1. Trang chủ
  2. » Giáo án - Bài giảng

Bộ đề ôn đại học 2011

120 218 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 120
Dung lượng 2,31 MB

Nội dung

http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 2 Sở GD & ĐT Tiền Giang ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN Trường THPT Gò Công Đông Môn: Toán - Thời gian: 180 phút ĐỀ 1 I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm) Cho hàm số y = 2 3 2 x x   có đồ thị là (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trên. 2) Tìm trên (C) những điểm M sao cho tiếp tuyến tại M của (C) cắt 2 tiệm cận của (C) tại A, B sao cho AB ngắn nhất. Câu II (2 điểm) 1) Giải phương trình: 2 3 4 2 3 4 sin sin sin sin cos cos cos cos x x x x x x x x        2) Giải phương trình:   2 2 2 1 5 2 4; x x x x R      Câu III (1 điểm) Tính tích phân: 2 1 ln ln 1 ln e x I x dx x x           Câu IV (1 điểm) Một hình nón đỉnh S , có tâm đường tròn đáy là . O , A B là hai điểm trên đường tròn đáy sao cho khoảng cách từ O đến đường thẳng AB bằng a ,   0 60 ASO SAB   . Tính theo a chiều cao và diện tích xung quanh của hình nón Câu V (1 điểm) Cho hai số dương , x y thỏa mãn: 5 x y   . Tìm giá trị nhỏ nhất của biểu thức: 4 2 4 x y x y P xy     II. PHẦN RIÊNG : Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2) 1. Theo chương trình chuẩn. Câu VI (2 điểm) 1) Trong mặt phẳng tọa độ Oxy cho đường thẳng ( ) d có phương trình : 0 x y   và điểm (2;1) M . Tìm phương trình đường thẳng  cắt trục hoành tại A cắt đường thẳng ( ) d tại B sao cho tam giác AMB vuông cân tại M 2) Trong không gian tọa độ Oxyz , lập phương trình mặt phẳng    đi qua hai điểm   0; 1;2 , A    1;0;3 B và tiếp xúc với mặt cầu   S có phương trình: 2 2 2 ( 1) ( 2) ( 1) 2 x y z       Câu VII (1 điểm) Cho số phức z là một nghiệm của phương trình: 2 1 0 z z    . Rút gọn biểu thức 2 2 2 2 2 3 4 2 3 4 1 1 1 1 P z z z z z z z z                                 2. Theo chương trình nâng cao. Câu VI (2 điểm) 1) Trong mặt phẳng tọa độ Oxy cho đường tròn   C có phương trình   2 2 : 4 25 x y    và điểm (1; 1) M  . Tìm phương trình đường thẳng  đi qua điểm M và cắt đường tròn   C tại 2 điểm , A B sao cho 3 MA MB  2) Trong không gian tọa độ Oxyz cho mặt phẳng   P có phương trình: 1 0 x y    . Lập phương trình mặt cầu   S đi qua ba điểm       2;1; 1 , 0;2; 2 , 1;3;0 A B C  và tiếp xúc với mặt phẳng   P BỘ ĐỀ LUYỆN THI CẤP TỐC MÔN TOÁN 2011 www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 3 Câu VII (1 điểm) Giải bất phương trình:     2 1 2 2 2 1 2 3 log 1 log 1 6 2 log 1 2 log ( 1) x x x x               ĐÁP ÁN ĐỀ 1 1) y= 2 3 2 