyjVnA6dvoZecRq37DR4kJtoDE5ERERERGekFxrxhcoxiRCDZ6eBYsyEZKdndrSsKJ8yZcqEvxpsDkFEREREdEbqlZqaukbtkVddimd2DFhxEgMsN1pQPra9IvpLTVh16ZmQmsCKExERERHRhBm8hjO6q5v6GqjuNFCMGYe601j/yqeBFSciIiIiookweA0nnjkpsYxFhBig7jRgxWms605ncGoCK05ERERERBOTmk65cin/mJSNoDkmI+lbd+r77ONQd8pf0HXmpSaw4kRERERENN5OrvMIIfqp4eRXnJ7ZMVapCf3UnU5RcRqLutPhjjM8NYEVJyIiIiKicbW/FeeX9FPh6VvDGc+W3Pl1p77PPqZ1p/wdnM7U1ARWnIiIiIiIxo+reqemXIWnVw0nv+K0v3XMB5ZXdxpSxWm06k4pe1KkJrDiREREREQ0rgbvYpdfwxn/TWDzo8sQs9PpjM1VkOIM3Ou2X6w4ERERERGNlxcaT9HFLlfDya84xTPjNLxVl+KZHcOoOA2yRmtIWUTg5X2TIjWBFSciIiIionHS1IXp0SHtm6TrThNbihluxWm46510uQnAy/twwwVn/qvHihMRERER0bhobBnqkXUfTr7fbrhj/vV+78JkSE0MTkRERERE42UcejyMorBvJPfa9v5Qj/ygc3K9egxORERERERjb/vRwdYIjVH3hdPRZ3+nIY1/yUy80DjYw+Yf39Q1iV5ArnEiIiIiIhpjtgtTniIXnYHZCSfv7zTc8edWMeHkzZr+P3v3GyPHeeeJ/deTEUPJpOzMnpkZ6+g1jeE5R57HWVJADtIiG3Cl7Pl48C0Cvoh9fLU40Avs4Yx9l3c589W9vvMbDgK/iEbawCICRGd6cVmYOCCicgg4c9BY5EUiI9rSWjMiT7O2OBZpstmVFzXk9PTfqv5TXd39+UAoDHpqap6ubpH95beep1LpjK/xoXECAIAh65CasjROfd4rqR8Zeqe245+pxOVbEREXr++mpuXVhYWF2Lo3XnupeiAAACAASURBVKkpIiIBAACG6pW3kyRJLlxtvU21+266Xf1ovMffvP+4EZwAAGCYbnzSOUtERKa8UdbslHX86fbewzF9Gc1xAgCAIettjlDLa/Zy3StpsNrNd8o+/vvV2D87pq+hOU4AADC61JRljtOT7YmFEc 936 mf845yawqp6AAAwRBevx5lje/LDWx/GC4d7bGxGu8Jeu3FmGf+YpybBCQCA8ZR+EE+X+S6t+jW40 239 gNPr7pZXK999PrlwNWtqSvdf/WiU1+w1j6fz+Mc/NQlOAACMbWp6PO3n53O//cpXvlLSoXZuiuoTRd7GabTznbI3ThORmsIcJwAAxjg1La/GiYWd1HT3wZilpojYPxu15Dvf+U6O1PRkTtFo5ztlnOM0KakpNE4AAIxxamq4VOzyrTh1pCxDfXwlXpw7uXPNXvaUlX0VvlH1TrUkZipdGqcJSk2hcQIAYKxTU5w7mSTJztenjsTyakQJ2qdaspua3vqwe2qKyN04jXadvZlKrG10apwmKzWFxgkAgLFOTW0XJ7h0I04fHXF2mqnsrKGXXd7GabS9U7vxTFxqCo0TAADj4eL1fPv/8tNefmqQH7QrEZEvNUXEt77Wy++6+lFZXqZnnoqIyUtNghMAAKV3vxoR8dnDXn52696I41Ne8wd6/9kRrhXxxJljk/o2FJwAACh3ampzhV6LOU7ttuktaCNic3s8nvW5k7GynmmOU/224PlOb33YOJ5JvEJvVwIAAOV072GSJMmFq523EdF1n93t69fefPPN8Xj6r7zd+imk2j3B1Y+KGNujWuN40hdrcglOAACMcWrqHiTa7b9xd0yzU/egWEx2evwb5+fnJz41CU4AAIx5asrbONXv//q1scxOWYLisLNT83gmPzhFT/8BAMBQ3fgkSZLkp+83bgfVOKVfj2HvlDUoDi871Y9nCrqmVCXpdWqUmYoAAIze3Qc//+Sjr/zOl+Lgvrj7IA7ui5tbsTi3Z3v5Vpw68mT7jT//47f/7Idx7mRsbve1il2RVtbj7FLb+ya12w7j/k4Xr+8stjHxq0HsJTgBAMA4ZafWN/wtJjultxVOjzxGsVNwAgCAYatWq7P3artdVhoYasnOLW6Lz06pLKmpvqEalKlMTeE+TgAA0NbaRkTMzs7GwX2xvBqLc7G8GvMHYnk1Zio794aqFdgonF2KlfW293HqcN+nAd7faSpTk+AEAABNtu5FxM4tZTvccDbdzlTifrXI7JR0veFv8w2CB3tv3OlLTYITAADsdflWzD3dGDw6h5P9s7G5XdgA79y5Eyvr+RqnNAQOMDsJTgAAML2WV+PUkdbBo3NEmT9QWCz54he/mF6zl6NxSr/uITtduuFNITgBAEBEPJ6n1DV4dN6eWIi3PixuzJmz057glys7La/G6aOyk+AEAAARdx/srPSQJXh03r5wOC7dqFaLmvKULTs1Br+MAe/J/qePFroAhuAEAABl9Bc/G+TRfvnp4cOHi1su4syxXn7qnds7ibGr556NiBEsvC44AQBAWQxnRYfNzc24eL2gp7B/NiLimad6T4z1Ge/a7cZ9vrnobbIj6e0/AAAYa+98nCRJcuFq920qy57N+xfmlbfbDSkicgy+fv9HNW+TJwQnAACmz+pHncLDj99LkiS58kG/waMk2am34Cc1CU4AANAiMKQdVLvA0FvjVILslDf4vfTSS1KT4AQAwHTbuNs6SDx81OmnPv1t9uDR+vgjzE69BT/2qvS4smBiRUIAAMbN1r2Ye3rn6/plu7NbWY+zS13WJW8+ft7f0qeG5dS/+3xy4WrGu+VGLbGGXkuCEwAA0+F+NfbP7gkSaQrK69KNOH20 