Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 74 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
74
Dung lượng
3,26 MB
Nội dung
Paul Dawkins Người dịch LÊ LỄ (CĐSP NINH THUẬN) Complex Numbers Primer SỐ PHỨC Complex Numbers Primer- Paul Dawkins - SỐ PHỨC- Lê Lễ-suphamle2341@gmail.com Page 2 Complex Numbers Primer- Paul Dawkins - SỐ PHỨC- Lê Lễ-suphamle2341@gmail.com Page 3 Contents 1 LỜI NGƯỜI DỊCH 5 1.Tập số phức và các phép toán 6 1.1Định nghĩa tập số phức 6 1.2.Các phép toán 6 2.Bất đẳng thức tam giác 9 2.1 Số phức liên hợp 9 2.2 Môđun của số phức 10 2.3 Bất đẳng thức tam giác 12 3.Dạng lượng giác và dạng mũ 13 3.1 Biểu diễn hình học của số phức 13 3.2 Dạng lượng giác 14 3.3 Dạng mũ của số phức 15 4.Lũy thừa và khai căn 16 4.1 Lũy thừa với số mũ n nguyên dương 16 4.2 Căn bậc n của số phức 17 1 Có thể click chuột vào tiêu đề để nhảy đến nội dung tương ứng Complex Numbers Primer- Paul Dawkins - SỐ PHỨC- Lê Lễ-suphamle2341@gmail.com Page 4 Complex Numbers Primer- Paul Dawkins - SỐ PHỨC- Lê Lễ-suphamle2341@gmail.com Page 5 LỜI NGƯỜI DỊCH Hiện nay trường sô phức ℂ được xây dựng theo nhiều cách, trong đó có hai cách đại số thường sử dụng : ℂ là trường phân rã của đa thức bất khả quy 2 1x (trên ℝ) . 2 10x có nghiệm trong ℂ , tức là tồn tại i∈ ℂ , 2 1i . Xem ℂ = 2 R ={(a;b)}, xây dựng phép toán cộng và nhân thích hợp, rồi chứng minh (ℂ ,+,x) là một trường. Tác giả xây dựng ℂ trên tinh thần này . Phần lớn quy tắc tính được thao tác trên các ví dụ một cách hình thức. Tiếp theo là định nghĩa và cuối cùng kiểm chứng kết quả. Việc xây dựng ℂ của tác giả vừa đảm bảo chính xác vừa dễ hiểu, dễ áp dụng. Tài liệu dành phần đầu nêu định nghĩa số phức và các phép toán . Phần hai nói về bất đẳng thức tam giác. Dạng lượng giác và mũ của số phức được nêu ở phần ba. Phần cuối dùng trình bày về lũy thừa và căn bậc n của một số phức. Đọc tài liệu này: Học sinh, sinh viên có nhu cầu thực hành các phép toán trên số phức, tìm thấy hướng dẫn rõ ràng, chi tiết; Nếu muốn tìm lời giải đáp vì sao tập số phức có nhiều tính chất đẹp mà ℝ không có, sẽ được thỏa mãn; Nếu đã biết một ít về số phức vẫn thấy thú vị. Còn tôi thì ít thời gian mà ham nhiều việc, nghĩ rằng thiếu sót không tránh khỏi. Nước đầm Nại đủ sạch, xin rửa tai nghe chỉ giáo. Complex Numbers Primer- Paul Dawkins - SỐ PHỨC- Lê Lễ-suphamle2341@gmail.com Page 6 1.Tập số phức và các phép toán 1.1Định nghĩa tập số phức Cho a,b∈ ℝ . Mỗi biểu thức dạng a+bi được gọi là một số phức 2 a: phần thực của z. b: phần ảo của z. Tập các số phức ký hiệu là ℂ . a∈ ℝ , a= a+0i=z . Vậy ℝ⊂ ℂ 3 Ta cần định nghĩa phép cộng và nhân hai số phức Cho hai số phức 12 ,bi c iz a z d . Tổng 12 ( ) ( )z a c b dz i Tích 12 . ( ) ( )z ac bd ad bc iz Công thức trên đúng cho trường hợp hai số thực 12 0 , 0a i cz zi . 