x x   (C) D= R\ {2} lim 2 : 2 x y TCN y     2 2 lim ; lim x x y y          TCĐ x = 2 y’ = 2 1 0; 2 ( 2) x x      BBT 2) Gọi M(x o ; 0 0 2 3 2 x x   ) (C) . Phương trình tiếp tuyến tại M: () y = 2 0 0 2 2 0 0 2 6 6 ( 2) ( 2) x x x x x       ( )  TCĐ = A (2; 0 0 2 2 2 x x   ) ( )  TCN = B (2x 0 –2; 2) 0 0 2 (2 4; ) 2 AB x x       AB = 2 0 2 0 4 4( 2) 2 2 ( 2) cauchy x x      AB min = 2 2  0 3 (3;3) 1 (1;1) o x M x M        II 1. 2 3 4 2 3 4 sin sin sin sin cos cos cos cos x x x x x x x x        1,0 TXĐ: D =R 2 3 4 2 3 4 sin sin sin sin cos cos cos cos x x x x x x x x          sin 0 (sin ). 2 2(sin ) sin . 0 2 2(sin ) sin . 0 x cosx x cosx x cosx x cosx x cosx x cosx                 0,25 + Với sin 0 ( ) 4 x cosx x k k Z         0,25 + Với 2 2(sin ) sin . 0 x cosx x cosx     , đặt t = sin (t 2; 2 ) x cosx        được pt : t 2 + 4t +3 = 0 1 3( ) t t loai         0.25 -2 -1 1 2 3 4 5 -3 -2 -1 1 2 3 4 5 x y www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 4 t = -1 2 ( ) 2 2 x m m Z x m                Vậy : ( ) 4 2 ( ) 2 2 x k k Z x m m Z x m                       0,25 Câu II.2 (1,0 đ)   2 2 2 1 5 2 4; x x x x R      Đặt 2 2 4 2 2 4 2( 2 ) t x x t x x      ta được phương trình 2 2 1 5 2 8 0 2 t t t t        4 2 t t        + Với t =  4 Ta có 2 4 2 4 2 0 0 2 4 4 2( 2 ) 16 2 8 0 x x x x x x x x                   2 0 2 2 x x x          + Với t = 2 ta có 2 4 2 4 2 0 0 2 4 2 2( 2 ) 4 2 2 0 x x x x x x x x                  2 0 3 1 3 1 x x x             ĐS: phương trình có 2 nghiệm 2, 3 1 x x     0,25 0,25 0,25 0,25 III 2 1 ln ln 1 ln e x I x dx x x           I 1 = 1 ln 1 ln e x dx x x   , Đặt t = 1 ln x  ,… Tính được I 1 = 4 2 2 3 3  0.5   2 2 1 ln e I x dx   , lấy tích phân từng phần 2 lần được I 2 = e – 2 I = I 1 + I 2 = 2 2 2 3 3 e   0.25 0.25 www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 5 Câu IV (1,0 đ) Gọi I là trung điểm của AB , nên OI a  Đặt OA R   0 60 SAB SAB    đều  1 1 1 2 2 2 3 sin OA R IA AB SA ASO     Tam giác OIA vuông tại I nên 2 2 2 OA IA IO   2 2 2 6 3 2 R a R a R     2 SA a   Chiếu cao: 2 2 a SO  Diện tích xung quanh: 2 6 2 3 2 xq a S Rl a a       0,25 0,25 0,25 0,25 Câu V (1,0 đ) Cho hai số dương , x y thỏa mãn: 5 x y   . 4 2 4 1 4 1 4 2 4 4 2 2 x y x y x y y x y P xy y x y x              Thay 5 y x   được: 4 1 5 4 1 5 4 1 5 3 2 . 2 . 4 2 2 4 2 4 2 2 y x x y y P x x y x y x y x                P bằng 3 2 khi 1; 4 x y   Vậy Min P = 3 2 Lưu ý: Có thể thay 5 y x   sau đó tìm giá trị bé nhất của hàm số 3 5 3 5 ( ) (5 ) 4 x x g x x x      0,25 0,50 0,25 Câu AVI.1 (1,0 đ) A nằm trên Ox nên   ;0 A a , B nằm trên đường thẳng 0 x y   nên ( ; ) B b b , (2;1) M ( 2; 1), ( 2; 1) MA a MB b b          Tam giác ABM vuông cân tại M nên: 2 2 2 ( 2)( 2) ( 1) 0 . 