032 fOgSVkWSndkFOahKcAACgbZxo/jqvtY04sZC7cRpRdsraOElNHbmPEwAA05SallcrlUq/GebEQqxttG2cnhy/5bYwj39pkiRSU/80TgAATFFqGmTnc3MrFudyN06F9U5pFsrSOElNghMAADTMSqp89/nkUW0wUWFzO+YP9LgYQwHuPoiD+7oEOalJcAIAgBbZZrCu3Y7jh3pcjKEAl29V/vCrbYOc1JSZOU4AAEy0pkbotddeG+TxG1JT1zlOBc93OnWk7RwnqSkPjRMAABNt2D1Pb3OcCuud7j6oPPuft2icpKacNE4AAEyuy7eG2/NcvJ57Vb2m7ZUrV4Z4Bg7ua9E4SU2CEwAA7Lq5Ndzjb93b/fqZp3o7xu///u/H5nZBJ+S5ZyNCahKcAABgRP7 +34 6I+NbXevnZN97Nt3+1FhGxttFlt1rT/JpvLnqhBCcAAKhzc2u4c4rqj7myHotzERHzBzLdcLZuu7t/drMzsby6cx/eTh/2K3suHXSFnuAEAACNWt6ddnn1/PnzAzh4w+yms0t7vru5nT077ZkTldHdBzv7n1iIuw86R7udYCY19aeSWB8PAICJtLIeZ5eG0jg13xuqOZa0ujdupwYs7wi77v/46b/8+v/0V//2/5Sa+qRxAgBgQrVMTWnDc/F6X0duSERrGy1iyfyBjL1Ti1X4uqq/CrFl41QXGv/qr/5KauqfxgkAgAnVueFJo8WgjtxOlt4p7zGb92+wthEnFsxrGiyNEwAAk+jJLKB2DU9ayPSg+d5QHWTondre96mDSzd292xecj1dNEJqGiiNEwAAE2qwc4pS96uxf3bPz959EAf3dfmpzr1TltF2fnYtSU0DpXECAGASdW2cnjySa75TQ2q6fKt7aoouvVPbxulJ77T3dkyvvfbann3a3eRXahoojRMAABMqe8Nzc2vnLkw9HDO7dr1T59Gm2/Rn242E4dM4AQAwobI3PBlTU/MddXNp0zt1aZzSbZq4Ilrs3+E+TgyOxgkAgAl16UacPjqwVeyafyp7T1WvuXdqN55hzNGiVxonAAAmVMvU1K7hqWWoE3rrqRo09U6ZGqcO+1MIjRMAABMqXVYuS2OTdlOdXb4Vp44MLLHU904tU1nGxinLyBkEjRMAAJP6UbcS125napy6Zo9qrTE1bd3ra2x1vVNfjZPUJDgBAEC//u4Xu++T5Yq7d/9T4yNf2N/v2BpWyUNwAgCAEX3arUREPPNUp 33+ u690P85//E+tj9y/f7DY+8/OPe0VLow5TgAATIG3PowXDreYI5TOg8qi//X0sh8/+xwnCsvgTgEAAJPvhcNxv5pmnvPnz8cHv95JHRlS0/nz5weznl6bRNf7HKeaCqQ4GicAAMigPr3cr8b+2SEeP0vjdPdBHNznZSmMxgkAANq7X23RCA0wNdU3SGsbWRuna7elpoJpnAAAIFPCGfw9Z9O7OdUfP+2ysjROFEvjBAAA7V2+1aJxGpT5A3sap4jYPxu1pFNqurnlNRkJjRMAAGQwjM5nZT3OLj1JaHHqyJ7vrm3EiYU9v9e8ptHROAEATJlrt52DXHlpWI3T1r04u7R7/IbUFBEnFnbap3Q9wAipaYQ0TgAA06S+xKCr+vs11WenrXuDufls/QtRP9+J8tE4AQBMjWu391z6VSrV2k5QqQ8tTx4flcW51o3TQFLTyvqe+zJJTYITAACjV0vi+KFhLXLQZ15aWY/ZmZ0byz4JEotzsbwaszNx6cbO+It38XqcO5kkTas1XLze75FvbqXX6e0en5IHp8pU8sIDAFP4ua/1Qm0jdO32Tl56HCH2BIknj5w+GsurMVMZwYJyZ461bpzOHIu7D/o6choLnzROl295h5b9f6BkKnnhAYCpc/F6u0Wur1y5MprxNDdg9ZeuNY92cS5W1gsdZMsgl277XKehISg2rwxB2YKTUwAAMPnuPkjLk5bZ6cUXXyx6PGlp02Y8rYNKuk27qYi4Xy3ipHUOcj17PLtp9/hb97xJyx6cXKoHADD5fvZx 930 2t4sYyaAWQ+9/ltGgwlUu6Uytzx42Pv6F/d6kZQ9OLtUDAJh872SIK2+8W8RIrnw4mOOk2WNtY8Qn9v/4f/Pt/+//uvmxpaWlmPEv+6WXAAAw2VY/SpIkuXC13TYi9jwyPO3H0Gk8nbc/fu/hw4fDHXCWwT+qdT/aj99r/bOMRfXiFAAATLL0A33nD/3NwWAYXnk7axbKk7IKOHVZg9wnn/X29N98803vU8EJAIBR663hGZyHDx+2LVv6b5zS/dNYMqSw11uQu/FJkiTJT98fWfBDcAIAIN9H/94anmLzW/fxZNl/CMPuJchl3//KB96kghMAACO1cbffD/qDsLS0NMTgMdQ5WvVX3w07+CE4AQAwMv1/0C9mJPWXtPUfVAbolbeH2zghOAEAMAapKcsH/X789P1Ox0+vJKxfku7hozfffLPrSoDdxz+ik5lv/yxr8SE4AQAwRK9fG+QH/d7ce9jp+O983OlnHz7qd/wD8ag2rEsNP/2tN6ngBADASKUfygf7Qb 837 Y6fPTZ0W99i2HO0MgXLvEH0F7/yJhWcAAAogc7ziHq7tCyv9Iq75uPnvUStc3vWefwDkW2ZjaxBtP60IDgBADASt27dapGX6u29q9JwFzNoPn799XvZtb8T1HDnaDWEwP4bp/SJIDgBAFAK6cf09DasnWNA5w/6/eSQ5uP3c4laP41ZgdmpU5DTNQlOAACUwsNHux /cO9 