4 Thật vậy 12 12 ( 0 ) ( 0 ) . ( 0 )( 0 ) z a i c i a c z a i c i ac z z Điều cuối cùng trong phần này, ta phải chứng minh 2 1i như một hệ quả của phép nhân. Thật vậy: 2 . (0 1 )(0 1 ) (0.0 1.1) (0.1 1.0) 1ii i ii i 1.2.Các phép toán Khi thực hành cộng và nhân hai số phức, chỉ cần thực hiện theo quy tắc cộng và nhân đa thức với chú ý 2 1i . 2 Dạng đại số của số phức(ND) 3 Tồn tại đơn cấu trường :ℝ→ ℂ (ND). 4 Hai phép toán cộng, nhân cảm sinh trên ℝ thành hai phép toán cộng và nhân thông thường (ND) . Complex Numbers Primer- Paul Dawkins - SỐ PHỨC- Lê Lễ-suphamle2341@gmail.com Page 7 Ví dụ: Tính a. (58-i)+(2-17i) b. (6+3i)(10+8i) c. (4+2i)(4-2i) Bài giải a. (58-i)+(2-17i)=58-i+2-17i=60-18i b. (6+3i)(10+8i)=60+48i+30i+24i 2 =60+78i+24(-1)=36+78i c. (4+2i)(4-2i)=16-(2i) 2 =16+4=20 . Phép nhân hai số phức , cho ta hệ thức : 22 ( )( )a bi a bi ba . Hê thức này được sử dụng khi chia hai số phức ớ phần sau. Bây giờ xét đến phép trừ và chia hai số phức. Thử làm một cách hình thức ví dụ sau Ví dụ : a. (58 ) (2 17 ) 58 2 17 56 16i i i i i b. 63 10 8 i i = (6 3 ) (10 8 ) . (10 8 ) (10 8 ) ii ii = 2 60 48 30 24 84 18 84 18 100 64 164 164 164 i i i i i = 21 9 41 82 i c. 5 17 i i = 5 (1 7 ) 35 5 7 1 (1 7 )(1 7 ) 50 10 10 i i i i ii Trước khi định nghĩa phép trừ và phép chia hai số phức, ta cần một số chuẩn bị: Số đối của số phức z ký hiệu –z , thỏa mãn z+(-z)=0 Trong các trường đại số tổng quát nói chung không có hệ thức ( 1).zz Rất may mắn, trong trường ℂ ta có ( 1).z z a bi Complex Numbers Primer- Paul Dawkins - SỐ PHỨC- Lê Lễ-suphamle2341@gmail.com Page 8 Hiệu hai số phức 12 ,z z : 1 2 1 2 ()z z z z Nên 1 2 1 2 ( ) ( ) ( ) ( ) ( )z z z a bi c di a c b d iz Điều cần chuẩn bị cho định nghĩa thương hai số phức là số nghịch đảo của một số phức. Số nghịch đảo của số phức z (≠ 0) là một số phức ký hiệu z -1 sao cho z.z -1 =1. Số nghịch đảo của số phức được làm rõ qua đoạn sau: Giả sử z -1 =u+vi là số nghịch đảo của z=a+bi , z.z -1 =(a+bi)(u+vi)=(au-bv)+(av+bu)i=1 Nên 1 0 au bv av bu ⇒ 22 22 a u ab b v ab ⇒ 1 2 2 2 2 z ab i a b a b . Mọi số phức z khác 0 tồn tại số nghịch đảo z -1 . Định nghĩa thương hai số phức. Cho hai số phức z 1 , z 2 (z 2 ≠ 0) 1 1 12 2 . z zz z Theo định nghĩa trên , ta có Ví dụ : 1 1 2 2 2 2 63 (6 3 )(10 8 , (10 8 ) 10 ) 8 10 8 10 8 10 8 10 8 164 i i ii i i i Complex Numbers Primer- Paul Dawkins - SỐ PHỨC- Lê Lễ-suphamle2341@gmail.com Page 9 1 6 3 10 8 (6 3 )(10 8 (6) 10 8 164 3) ii ii i i 2 60 48 30 24 21 9 164 41 82 i i i i Ta có lại kết quả trước đây khi tiến hành chia hai số phức một cách hình thức. Dựa vào nhận xét này, ta có thể tiến hành chia hai số phức mà không cần bận tâm đến công thức tìm số nghịch đảo của số phức. Chẳng hạn 3 (3 )(1 ) 2 4 12 1 (1 )(1 ) 2 i i i i i i i i hay 1 22 1 10 8 10 8 5 2 . 