0 ( 2) 1 ( 2) ( 1) a b b MA MB MA MB a b b                           , do 2 b  không thỏa mãn vậy 2 2 2 2 2 2 1 2 , 2 1 2 , 2 2 2 1 ( 2) 1 ( 2) ( 1) 1 ( 2) ( 1) 2 b a b b a b b b b a b b b b b                                          2 2 2 2 1 2 , 2 1 2 1 4 ( 2) ( 1) . 1 0 ( 2) 3 a b a b b b a b b b b                                                0,25 0,25 S O A B I www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 6 Với: 2 1 a b      đường thẳng  qua AB có phương trình 2 0 x y    Với 4 3 a b      đường thẳng  qua AB có phương trình 3 12 0 x y    0,25 0,25 ĐỀ 2 I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm) Cho hàm số 3 2 2 3(2 1) 6 ( 1) 1 y x m x m m x       có đồ thị (C m ). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 0. 2. Tìm m để hàm số đồng biến trên khoảng   ;2 Câu II (2 điểm) a) Giải phương trình: 1)12cos2(3cos2   xx b) Giải phương trình : 3 2 3 512)13( 22  xxxx Câu III (1 điểm) Tính tích phân    2ln3 0 23 )2( x e dx I Câu IV (1 điểm) Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A’ lên măt phẳng (ABC) trùng với tâm O của tam giác ABC. Tính thể tích khối lăng trụ ABC.A’B’C’ biết khoảng cách giữa AA’ và BC là a 3 4 Câu V (1 điểm) Cho x,y,z thoả mãn là các số thực: 1 22  yxyx .Tìm giá trị lớn nhất ,nhỏ nhất của biểu thức 1 1 22 44    yx yx P II. PHẦN RIÊNG : Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2) Dành cho thí sinh thi theo chương trình chuẩn Câu VIa (2 điểm) a) Cho hình tam giác ABC có diện tích bằng 2. Biết A(1;0), B(0;2) và trung điểm I của AC nằm trên đường thẳng y = x. Tìm toạ độ đỉnh C. b) Trong không gian Oxyz, cho các điểm A(1;0;0); B(0;2;0); C(0;0;-2) tìm tọa độ điểm O’ đối xứng với O qua (ABC). Câu VIIa(1 điểm) Giải phương trình: 10)2)(3)(( 2  zzzz ,  z C. Dành cho thí sinh thi theo chương trình nâng cao Câu VIb (2 điểm) a. Trong mp(Oxy) cho 4 điểm A(1;0),B(-2;4),C(-1;4),D(3;5). Tìm toạ độ điểm M thuộc đường thẳng ( ) :3 5 0 x y     sao cho hai tam giác MAB, MCD có diện tích bằng nhau b.Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng: 2 5 1 1 3 4 : 1        zyx d 1 3 3 1 2 : 2 zyx d     Viết phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng d 1 và d 2 Câu VIIb (1 điểm) Giải bất phương trình: 2log9)2log3( 22  xxx www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 7 ĐÁP ÁN ĐỀ 2 Câu I a) Đồ thị Học sinh tự làm 0,25 3 2 2 3(2 1) 6 ( 1) 1 y x m x m m x       )1(6)12(66' 2  mmxmxy y’ có 01)(4)12( 22  mmm 0,5       1 0' mx mx y Hàm số đồng biến trên   ;2  0'  y 2   x  21   m  1  m 0,25 b) 0,25 Câu II a) Giải phương trình: 1)12cos2(3cos2   xx 1 đi ểm PT  1)1cos4(3cos2 2 xx  1)sin43(3cos2 2  xx 0,25 Nhận xét Zkkx   ,  không là nghiệm của phương trình đã cho nên ta có: 1)sin43(3cos2 2  xx  xxxx sin)sin4sin3(3cos2 3   xxx sin3sin3cos2   xx sin6sin  0,25         26 26 mxx mxx          7 2 7 5 2   m x m x ; Zm  0,25 Xét khi  5 2  m  k  2m=5k  m t5  , Zt  Xét khi 7 2 7   m  =  k  1+2m=7k  k=2(m-3k)+1 hay k=2l+1& m=7l+3, Zl  Vậy phương trình có nghiệm: 5 2  m x  ( tm 5  ); 7 2 7   m x  ( 37   lm ) trong đó Zltm  ,, 0,25 Giải phương trình : 3 2 3 512)13( 22  xxxx 1 đi ểm PT  631012)13(2 22  xxxx 232)12(412)13(2 222  xxxxx . Đặt )0(12 2  txt Pt trở thành 0232)13(24 22  xxtxt Ta có: 222 )3()232(4)13('  xxxx 0,25 b) Pt trở thành 0232)13(24 22  xxtxt Ta có: 222 )3()232(4)13('  xxxx 0,25 www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 8 Từ đó ta có phương trình có nghiệm : 2 2 ; 2 12     x t x t Thay vào cách đăt giải ra ta được phương trình có các nghiệm:          7 602 ; 2 61 x 0,5 Tính tích phân    2ln3 0 2 3 )2( x e dx I 1 đi ểm Ta c ó    2ln3 0 2 33 3 )2( xx x ee dxe I = Đặt u= 3 x e  dxedu x 3 3  ; 22ln3;10       uxux 0,25 Ta được:    2 1 2 )2( 3 uu du I =3 du u uu              2 1 2 )2(2 1 )2(4 1 4 1 0,25 =3 2 1 )2(2 1 2ln 4 1 ln 4 1           u uu 0,25 Câu III 8 1 ) 2 3 ln( 4 3  Vậy I 8 1 ) 2 3 ln( 4 3  0,25 Câu IV 0,5 A B C C’ B’ A’ H O M www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 9 Gọi M là trung điểm BC ta thấy:      BCOA BCAM ' )'( AMABC   Kẻ ,'AAMH  (do A  nhọn nên H thuộc trong đoạn AA’.) Do BCHM AMAHM AMABC       )'( )'( .Vậy HM là đọan vông góc chung của AA’và BC, do đó 4 3 )BC,A'( aHMAd  . Xét 2 tam giác đồng dạng AA’O và AMH, ta có: AH HM AO OA  '  suy ra 3 a a3 4 4 3a 3 3a AH HM.AO O'A  Thể tích khối lăng trụ: 12 3a a 2 3a 3 a 2 1 BC.AM.O'A 2 1 S.O'AV 3 ABC  0,5 1.Cho a, b, c là các số thực dương thoả mãn 3    cba .Chứng minh rằng: 134)(3 222  abccba 1 đi ểm Đặt 2 ;134)(3),,( 222 cb tabccbacbaf   *Trước hết ta chưng minh: ),,(),,( ttafcbaf  :Thật vậy Do vai trò của a,b,c như nhau nên ta có thể giả thiết cba   33      cbaa hay a 1    ),,(),,( ttafcbaf 134)(3134)(3 2222222  atttaabccba = )(4)2(3 2222 tbcatcb  =                 22 22 4 )( 4 4 )(2 3 cb bca cb cb = 2 2 )( 2 )(3 cba cb   = 0 2 ))(23( 2   cba do a 1  0,5 *Bây giờ ta chỉ cần chứng minh: 0),,(  ttaf với a+2t=3 Ta có 134)(3),,( 2222  atttattaf = 13)23(4))23((3 2222  ttttt = 0)47()1(2 2  tt do 2t=b+c < 3 Dấu “=” xảy ra 10&1         cbacbt (ĐPCM) 0,5 Câu V 2. Cho x,y,z thoả mãn là các số thực: 1 22  yxyx .Tìm giá trị lớn nhất ,nhỏ nhất của biểu thức www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 10 1 1 22 44    yx yx P Từ giả thiết suy ra: xyxyyx xyxyxyyxyx 33)(1 21 2 22   Từ đó ta có 1 3 1  xy . 