9cNc1U+e+b9P3vfz/TSNJmqf74zd3XIKLLcOdoNchyzV67IGdek+AEAEDpZEkLaQxo90F/GI1T/5qzU/bxD0S3hTdaB7l0kUDG1kwAADAxqrXdr5//Uvf95w/0/rvWNvLtvzg3mOd4YqH3n93cHsAADu6LiPjW17Lu/+2vR0TM+uA93rx+AAATpP7T+dJ/OdzfdfWjfPsf++Igf3v23FLvjXcHNoA0c/7J7+1m1DQZLs59+9vfjlNHIiL+6YndoMWYqyRJ4iwAAIyfWhIzlYEdbXM75g/E8mqcO9l1W/nu88mFq7uPtHP5Vpw6srP/69fizLEBn4HHY24cT7ftleP3X3zxRe8gBCcAgOlITZ1zy/CyU6r5kWaDHWG7MTePJ8v4IQ+X6gEAjHNqWl4d2GHnD8TmdqbGqVJpfLyli9d39x/I5KI2Y24xnq7jX1n3PiIXjRMAwDinpoG3KFl6p1SWMRTZ8ORtnFbW4+ySNxQZaZwAAMY/NRXbO7VteNokmUqlMvQzk60r2zP+s0t6J3KwIjsAwHh4VOt+n6J0n/51vs1r5/sm5b2X1KBkuTVt8/hfeds7iywEJwCASUlNRWWnaHmD1/bJ6tvf/napslPj+H/8nvcXghMAwKTIkpoG2/C0yyFZxlO/T5GyZKfm8ctOCE4AAOPtUe2ll17KkZouXJ2fn08+/e3wckj3xmnv9l// 639 dquzUevx5r9lLfwuCEwAAZUhNu1/nbZwG9cm+OYf0Np7yZKd248+endL9ZSfBCQCAsqSm/A3P7v43PhlGDsk7nldffbVU2SnrHK3OqWlUmRDBCQCA5tTU+vN69jk8qx8NPof0Np7ipc+9tzlazdc6PnzUuM+g1uFAcAIAoN/U1E/jlG6vfDDY7FT2OU7dslPW8afn7VHt1q1bO92d1CQ4AQBQztS0+3jzbJz003zajXzyWWNGGsaqcfWzesrfOLXLTr2NX2qabjNuAQwAUC5/ebPTd+eejoj4ztcjIhbnIiIO7tt9/IXDrX/ql59GRNyv9ju2+QO9/+zm9mjO54mFQR7tuWcjImYq3qfTRnACACiNWrIbctr5H/5u1g/uf/J7jY9cvD7KZ/fGu6P87WnI7N83F71Pp5TSDQCgpFfo1c/JyXuXoXrpdXrp0dIr+gZ1zV5vc65G5fF5iJ7njLlCb4pVkiSRHgEASmF5Nc6dbLHt382tWJyLze2+rrVrkB6t3Zibxz/YZ9SbtY3dK/eyjLx+tLXEFXrTzKV6AADlTk1rGwM4+OJc1JJBpqaImD8Qm9tZskelUml8fFROLMTaRovxdNwuLCzE/arUNOU0TgAAJU5Ng+2IhiFL79TuOZbznJdtnJSDxgkAQGrqQ4beqW3DM0JvfZg1NfW/FCETQeMEACA19a1z79T5mY7Kxetx5lj31LR/1puU0DgBAEhNA9Cxd+oyp2hUpCby0DgBAEhNA9Kud+r8fEfVO6Wr5ElNZKNxAgAo2vnz5ycwNUXb3inTKnYj+CBcicu3pCYy0jgBAIzIhKWmJ5p7p3bPtwy9k9RExqDtFAAAFPxJvXUDc3NrElJTtOidctw3SWqirDROAACFf1Jv/tS+thEnFibqmdb3Tu1Symh7p+ZmTGqiPY0TAECxqam5gfng15OWmmJP75SjcTp3MpZXr1y5UtAIpSYy0zgBABSamhobmMmY19RO/bMrW+MkNZGHxgkAYMjWNjp9d4JTU5/PbnO7iBE+81RESE0ITgAAo3b1o9HHg3H0xrtF/JYzx5xpBCcAgFFrdTXanjk/6Vygidfq/k7ttnvOz8BdurF7fFfokZk5TgAAhaam1qvMTfZMpyfZqWE9huznZ1Cu3Y7jh3a+lprIQ+MEAFBsamq5ytw09E5N93fKcX4G5fihuHj95ZdfjloiNZGLxgkAoNDU1Om+RnqnzucHRkfjBABQbGrqcF8jvVPn8wOjo3ECACg0NXVqVPROWc4PjILGCQCg2NTUoVHRO2U5P3lfERiIBACAgbhwNes2y/4bdyf/jKXPsbfzk/cVgf4ITgAA/fr+97+fIzVduBoRmfac1uyU9fw8qmVNTZ33BMEJAKA4zZ/sVz9q/Xi7/WWnvOfnF79qPNqnv5WaEJwAAMqYl1o3JGke6KdRmdbslO/8/PT9V199Nfnks/RrqQnBCQCgjKmp8evmtNNPozI983Pqz1Jv5yfvtXwgOAEAFJeamhuS5o6on0Yl3X+aeqdezo/UxJC5jxMAQN8rj9c/srYRJxZa7F9/56I8a5fv7j8993fq7fzUP1JLYqbiTcoAuY8TAEBOaxudvtsyNUUMIPO88e7kn9v+z9Jzz0aE1ITgBAAwalc/av3481/q/rPf+lq/v33i743bp28uOgcITgAAo9bqarFKpdL2Cr0G8wfifnVhYSHHdWjp8Z88Mn9gKrLT5nYv58cVegyNOU4AAH2lpt05NoM6WpY5PNMw3ynNotnPj9TEMGmcAAD6yzmXblSr1dxHu1/tsXGant7pxEJcvpXl/Lz88stSE8OmcQIA6CM1ZbxCr1122j/bY+M0Pb1T9vMDw6RxAgAYRWqKiP2zGXunFo3T9PROXc9PTQ1AETROAAA9paZLN+L00QEcP0vvNNT8VnLpNXgdUpMr9CiExgkAYHSpKTL1Tm0bp3R7YqHLraXG++Oq1EQpaJwAAHKmpmHMq+ncO2UZz2T3TlITI4/wTgEAQIPz588XvRpBx96pS+M08b2T1EQJaJwAAOrUfyIvfg23dr1T5/FMdu/01ofxwmGpiZHTOAFAmVQquf9j4Kmpc8OzdW+IA2jTO2VqnCayd6rWpCbK8sezxgkAyhWc8vJX+aBTU6eG5+L1OHNs6CNp7p3ajWca7mskNVEOGicAgMY1r9s2PAWkpmjRO+VonJ7sPxm9k9REaWicAKBUfzNrnMrxGb35kXSbdkHFqO+d2o2nc+M07vOdpCbKROMEAJBZYanpye965qnej3D1o0k45889GxFSE4ITAEA5fOtrZRxV/xcHjvs1e99c9N5EcAIAKI35A7G53WlO0eVbIxjV/tm4X11YWMg9x2kC1tlzhR5lYo4TAJTqb2ZznEbt5lYszu18XbbV6vLOcZrs+ztBsTROAAB1FudibaNEjdMTre7vlKlxmsj7O0HhNE4AUKq/mTVOZdKcSUZ75Vjz/Z2yN056J+iPxgkAoJVLN1pkktHOt2m6v1OOxknvBP3ROAFAqf5m1jiVLDudPlq6xiZL75Rq9129E+SncQIAaOP00bh4vbGxqdZGPKoMvVPbxknvBL3SOAFAqf5m1jiVz8p6nF0q0dp6qc69U6pzK6V3gjw0TgAAHTWkpuXVUoyqY+/UpXHSO0F+GicAKNXfzBqnsqpPHRevx5ljpRhVu96pecx6J+iPxgkAIIP6vHHmWFm6mja9U6bGSe8EeWicAKBUfzNrnMqtPnVsbsf8gVKMqrl3ah5tllX4gPY0TgAAmdXnjfkDUStHam3qnXI0Tk/ 239 z28kIHGicAKNXfzBqncqslMVMpXeOUqu+dUnkbp7I9IygTjRMAQPaPTpWIiGeeiojSZYz9s7tj680b73qFQXACABiQs0vlHVv/y/25Zg8EJwCACbd/Nu5XFxYWcs9xqp+7JTtBE3OcAKBUfzOb48Tg5J3jVM41A6EcNE4AAJOo1f2dMjVOeicQnAAApkWbe+O23CZJ0uLxPrPT8qoXAcEJAIDJyU5t7/s0fyA++HWPqSk9AkwKc5wAoFR/M5vjxKDV398p+xyn+u3aRpxY6CU1nTu5c+crGH8aJwCAiZahd2rbOKXbEwtx+ZbUxJTTOAFAqf5m1jgxHJ17p+bM07xdWe9+AyupicmlcQKAMkmS3P9BFh17py6NU7o9u7QzZ6laazz41j2pCcEJAIAJz06tV9Vrt519/AEyvX5veTXmnpaaEJwAAJjw7JSpcWre/9SRFt+VmphQ5jgBAEyZ5vlOqezZqd3+UhOTS+MEADBlmnqnHhsnqYlponECAJhKm9sxf2BgjZPUxKTTOAEATKX5A4M5znPPRoTUhOAEAMDk+tbX+j3CNxedRQQnAAAm2vyB2NzufY6TK/SYGuY4AQAQEfnnOElNTBONEwAAEWsb2Runl19+WWpi2micAACIiIiL1+PMsRyNEwhOAABMoyypSdeE4AQAgOwkNYHgBABAe2sbcWJBagLBCQCAjqQmEJwAAOjk2u04fkhqAsEJAICOpCZoxX2cAACQmqALjRMAABERcXMrFuekJhCcAABoI81IUhMITgAAdCI1QXvmOAEAUOe5ZyNCagLBCQCA9r656ByA4AQAwF4Xr1cqFVfoQWfmOAEATLGV9Ti7tPO11ATtaZwAAKbV8mqcXYrl1Zdffllqgs40TgAA052dzp10GkBwAgCgI10TCE4AAAD9M8cJAABAcAIAABCcAAAAhmpKJwKa2QUAAOQITiIEAABAZy7VAwAA6MKlegAAAN2CkwgBAADQmUv1AAAABCcAAADBCQAAQHACAAAQnAAAAAQnAIABqyUREZdvtd5ubjtDgOAEAPgUU4nl1Th1pPV2/kAsr0ZEXLvtVAGCEwAwTe5XIyKWVyuVSiyvxrmT3bfHD8XK+k9+8hMnD+iHG+ACAGNic3unRzp3cueRjNnpyf7VWsz6V2OgF/7sAADGwc2t3dSUq3Gq 339 2JrbuOZdADzROAEDprW3EiYUWDVLexin9+uZWLM45qUAuGicAoNw2txtTU8+NU/rI4lysbTivQC4aJwCgxLbuxdzTXRqkvI1Tur10I04fdYKBjDROAEBZ1ZLWqanPxindnj4al244x0BGGicAoMSyN0h5G6d0u7IeZ5ecZqArjRMAMG6paSCNU7o9uxQr6840IDgBAHT02cOIx7fWBRCcAICxUcswlWDu6YiIv3coIuLUkX5/48XrzjrQgTlOAEApZZmz1Cy9R1Nvc6LMdwLa0zgBAOXz1oe9pKaIWJyLaq3HOVHmOwHtaZwAgJKpJTFT6SU1NUgbpLyr8OmdgFY0TgBA2T6eDCI1RcTZpbh0I/cqfGeXYmX9zp07XgegnsYJACiZa7fj+KF+U9MTl2/tLh2R975PAI9pnACAkmmZmmq9/lPvqSOxttHLfZ/MdwLqaJwAgJJpTjJ3H8TBfUM5cufGyXwn4DGNEwBQJverjRnm8q3BpKa1jXyNk3X2gDoaJwCgZIY342htI04s5GicrLMHPKZxAgCKde12p+9+8OshrtNwYiFj77RnTpTeCdA4AQCFSjufzh1OfYbZ3I75A0MZQ/bGSe8EaJwAgOJcu72TWDp0ODe39mSYgaemyNQ7tViFT+8E003jBAAUolqL2ZlMHU4x91Pq3Ds1jyTdXroRp496MWEKaZwAgEI0pKZ2Hc7lW7v7dJ4N1aeOvVPb+z6dPhqXbngxQXACABiCdrev/exhRMT9auvvLhwc7qhOLPTyU7/8tNMzAgQnAIAevf83nb578fqdO3daPP7Uf1bE2Bbnevmpv7zpVYWpYo4TAEyuWhIzlaEsTNfDMLKsYpcqZo5TvXTmUpY5TvXbtz6MFw57l8GU0DgBwESnpnRhunbXwhX0caOS6b5J6dyh+jlOhUlnLmWZ41S/feFwXL7ljQaCEwAw1n/J 133 03z87ypFcvN71nrNJkuykl1NHdtfcK9Le7JQkSZb75MapIznWikjj6+a29yYITgBAmdR/xB+VrXtx5limxilds65+zb2C1WWnTI3Tk3X2VtZbz9FqSE37Z3cKwGrNexPGjjlOADC5bm7F4lyXmyYVIEsCad7z8q04dWQEo62/U1PG7NT1qsJ0mpk7QcE40zgBwOR6kprSAufmVklTU8uGZySpKXZ6pxyNU /34 I+Lug8YDXr4lNcEkSACASXXvYZIkyYWru9uCrX7UOIB221S7x0cly8ibx//j95IkSd75uHGf9HFgPAlOADDRRhhFHj7Knj0iosXjr7w9qtP28OHDnd/ez/ilJhCcAIAxcOOTxo/vaQ0ywtiWt3EaXXba/e39jF9qAsEJABgDI2qcBtnYjEN26jR+qQkEJwCg1F6/NsLslD01dd9/tNkpTT69jV9qAsEJACi15pUh0u2nvy3gly8tLeVITVnmCJU7O7Uev9QEghMAMAY61yOFDaA+P3zyWachjW92ah6/1ASCEwAwBtpNzimgcXr92m4D0y4/5G2cyp2dGscvNcHEcQNcAJhQnz0c2a/eurf79TcXW+/z7a /3/ qTuV0fzvNo9l372BMaE4AQAE6eWlGIYc09HRMxUWn /34 L6IiGee6uXIF6/fuXNnFJ+bKt33ee7ZrHsCY6WSJImz+j+a1QAAIABJREFUAACTZnk1zp1suy3gV+dJQXHmWKZhF/YUeji9qUs34vRR7z6YSBonAJCaBurcyVjb+MY3vpG1+DpzLC7dqFQqOVLT8mqlUomV9dGc3mu3W49HaoKJpnECgMmysh5nl9pGjsu34tSRcY18zfEvfbJlGCcw6TROADBBLt3olJqWV0ubmqrValy6ka9xWl6Ns0sj6J1ubjWO59KNarXq3QeTTeMEAJOgWq3O/ttbcfpol8ixdW9nzYZyWtuIEws5Gqf06+J7p72pyRV6MA00TgAwCWZnZ7unppX1UqemiDixEGsbORqn9JGCeyepCaaSxgkAxt+lG5V/9HeSC1fLvhhdRll6p+YMU0zv9NaH8cJhqQkEJwBg3GRfzvvug527J41/dqp89/kWQXHY2WlzO+YPSE0wnVyqBwDjbGU9zhxrvHSt5XZtY2xSU3S/Zi9JkhaPD/WavftVqQkEJwBgDKVRoUOQqK9iTiyM2bPrmJ3aBsUhZadaEvtnpSYQnACA8ZHeWDZjkHgSJ8ZR++zUKSgOPDvVkpipSE0gOAEA4+ODX+9+iM8YJPpcE+LugxJmp+5BcYDZaaYSK+tSEwhOAMCYuHg9vvz5fJeunTu501BlV61FRFy+FRGxvBoH9+0eP2InkBSZplplpy5BceDZ6eyS1ATTLgEARu5RbXfb/PjqR0mSJBeudtqmmh9vPmZnVz7Ievx0VIXZexIiossJSbevvO3NBQyExgkASuB//48REf/L2m7Vk0ofufpRL8d87tmIiJlK1v3f+jAi4p3bWfdPR3W/Wlzv1IPPHhY6SGByCU4AUAJb93a/vrk1mGN+czHrnulvzB6Z6l28XuiJev5LvQ3yzp07Ofbf3P7BD37gXQnsoXQDgFJILyrLeylau/2zX6H30/d7OX67a/kKu2av3aWJ/Q/vF7/KsXNEj/8B48b/twBQGvUZprdgkHdKz+vX8h2/NNmpl2CZ5eQ8nkkVEcmP3xOcAMEJAErp09/ufnDPGwze+Tj773nzzTf7arTabfOuRdGnwQbL5uAqOAGCEwCMgSyRIP24X0zwKFV2yrLYYLvg9/DR7nHSAe9di+/hw4eCEyA4AcD4+OSzJEl22qQ0I6Urht/4pDEA5MlL/c6hGrvslD345brcUXACwQkAmEz9zKEaxmIMhWSnGNJ9nwQnEJwAgIlNTc1BIo0fabuVzrPau9pe3obqpZdeKlfvlCX49XC3XMEJBCcAYFJT0+4jnedHPV6pImvwaD5+abJT9+DXQ2oSnEBwAgAmOTWlQSL7DYteebv3OVElyU6dg19vqUlwgmlSSZLEXYABYMKtrMfZpVhejXMnd7a9qT9C5 239 /rUkZipFPM21jTix0HJIle8+n1y42nqo6cnpTaXX5+UDGIwbwQkAhmxzO+YPjHIAF6/HmWN7osL9auyfzX2ca7fj+KGM2akxqBSWnS7filNHugS5QaUmwQmmyYxTAABDT03Lq+fPnx/NAK7dbkxNm9u9pKaIOH4oNrczNk5Jkux5ZKYStUKiwqkjcfF6iyBXqQw+NQHTROMEAENPTb1fGtenuw/i4L49USG9mG1QTyp741Rw75SlcRpIatI4geAEAAwwYPz8v/+dr3zlK4UOIE0p9VHh0o04fXQAR966F3NP55jjVILs1BjkBtU1CU4wNVyqBwDD8ca7u1+fOlJ0aoqI9/+m8ZGTC4M58tzTu9u8/vJmQU+/8/DOHPMOBQQnABipze3GR776X4xgGP/+rxsfOfS5QR7/frWXn/rlpxFRxHyn/3q+9ePPPBURPc7yAgQnAGBgqalhCtDmdkEXp9W7udW4/vhbHw5yGM3Hz7IYQ5FrRSzOtViswmoQgOAEAGVMTcurI1iLvJY0xIZYXo0XDg /3+ J1X1Ss+O61tNAY5qQkQnACgpKlpJOvpzbRqe25uDev4b32Yu3HqOTtlfxZ774SbJInUBAhOAFDW1HTt9ggG0yrJxOLcwI5ff6OklfV44XDcr+ZunHrLTotzcelGpj33LidYrVa9SQHBCQBKmZqWV+P4oRGM54XDLQaTMW9kebL1d9RNa5z9sw3ZKVPj1EN2unwrTh/tHoTqo+OlG3H66Oys1SCAvriPEwAMLTWdO7lzC9qCDXsw9ces1mL28b/D3q/G/tku93HqfN+n7L894ysyqFtXtf0k5T5OMC00TgAwtNS0vDqC1HRza7iDaZjdNFv3WaKud8rROJ07GcurL7/8cqbe6fKtdP/z58+PPjUBUyUBAHqzcTdJkuTC1U7bT387goF1HtKjWu9H/un7jUdrdu9h1pE0HyfL2Nr93oZX5MfvFXGqI3r8Dxg3/r8FgKFFlA4f8YfnxifDyk5pCMzy1O49nJ+fz5GaLlyNiExjS+PQhatLS0udXpFiUpPgBIITANDJxt3dD/qdt2mMmZg4V3+EX/xqMCOpH0+W7NRh/OkPFpaaBCcQnACADqmpiIjSs+ar6Vptl5aWcvVO29vbe47wytvdfya9Zi9v49Q5O9Xv3yE7CU6A4AQAo09NzR/0221fvzaCQRbTOGWRPTs1H785Aj2+Tq9Mn6QEJxCcAIA2qSlfRHn4qNBBZpnjVB/8snhUa5yzVL8CxCCyU+sgWl/uXfmgcX/BCRCcAKDUqSl74zSSeiT7kLLMU2o+ct5JRFmyU7uRp9cEjvyUCk4w9dzHCQCyeePdCXxSP7vdy0+dXMi3//7ZiIhnnurld 332 sOT3denxP2DcCE4A0M3mduMji3OvvvpqfPvrERHnTkZEvHi40xFqxX5QXpzLuucvP+2+z90HjY/MH+hlVGeOeSsBY0zpBgDZr9BLkvZzlj75bIyu1otcc5zq 93/ n495H1f6avch16eOFq//8n/9z702gSIITAGQLIVkW4E5DRfMH/SLvLJQ8Xo9uUHOcmucg9aNddsqW90YWRAHBySkAgO4f9LMnn5IsZvDpbztnj4jYueNTZ2myyttQddZc4uVvnLa3t703gSJVEtMTAaCz+9Wd5Q0yWl6Ncycbtj948H//s3/2zwod9s2tWJxrOZideVm5nk5qbSNOLAxgbJvbMX+gxXjajbaf8QMMguAEAENQkg/6W/di7ukWg7l8q/rfHp6dnc3+RCrffT65cHWQT2TvqHaPnyU1ffDr+PLnvcsAwQkAxllznZIGg427Pa5H149aEjOVnabo8q04dSRH6rh2O44f2hP87j6Ig/sGMKq0xOutcVpZj7NL3mVAwSxHDgCDNn8gVtYbPu4nSTKC1BQRM5WI2Lm+7tSRiMjR1TxJTcurlUolllcHk5oiGlPTk+NnaZykJmAUNE4AMBztLkUb06cwWPXzry5e373Fk9lNgOAEAFMkvUCu+eN+GhjGQnpFX33w++n7O53VwFPZ/eo3/puTb//ZD6UmQHACgCmTTivSOLWUtkzpkevDpNQECE4AMHXaLX4wdoMfbONUrcXsTNtEtDdwNl7LByA4AcAEZ6fdxmlQt0IaquZ1zIeXytrdJittotKUBTBq/iQCgKHZ3N6zql769YmFqJX+Xy2b7v60s+rdQLz14Z5r8NrdXDi9fk9qAgQnAJhwdeuS71luO10ivMwu32qxnHp659n+vXDYzCVAcAIA6vze/FgO++ZW68f/+tN+j7y57U0BCE4AwF5f+1utH79fHcun887tfo/w5gfeFMA4sjgEAAzZ5Vu7i9GNxSVqdx/EwX1tb+B77XYcP9TjkTe3Y/7AniOnq1AAlJ7GCQCG7NSRxjlO507Gynp5B9yUmvYsbnH8UNx90Mtha0ljalpelZqAcaFxAoAhqyW7q0HUx4a0fimhdB3wdo1T+kj9k8p+EtzTFhhbGicAGPZftpVY22hsnJZXS5qaIppT057G6cnCgNmnabVLTWsb3h2A4AQAPHZioTF4pNtyurnVPNQWwW//bKbVye9XW6em9JZWAIITAPDEyy+/3CI8tFv1e7SyNE7p9sufj8u3Oh3qg1/H/tnWqSm93g9AcAIAnvirv/qrFuFhca6MY71fzdQ4pdtTR3aqs7c+jIiddSNubn3ve9+Li9fjy59vm5rWNsbgRsAAj1kcAgCKUK1WZ/ +36 3F2aTwWSGg3yHYpqLf9AcaHxgkAijA7O9s6NZVzgYTsjVObbff9AcaKxgkAitLqxrK9LO09kqGmBtU4ue8tMG40TgBMnGqtpAM7uC8uXm8RJEo41adpqINsnC5el5qAsaNxAmCyXLoRp4/G/Wrsny3pCJuDRDrmkg+13eB7a5wAxo3GCYCJS03pLYbKqdZqUe806ZXQkBongDGkcQJg4lLTuZPx1ofxwuGSjjMd2xjFicE2TgDjSeMEwPhL76P6y093H/n7f7u8o/2v/taYnd7nni3XcQBGYbZSmcZ7z+nZACbKX95snCNU5jurtlsXYXM75g+UccDfXCzXcQBGYSaZSl54gMlRf4XeuFwMdnOrxeVt5UxNaQqtJd/5znf6muNU8jQL0I05TgBMVmoq4T2RWhrThRNW1lvfxrfdE0n3B5iA4DSdT1tcBJjM1FTaq90yZqebW7E4V/Zhr23EiYWu2Wnhf/5HG//XtTF4OgAZg5MIAcCEpKbS3g2ppTTjjfWic9dux/FDcfF6nDm2e2fbM8d2HgcQnACgdKlpHJe6bnfZGwCCEwAMKzXdfRAH943Zc2l+FumFcACUjPs4ATARqWl5dfxS0/1qi2dxYmHntlQACE4AkFe1Wu2UmtKVFcbL/tm4dKPFc7FsN0D5uFQPgLHSeTG3ai1mZ8b+GY3XKhcA00HjBMA4uHSj8YaqLbezM2N2nVstafEsTh+Nas1rDiA4AUC+1BSnjyZJ0v2mq+l1bver4/P3cCXWNlonQAAEJwDI6q0P03lNmRqndLt/Nm5uVatjEp9a3kx2Zd0rD1Aq5jgBUGLp2tz1dzfKmJ2e7F9LxmOtBXdzAig3jRMA45CacjVO9fvPVMZgtb0Pft08/u9973veAgCCEwB0c/WjwRzn8q2IiLc+LO8z/dLB5sf+1b/6V27oBCA4AUB7axuDP+Y7tyNiZ+5Q2VaPaLcUxF9/6r0AUBLmOAFQvtTUcr2EVN45Tu2+e/F6nDlWovs+bd2LuafNcQIoLY0TAOOQmnqe49RunzPHdlb9vnQjIkZ/Udzc03HxeovxA1AOGicAxiA1Db5xKucqfM3jSc8JAKOmcQJgHFLTwBunDqvwDWOGVRbVWovxSE0AJZEAwMitfpQkSXLhaqdtqvM+g 93/ nY+LPg8/fb/1eAAYNcEJgFFL80m3bBMROVLQYPf/xa+KOxvN40nTFACCEwDTa+Nup6zy6W+TJEk++aw5V3TfDmP/dLTFZKf6rx8+8k4BEJwAkJoeb9Nr9tp5VEuSJLnyQZYsNNyGqj7LDdbj/q1xPAAITgBMr/pskOai7DrPjGo+/jAaqnsPh3VO6r9+/Zp3CoDgBMD0efhot1F55e1+j9aqgypuTlSaagZ7NV3zeNKrFgEYEfdxAmCkVtbj7NIAjpPef+nSjTh9tND7PtU/kv72/u8Etbkd8wdaHB+A0XEfJwBGZ+veYFJTxE5WOX10525IF68XdN+n+sfTzDZTibc+7Ou5zB+IlfUWxwdgdDROAEy0tNEqpnFq3qZ39e1H/dHqmygAiqVxAmCinV2KrXsFNU7N2xMLO03Rtdu/+c1vcgz7frXF8aUmAMEJAIZl7umIiH96IiJicW40Y7jy4YEDB+LSjYiIaq37/vtnX3rppZaByusJIDgBwPD+xqtERJw6EhHxDxZHM4ZffhoR8cP/EBGxud153z//8z9v8ej/t+WVBBgJc5wAmGLXbsfxQyNbhS+df7V1b6cTa6ndcQAolsYJgCl2/FBEpKs4LCwsFL0KX7pqxdzTsbIe0eoyvLWNFkcDYCTcygoAOt9Lt/X28Z1qB7l/8710m/dJRwhAsQQnANjrUS1JkuTH73XOORGRIzXl3f/H7 735 5ps7I2n+bn2yAqAQ5jgBQBvVWszOxMXrceZYQfd9at6/828HoCjmOAFAG7MzERFnjsX9apw7GRevD/2+T 837 t0xNF697cQAKpnECgMzSFfDS1fBSRa7CV7+9+yAO7vOCABRG4wQAmaXrhp9dis3t 733 ve0Wvwle/lZoAiqVxAoA+bG7H/IERNE5mOgEUS+MEAH2YPxARce5k3NwqtHE6dzI2t51+gMJonABgoK7djuOHNE4AE0bjBAADdfxQRMS5k7G2MfRV+AAoisYJAIamlsRMJd76MF44vPPIYBuntN0CYPg0TgAwvL9mKxERLxyOau0nP/lJXLox4MZJagIoyqxTAADD//t25h/+w3+48/WLhwd55HRZPwCGTOMEAMVKa6IzxyIinnmq36O9/zfOKEABzHECgJFqdyeoVJbr+qq1mPUvoQDD5c9ZABipJ3eC+uDXPa7CJzUBDJ/GCQBKpn6tvCzZ6eL1nQv/ABCcAGCq/OxnP/v6w78VJxYyZaetezH3tJMGIDgBwFRK7wR1+VacOpLpvk8ACE4AML3SFSDSq/JaZafqn3xjdtZdRgAEJwAgIu4+iIP7YmU9zi5pnAAEJwCgo/p1zN0GF0BwAgA6uV+N/S7SAxCcAAAARsot8wAAAAQnAAAAwQkAAEBwAgAAEJwAAAAEJwAAAMEJAABAcAIAABCcAAAAEJwAAAAEJwAAAMEJAABAcAIAABCcAAAABCcAAADBCQAAQHACAABAcAIAABCcAAAABCcAAADBCQAAQHACAAAQnAAAAAQnAAAAwQkAAADBCQAAQHACAAAYWHA6f/58JbPz5887dwAAwJSoJEniLAAAAHTgUj0AAADBCQAAQHACmHDXbjsHACA4AdDe2kYcPxQr684EAAhOALRy7XacWIjl1Ti7VLrsVEsiIm5u7W4BQHACYATJ5PihWF6NcydLlJ3SvHTxesxUYnk1FueebCuVSiyvRkS89aFXDwDBCYBi/oSu7KamkmSna7d3RnXmWOPYzp1MkmTn6xcO7ySozW0vIwCCEwCF++zhaALJ3QcREVdyVklvvLv7swAgOAEwYFv3ugeSIv3Fz/r92Zr7rQMgOAEwWHNPN18L17C9cuVKQYPpNpJ0uzPHqd0+MxXVEwDjq5Ik/gkQoHyyZJUypabd8XTe5+ZWLM55eQEYOxongPJZ28jR8AzNnTt3cqSmro1Tul2ci7UNrzAAY0fjBFAytaTFenpdG57hGWzjlG4v3YjTR73UAIwRjRNA2f5grvTS8Azc5VuZGqS8jVO6PX00Ll6/c+eOVxuAsZEAUCqvvJ0kSXLhavdtqvmR/n3yWevj5x1Plv0BYBwITgBlsnE3e/aIiCGmkXbHzzuezvunKREABCcA8iaWrNt2+w9qDJ3H8/q1JEmSn76fdf9245SdABCcAMju1q1bA2t4+vE4C7U+fppzHj5q/Kl3Pl5aWupx/LITAIITAPkMak5Rb+497HT8dz4e1vhlJwAEJwC6e/ho8HOK+ktujcevXzGis2zrWzQeX3YCQHACIG9uSZK9M4h6W8UurysftD7+o1q+4/z4vaxjk50AEJwAyOqVt3cbmDQv1UtXYuhtFbtek9vu8bN3TXmyU6c5VABQMpUkSdzMCmDEPvh1fPnzLb7ee0faOHVkz51kU1nuOZtd80+99WG8cLjH57W2EScWuoyq+fGV9Ti75E0BQKnMOAUAo/f//HL365apKSJOHen9+Gsbvf/s3//bvf/siYVefuqzhxER96veFwAITgDU2bqXdc/nv9TL8a9+1MdfFJV+n11vY7543fsCAMEJgMfe+jC9Su0HP/hB951PLMTaRrp/pVLJdJ3e4 +35 8+e7HPzmVv3 +3/ jGNwbzBOvGXL/tMv6zS7Gy7t0BQEmY4wRQAtdux/FDOfZP5w6lsmenLHqbGZV9zHnnaA1pvlMlZ43m70qAqadxAiiBXKkpdjqcvI3Tzv4dPO6+4tzJwV8p19Q7ZRq/3gmActA4AYy5vI1T5zZpeI1Tqr53yj7+gfdOGicActI4AYyzVnOHujRO6SMtXb61u3/29Spy6W2O1tmlWFm/c+eOFxyAUdE4AYx/dupwr6TOc4qaDbtxqh9z828c1N2ouv/tp3ECIB+NE8CYO7HQsBpepsapZe9U3zgNe8y9zdEy3wmAEdE4AUyEze2YP5C7cWrOSOkjl2/1db/dXPI2TgOZ76RxAiAnjRPARJg/EJvbuRunht7pSeNUWGrqYY6WdfYAGAWNE8AE6dw7pbJ8N+99pfrMTj3M0eqzd9I4AZCTxglggnTsnbrMKYq6xqmw1BQt7u+Uafxnl7rck6rZ/ao3CAA90zgBTJx2vVMqS7dzcysW5wodc5beqd34s0j3vF+N/bMRGicActM4AUycNr1TjlXsCk5Nkal36jRHq5Z0T03LqzupCQDy0zgBTKjm3qkhRZSqcUp17p06j//ugzi4r1NqOncyaknMVCI0TgDkpnECmFDzB3r/2du/Gc2Yn9wVtwd/8bOIxxOZmqczPfdsROykJgAQnADY41tf6+Wn3rk9yjE//6Xef/Z/fXt3W++bi94LAAhOALRRN98pxxyncydjefX8+fOjGXOb+U55x7+7/5Mr9ACgV+Y4AUyBdL5TKnv2GK3m+U69jb9lajLHCYCcNE4AU2D+QGxu99jYjEpT75R3/C+//LKuCYBB0TgBTJm8jc1o26f63qm38bf+20/jBEA+GieAadLq/k6Z7ps0KnW9U77GqSbqADBIGieA6ctODfd3yn7fpFFJe6fm8XRITZ2v0NM4AZCTxglgytSts5ejcRp573TpRtbGybwmAIZA4wQwlbL0TqmyrbY3kNSkcQIgJ40TwFTK0Du1bXhG5LXXXtM1ATAqGieAKda5d0qV7S5PA0lNGicActI4AUyxjr1TlzlF45uaACA/jRPA1GvXO3XOKqPqnZrHcL8a+2dz/u2ncQIgH40TwNRr0ztlWsWuQL/5zW8Gk5oAID+NEwAR0ap3SmW/41MxBpKaNE4A5KRxAiAiIuYP9P6zW/eKHu0zT0WErgkAwQmAUfjW13r5qZ/cKHqcZ455rQAQnAAYkbr5TpnmOKXbs0uxsn7nzp0hDqx+PP3Pa0qSfP8BMPXMcQKgSTrf6XFiyZSdhjrTqf74VoMAYBQ0TgA0mT8Qm9s5GqcnDdXK+rBSU3p8qQmAEdE4AZTP3QdxcF9s3Yu5p3e+HqG8jdPKepxdGthvf+vDeOHwyO4ZBQCPaZwASmZ5NQ7ui+XVmHt69+uIuHZ7BINpdX+nTo3T4/lOAxvAC4fj0o04dzI2t701ABCcAKbexetdLo07fmgnQRUZIdrcG7flNkmS+rUiBjaG00dj615fq6UDgOAEMN5qSUTE8mqcObYbPDpv5w8MZSpR39lpT/AbbHaae9o7BQDBCWBa3a/GTKV18Oi6/Pfy6je+8Y24+6A82akx+PWcnWom3wIgOAGQ+uDXsX+2U/Dotn377bfj4L6C5j5lyE4tgt/ZpZ3LC7NbWY+ZincHAIITABHXbseXP989eGQJKscPxaUbZchOnYJf9tTUQ9YCgAIkABRs426SJMmFq43bVPPj7bb1+7/y9ogHf+FqRHQZ8KNapyNn3xMACic4ARTr3sPeg0eW/Use/D79bePRHj6SmgAQnABokqVByts4lSA7ZQ1+qx8lSZLc+OTVV19N3vlYagJAcAIgc2oaVONUWHZK889gg5/UBEBZWRwCoChFrrJdwE1yTywM8mjPPRsR1tMDoLQEJ4CivP83xf2uN94t6Bc9/6XBHOebi94gAJSa0g2gDNfp7e5z5YMkSZIbn/RyqdtIr9mLni81dIUeAKUnOAGUIzWlyy0062f574KzU 5an2 TywdFU9ABCcAGixlEL2RRHS7/bWOBV2f6fVj/I2TvPz8zuLswNA6VWSJHG9IkARllfj3MkW2+xW1uPs0pOfrXz3+eTC1dbHrN+mPzXyp9nPEweAUROcAMYkNaUu3YjTR/f8bJaIUlh2unwrTh3JNKT71dg/ 630 BgOAEwGM3t2JxrkV4qCW9LMC9thEnFnI0To+z050/WvjiF7849Ce7txaTmgAQnADIrDk8VGsx2+s9IdIk1u7II780TmoCYOK4jxPA8K2sN4aHze3eU1NELM7F5nalUsmRmpZXK5VKrKwP/cnWEqkJgMmjcQIoxPBmHOVtnApon6QmACaOxgmg2NS0vDrI1LS5na9xevLIUElNAEwcjRNA3+pnHDW7+yAO7hvAmhAdstP8gdyN01B7J6kJgImjcQLoz9pGLM51mjvUkJqu3R5kaoqI+QMZe6cWc6KG4fItqQmAyaNxAugvNZ1Y6DJzqXkt8mHI0julhrraXnO9JjUBMBE0TgC9qtZ2U1M6c6llh1NAaopMvVPbVfgGSGoCQHACYI/1j1s/vrk9mvHMH+j9Zwc+5meeigipCQDBCWDqXf2o9eNvvDvKUX3ra 738 1MDHfOaYNwgAk6QynU/bzC4YM9VazM7E1r2Ye7osQ2qeudRu7lD9nukUoGFrN98plWXMPVherXz3+eTCVVfoATCRZpKp5IWHcbKyHrMzsbwac0/vTMi5d

Ngày đăng: 01/11/2014, 20:00

TỪ KHÓA LIÊN QUAN

w