10 8 (10 8 ) 10 8 8 ( 2 41 10 8 )i ii i ii 2.Bất đẳng thức tam giác 2.1 Số phức liên hợp Số phức liên hợp của z=a+bi , ký hiệu z , z a bi . (nói cách khác chỉ cần đối dấu phần ảo của z, ta được z ) Một số tính chất của số phức liên hợp zz 1 2 1 2 1 2 1 2 11 2 2 z z z z z z z z zz z z Complex Numbers Primer- Paul Dawkins - SỐ PHỨC- Lê Lễ-suphamle2341@gmail.com Page 10 Ví dụ : Tính (a) , 3 15z z i (b) 1 2 1 2 , 5 , 8 3z z z i z i (c) 1 2 1 2 , 5 , 8 3z z z i z i Bài giải (a) 3 15 3 15 3 15z i z i i z (b) 1 2 1 2 13 2 13 2 13 2z i z z iz i (c) 12 5 ( 8 3 ) 5 ( 8 3 ) 13 2z z i i i i i Với số phức z=a+bi, ta có ( ) 2 , ( ) 2 z a bi a bi a z z a bi a bi b z i 2.2 Môđun của số phức Cho z=a+bi, Môđun của z ký hiệu |z|, 22 || abz Môđun của một số phức là số thực không âm. z là số thực (z=a+0i), 2 || ||aaz . Vậy Môđun của một số thực chính là giá trị tuyệt đối của số ấy. 2 2 2 2 | | | || |a b az za ≥ a. Tương tự ||| |z bb Các hệ thức diễn tả mối quan hệ giữa Môđun và số liên hợp của z: 22 ). ( ( )z a bi a bi az b ⇒ 2 |. |z zz | | | |z z [...]... đại số của số phức 5 1.1 Định nghĩa số phức 5 1.2 Tính chất phép cộng 5 1.3 Tính chất phép nhân 5 1.4 Dạng đại số của số phức 6 1.5 Lũy thừa của đơn vị ảo i 8 1.6 Số phức liên hợp 8 1.7 Môđun của số phức 10 1.8 Giải phương trình bậc hai 14 1.9 Bài tập 17 1.10 Đáp số. .. BÀI TẬP SỐ PHỨC (98 VÍ DỤ VÀ BÀI TẬP CÓ LỜI GIẢI) Bài tập số phức LỜI GIỚI THIỆU Như tên sách, ‘’Complex Numbers from A to Z’’, nội dung nguyên bản phủ hầu khắp các vấn đề liên quan số phức: từ xây dựng trường số phức, số phức dạng lượng giác, đến hình học phức Người dịch chỉ chọn lọc một số vấn đề lý thuyết, bài tập cơ bản, nâng cao của số phức để giới thiệu bằng tiếng Việt, ngõ hầu phục vụ đối tượng... 1,0) 1 Biểu thức x+yi gọi là dạng đại số của số phức z=(x,y) Do đó: C {x yi | x R, y R, i 2 1} x=Re(z): phần thực của z y=Im(z): phần ảo của z Đơn vị ảo là i (1) Tổng hai số phức z1 z2 ( x1 y1i ) ( x2 y2i ) ( x1 x2 ) ( y1 y2 )i C Tổng hai số phức là một số phức , mà phần thực ( phần ảo) của nó bằng tổng hai phần thực (phần ảo) của hai số đã cho (2) Tích hai số phức z1.z2 ( x1 y1i ).( x2 y2i ) ( x1... Lễ Page 3 Bài tập số phức Lê Lễ Page 4 Bài tập số phức 1 Dạng đại số của số phức 1.1 Định nghĩa số phức Xét R2 R R {( x, y) | x, y R} Hai phần tử ( x1 , y1 ) và ( x2 , y2 ) bằng nhau ⇔ x1 x2 y1 y2 ∀ ( x1 , y1 ), ( x2 , y2 ) ∈ ℝ2: Tổng z1 z2 ( x1 , y1 ) ( x2 , y2 ) ( x1 x2 , y1 y2 ) ∈ ℝ2 Tích z1.z2 ( x1 , y1 ).