0,25 M¨t kh¸c xyyxyxyx  11 2222 nªn 12 2244  xyyxyx .®¨t t=xy Vëy bµi to¸n trë thµnh t×m GTLN,GTNN cña 1 3 1 ; 2 22 )( 2     t t tt tfP 0.25 TÝnh          )(26 26 0 )2( 6 10)(' 2 lt t t tf 0.25 Do hàm số liên tục trên   1; 3 1  nên so sánh giá trị của ) 3 1 (  f , )26( f , )1(f cho ra kết quả: 626)26(  fMaxP , 15 11 ) 3 1 (min  fP 0.25 Câu VIa 1 đi ểm (Học sinh tự vẽ hình) Ta có:   1;2 5 AB AB     . Phương trình của AB là: 2 2 0 x y    .     : ; I d y x I t t    . I là trung điểm của AC: )2;12( ttC  0,5 a) Theo bài ra: 2),(. 2 1   ABCdABS ABC  446. t        3 4 0 t t Từ đó ta có 2 điểm C(-1;0) hoặc C( 3 8 ; 3 5 ) thoả mãn . 0,5 1 đi ểm *Từ phương trình đoạn chắn suy ra pt tổng quát của mp(ABC) là:2x+y-z-2=0 0.25 b) *Gọi H là hình chiếu vuông góc của O l ên (ABC), OH vuông góc với (ABC) nên )1;1;2(// nOH ;   H ABC  Ta suy ra H(2t;t;-t) thay vào phương trình( ABC) có t= 3 1 suy ra ) 3 1 ; 3 1 ; 3 2 ( H 0,25 www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 11 *O’ đỗi xứng với O qua (ABC)  H là trung điểm của OO’  ) 3 2 ; 3 2 ; 3 4 (' O 0,5 Giải phương trình: 10)2)(3)(( 2  zzzz ,  z C. 1 đi ểm PT       10)3)(1)(2( zzzz 0)32)(2( 22  zzzz Đặt zzt 2 2  . Khi đó phương trình (8) trở thành: 0,25 Đặt zzt 2 2  . Khi đó phương trình (8) trở thành 0103 2  tt 0,25 CâuVIIa             61 1 5 2 z iz t t Vậy phương trình có các nghiệm: 61z ; iz    1 0,5 Câu VIb a) 1 đi ểm Viết phương trình đường AB: 4 3 4 0 x y    và 5 AB  Viết phương trình đường CD: 4 17 0 x y    và 17 CD  0,25 Điểm M thuộc  có toạ độ dạng: ( ;3 5) M t t   Ta tính được: 13 19 11 37 ( , ) ; ( , ) 5 17 t t d M AB d M CD     0,25 Từ đó: ( , ). ( , ). MAB MCD S S d M AB AB d M CD CD    7 9 3 t t       Có 2 điểm cần tìm là: 7 ( 9; 32), ( ;2) 3 M M  0,5 1 đi ểm Giả sử một mặt cầu S(I, R) tiếp xúc với hai đương thẳng d 1 , d 2 tại hai điểm A và B khi đó ta luôn có IA + IB ≥ AB và AB ≥   1 2 , d d d dấu bằng xảy ra khi I là trung điểm AB và AB là đoạn vuông góc chung của hai đường thẳng d 1 , d 2 0, 25 Ta tìm A, B : ' AB u AB u            Ad 1 , Bd 2 nên: A(3 + 4t; 1- t; -5-2t), B(2 + t’; -3 + 3t’; t’) 0,25  AB  (….)…  A(1; 2; -3) và B(3; 0; 1)  I(2; 1; -1) 0,25 b) Mặt cầu (S) có tâm I(2; 1; -1) và bán kính R= 6 Nên có phương trình là:   2 2 2 2 ( 1) ( 1) 6 x y z       0,25 CâuVIIb Giải bất phương trình 2log9)2log3( 22  xxx 1 đi ểm www.VNMATH.com [...]... 3 y  2 z 1 2 Trong không gian toạ độ cho đường thẳng d: và mặt phẳng (P): x + y + z + 2 = 0 Gọi M   2 1 1 là giao điểm của d và (P) Viết phương trình đường thẳng  nằm trong mặt phẳng (P), vuông góc với d đồng thời thoả mãn khoảng cách từ M tới  bằng 42 1  Câu VII.b (1,0 điểm) Giải hệ phương trình log 1  y  x   log 4 y  1  4 ( x, y )  x 2  y 2  25  ĐÁP ÁN ĐỀ 3 Câu I Nội dung Điểm...  1du 0 1 1 1 0.25 2  u 2  6u  1  6ln u  1 1 0.25  3  6 ln 3 2 0.25  2 IV 1.0 D Dựng DH  MN  H Do  DMN    ABC   DH   ABC  mà D ABC là tứ diện đều nên H là tâm tam giác đều ABC C B 0.25 N H M A 2  3 6 Trong tam giác vuông DHA: DH  DA  AH  1      3  3   2 Diện tích tam giác AMN là S AMN  2 2 1 3 AM AN sin 600  xy 2 4 1 2 Thể tích tứ diện D AMN là V  S AMN DH  xy... 3;0)     Lại có VTPT của(P) là nP (1;1;1) , VTCP của d là ud (2;1; 1)       Vì  nằm trong (P) và vuông góc với d nên VTCP u  ud , nP   (2; 3;1)     Gọi N(x; y; z) là hình chiếu vuông góc của M trên  , khi đó MN ( x  1; y  3; z )     Ta có MN vuông góc với u nên ta có phương trình: 2x – 3y + z – 11 = 0 x  y  z  2  0  Lại có N  (P) và MN = 42 ta có hệ:...  25 9 y  y  25  y  10  0.25   15 5  ;  x; y      10 10     15 5  ;  x; y      10    10  (không thỏa mãn đk) 0.25 (không thỏa mãn đk) Vậy hệ phương trình đã cho vô nghiệm http://tranduythai.violet.vn 21 Biên soạn: Trần Duy Thái www.VNMATH.com ĐỀ 4 I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I:(2,0 điểm) Cho hàm số y  x 3  (3 x  1) m (C ) với m là tham số 1 Khảo... Hàm số đạt CĐ tại x = -1 ; yCĐ = 3 và đạt CT tại x = 1 ; yCT = -1 0,25 đ Điểm đặc biệt: ĐT cắt Oy tại (0 ; 1) và qua (-2 ; -1) ; (2 ; 3) Đồ thị ( không cần tìm điểm uốn) y’ = 0  3x2 – 3m = 0 ;  '  9m 0,25 đ m  0 : y’ không đổi dấu  hàm số không có cực trị Ý2 (1,0 đ) 0,25 đ 0,25 đ m  0 : y’ đổi dấu qua 2 nghiệm của y’=0  hàm số có 2 cực trị 0,25 đ KL: m  0 m  0  P   m  0  đpcm Ý1... (P) là mặt phẳng đi qua đường thẳng  , thì ( P) //( D ) hoặc ( P)  ( D) Gọi H là hình chiếu vuông góc của I trên (P) Ta luôn có IH  IA và IH  AH  d   D  ,  P    d  I ,  P    IH  Mặt khác  H   P  Trong mặt phẳng  P  , IH  IA ; do đó maxIH = IA  H  A Lúc này (P) ở vị trí (P0) vuông góc với IA tại A http://tranduythai.violet.vn 29 Biên soạn: Trần Duy Thái www.VNMATH.com ... 4  0 Tìm tọa độ đỉnh C 2.Trong không gian với hệ trục Oxyz, cho mặt phẳng (P) x  y  z  1  0 ,đường thẳng d: x  2 y 1 z 1   1 1 3 Gọi I là giao điểm của d và (P) Viết phương trình của đường thẳng  nằm trong (P), vuông góc với d và cách I một khoảng bằng 3 2 Câu VII.b (1 điểm) 3  zi Giải phương trình ( ẩn z) trên tập số phức:    1 i  z  ĐÁP ÁN ĐỀ 6 PHẦN CHUNG CHO TẤT CẢ THÍ SINH... trình đường thẳng BD: x – 7y + 14 = 0, đường thẳng AC đi qua M(2; 1) Tìm toạ độ các đỉnh của hình chữ nhật 2 Trong không gian toạ độ Oxyz, cho mặt phẳng (P): 2x – y – 5z + 1 = 0 và hai đường thẳng x  1 y 1 z  2 x2 y2 z d1 : , d2:     2 3 1 1 5 2 Viết phương trình đường thẳng d vuông góc với (P) đồng thời cắt hai đường thẳng d1 và d2 Câu VII.a (1,0 điểm) Tìm phần thực của số phức z = (1 + i)n... 1  x  2 4 x 1  x   1  2 x 1  x    4 x  4 1 x Ta thấy phương trình (1) có 2 nghiệm x  0, x  2   x  1 x  2 1 nên trong trường hợp này (1) không 2 có nghiệm duy nhất Vậy phương trình có nghiệm duy nhất khi m = 0 và m = -1 ĐỀ 6 PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7 điểm) Câu I ( 2 điểm) Cho hàm số y  x 3  (1  2m) x 2  ( 2  m) x  m  2 (1) m là tham số 1 Khảo sát sự biến thiên và... sin 2 x.2 cos x  1  2  cos 3 x  cos 2 x  3 cos x 4 Tính tích phân: I   1  0 x 1 1  2x  2 dx Câu IV(1 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh A, AB  a 2 Gọi I là trung điểm của BC, hình chiếu vuông góc H của S lên mặt đáy (ABC) thỏa mãn: IA  2 IH , góc giữa SC và mặt đáy (ABC) 0 bằng 60 Hãy tính thể tích khối chóp S.ABC và khoảng cách từ trung điểm K của SB . Trần Duy Thái 2 Sở GD & ĐT Tiền Giang ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN Trường THPT Gò Công Đông Môn: Toán - Thời gian: 180 phút ĐỀ 1 I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I.       2;1; 1 , 0;2; 2 , 1;3;0 A B C  và tiếp xúc với mặt phẳng   P BỘ ĐỀ LUYỆN THI CẤP TỐC MÔN TOÁN 2011 www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 3 .       DMN ABC DH ABC    mà . D ABC là tứ diện đều nên H là tâm tam giác đều ABC . 0.25 Trong tam giác vuông DHA: 2 2 2 2 3 6 1 3 3 DH DA AH            

Ngày đăng: 28/10/2014, 05:00

HÌNH ẢNH LIÊN QUAN

Bảng biến thiên . - Bộ đề ôn đại học 2011
Bảng bi ến thiên (Trang 22)
Đồ thị cắt các trục Oy tại điểm (0; - Bộ đề ôn đại học 2011
th ị cắt các trục Oy tại điểm (0; (Trang 45)
Bảng biến thiên - Bộ đề ôn đại học 2011
Bảng bi ến thiên (Trang 49)
2) Đồ thị hàm số  y =  ( x 2  2 x  2) x  1  ,   với x    1  có dạng như hình vẽ : - Bộ đề ôn đại học 2011
2 Đồ thị hàm số y = ( x 2  2 x  2) x  1 , với x  1 có dạng như hình vẽ : (Trang 70)
Đồ thị cắt trục tung tại điểm  ( 0 ,  1 ) . - Bộ đề ôn đại học 2011
th ị cắt trục tung tại điểm ( 0 ,  1 ) (Trang 78)
Đồ thị cắt trục tung tại điểm  ( 0 ,  1 ) . - Bộ đề ôn đại học 2011
th ị cắt trục tung tại điểm ( 0 ,  1 ) (Trang 103)
Đồ thị nhận điểm A(0;1) làm tâm đối xứng - Bộ đề ôn đại học 2011
th ị nhận điểm A(0;1) làm tâm đối xứng (Trang 115)
w