( x2 , y2 ) ( x1 x2 y1 y2 , x1 y2 x2 y1 ) ∈ ℝ2 Phép toán tìm tổng hai số phức gọi là phép... diễn hình học của số phức 25 2.1 Biểu diễn hình học của số phức 25 2.2 Biểu diễn hình học của Môđun 26 2.3 Biểu diễn hình học các phép toán 26 2.4 Bài tập 29 2.4 Đáp số và hướng dẫn 30 3 Dạng lượng giác của số phức 31 3.1 Tọa độ cực của số phức 31 3.2 Biểu diễn lượng giác của số phức ... nghĩa hai số phức bằng nhau, được: x3 3xy 2 18 3x 2 y y 3 26 Đặt y=tx, 18(3x2 y y3 ) 26( x3 3xy 2 ) ( cho ta x≠ 0 và y≠ 0) ⇒ 18(3t t 3 ) 26(1 3t 2 ) ⇒ (3t 1)(3t 2 12t 13) 0 Nghiệm hữu tỷ của phương trình là t=1/3 Do đó x=3, y=1⇒ z=3+i 1.6 Số phức liên hợp Cho z=x+yi Số phức z x yi gọi là số phức liên hợp của z Định lý (1) z z z R, (2) z z , (3) z.z là số thực không âm, Lê Lễ Page 8 Bài tập số phức (4)... Tích hai số phức z1.z2 ( x1 y1i ).( x2 y2i ) ( x1 x2 y1 y2 ) ( x1 y2 x2 y1 )i C (3) Hiệu hai số phức z1 z2 ( x1 y1i ) ( x2 y2i ) ( x1 x2 ) ( y1 y2 )i C Hiệu hai số phức là một số phức , mà phần thục ( phần ảo) của nó bằng hiệu hai phần thực(phần ảo) của hai số phức đã cho Khi thực hành cộng, trừ , nhân số phức thực hiện tương tự quy tắc tính đa thức chỉ cần lưu ý i2 1 là đủ Ví dụ 3 5 6i, z2 1 2i a)... toán cộng và nhân là một trường 1.4 Dạng đại số của số phức Dạng đại số của số phức được nghiên cứu sau đây: Lê Lễ Page 6 Bài tập số phức Xét song ánh2 f :R R {0}, f ( x) ( x,0) Hơn nữa ( x,0) ( y,0) ( x y,0) ; ( x,0).( y ,0) ( xy ,0) Ta đồng nhất (x,0)=x Đặt i=(0,1) z ( x, y ) ( x,0) (0, y ) ( x,0) ( y,0).(0,1) x yi ( x,0) (0,1)( y,0) x iy Định lý Số phức bất kỳ z=(x,y) được biểu diễn duy nhất... phẳng trên gọi là mặt phẳng phức Lê Lễ-suphamle2341@gmail.com Page 13 Complex Numbers Primer- Paul Dawkins - SỐ PHỨC- 3.2 Dạng lượng giác Xét số phức z=a+bi≠ 0, M(a;b) trong mặt phẳng phức Số đo (rađian) của mỗi góc lượng giác tia đầu Ox, tia cuối OM gọi là một acgumen của z Cho z=a+bi≠ 0 |z|=r>0, θ là acgumen của z Khi đó a r cos b r sin i sin ) : dạng lượng giác của số phức z a bi r (cos Lưu ý r |z|... (4) Mọi số có số đối: z C , Số z1 z2 z1 ( z2 ) : hiệu của hai số z1 , z2 Phép toán tìm hiệu hai số gọi là phép trừ, z1 z2 ( x1 , y1 ) ( x2 , y2 ) ( x1 x2 , y1 y2 ) ∈ ℂ 1.3 Tính chất phép nhân (1) Giao hoán: z1.z2 z2 z1 , z1 , z2 C Lê Lễ Page 5 Bài tập số phức (2) Kết hợp: ( z1.z2 ).z3 z1.( z2 z3 ), z1 , z2 , z3 C (3) Tồn tại phần tử đơn vị: 1 (0,1) C , z.1 1.z z, z C (4) Mọi số khác 0 có số nghịch . định nghĩa thương hai số phức là số nghịch đảo của một số phức. Số nghịch đảo của số phức z (≠ 0) là một số phức ký hiệu z -1 sao cho z.z -1 =1. Số nghịch đảo của số phức được làm rõ qua đoạn. của một số phức. Đọc tài liệu này: Học sinh, sinh viên có nhu cầu thực hành các phép toán trên số phức, tìm thấy hướng dẫn rõ ràng, chi tiết; Nếu muốn tìm lời giải đáp vì sao tập số phức có. Paul Dawkins - SỐ PHỨC- Lê Lễ-suphamle2341@gmail.com Page 6 1.Tập số phức và các phép toán 1.1Định nghĩa tập số phức Cho a,b∈ ℝ . Mỗi biểu thức dạng a+bi được gọi là một số phức 2 a: