1. Trang chủ
  2. » Giáo án - Bài giảng

đề thi thử đại học chuyên trần phú hải phòng

6 377 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 129,08 KB

Nội dung

S GIÁO D C – ĐÀO T O H I PHÒNGỞ Ụ Ạ Ả Đ THI TH Đ I H C L N 2 – THÁNG 12/2010Ề Ử Ạ Ọ Ầ TR NG THPT CHUYÊN TR N PHÚƯỜ Ầ Môn thi: TOÁN H C – Kh i A, BỌ ố Th i gian: 180 phútờ Đ CHÍNH TH CỀ Ứ Câu I: Cho hàm s ố ( ) x 2 y C . x 2 + = − 1. Kh o sát và v ả ẽ ( ) C . 2. Vi t ph ng trình ti p tuy n c a ế ươ ế ế ủ ( ) C , bi t ti p tuy n đi qua đi m ế ế ế ể ( ) A 6;5 .− Câu II: 1. Gi i ph ng trình: ả ươ cos x cos3x 1 2 sin 2x 4 π   + = + +  ÷   . 2. Gi i ả h ph ng trình: ệ ươ 3 3 2 2 3 x y 1 x y 2xy y 2  + =   + + =   Câu II I: Tính ( ) 4 2 3x 4 dx I cos x 1 e π − π − = + ∫ Câu IV: Hình chóp t giác đ u SABCDứ ề có kho ng cách t A đ n m t ph ng ả ừ ế ặ ẳ ( ) SBC b ng 2. V iằ ớ giá tr nào c a góc ị ủ α gi a m t bên và m t đáy c a chóp thì th tích c a chóp nh nh t?ữ ặ ặ ủ ể ủ ỏ ấ Câu V: Cho a,b,c 0: abc 1.> = Ch ng minh r ng:ứ ằ 1 1 1 1 a b 1 b c 1 c a 1 + + ≤ + + + + + + Câu VI: 1. Trong m t ph ng Oxy cho các đi m ặ ẳ ể ( ) ( ) ( ) ( ) A 1;0 ,B 2;4 ,C 1;4 ,D 3;5− − và đ ngườ th ng ẳ d :3x y 5 0− − = . Tìm đi m M trên d sao cho hai tam giác MAB, MCD có di n tíchể ệ b ng nhau.ằ 2. Vi t ph ng trình đ ng vuông góc chung c a hai đ ng th ng sau:ế ươ ườ ủ ườ ẳ 1 2 x 1 2t x y 1 z 2 d : ; d : y 1 t 2 1 1 z 3 = − +  − +  = = = +  −  =  Câu VII: Tính: 0 0 1 1 2 2 3 3 2010 2010 2010 2010 2010 2010 2010 2 C 2 C 2 C 2 C 2 C A 1.2 2.3 3.4 4.5 2011.2012 = − + − + + ĐÁP ÁN Đ THI TH ĐH L N 2 Ề Ử Ầ Câu I: 1. a) TXĐ: { } \ 2¡ \ b) S bi n thiên c a hàm s :ự ế ủ ố -) Gi i h n, ti m c n:ớ ạ ệ ậ +) x 2 x 2 lim y , lim y x 2 − + → → = −∞ = +∞ ⇒ = là ti m c n đ ng.ệ ậ ứ +) x x lim y lim y 1 y 1 →−∞ →+∞ = = ⇒ = là ti m c n ngang.ệ ậ -) B ng bi n thiênả ế : ( ) 2 4 y' 0 x 2 x 2 = − < ∀ ≠ − c) Đ thồ ị : -) Đ th c t Ox t i ồ ị ắ ạ ( ) 2;0− , c t Oy t i ắ ạ ( ) 0; 1− , nh n ậ ( ) I 2;1 là tâm đ i x ng. ố ứ 2. Ph ng trình đ ng th ng đi qua ươ ườ ẳ ( ) A 6;5− là ( ) ( ) d : y k x 6 5= + + . (d) ti p xúc (C) khi và ch khi h sau có nghi mế ỉ ệ ệ : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 4 x 2 x 2 x 6 5 k x 6 5 x 2 x 2 x 2 4 4 k k x 2 x 2 4x 24x 0 4 x 6 5 x 2 x 2 x 2 x 0;k 1 4 4 1 k k x 6;k x 2 4 x 2 +  +  − × + + = + + =   − − −   ⇔     = − = − −   −     − = − + + − = + − = = −     ⇔ ⇔ ⇔   = −  = − = = −   −  −   Suy ra có 2 ti p tuy n làế ế : ( ) ( ) 1 2 x 7 d : y x 1; d : y 4 2 = − − = − + Câu II: ( ) ( ) ( ) 2 1. cos x cos3x 1 2 sin 2x 4 2cos x cos 2x 1 sin 2x cos2x 2cos x 2sin x cos x 2cos x cos 2x 0 cos x cos x sinx cos2x 0 cos x cos x sinx 1 sinx cosx 0 x k 2 cos x 0 cos x sinx 0 x k 4 1 sinx cosx 0 sin x 4 π   + = + +  ÷   ⇔ = + + ⇔ + − = ⇔ + − = ⇔ + + − = π = + π =  π  ⇔ + = ⇔ = − + π   + − =  π   −  ÷   1 2 x k 2 x k 2 x k 4 x k 4 x k2 x k2 4 4 5 x k2 4 4        = −   π  = + π  π  = + π   π   = − + π  π  ⇔ ⇔ = − + π   π π   − = − + π = π     π π   − = + π  ( ) ( ) ( ) 1 3 1 1 3 3 2x 2 x y y x y x x y 2. 1 3 1 3 2y 2x x y y x x y 4 x y 2 x y xy 2 xy 1 3 1 3 2x 2x y x y x x y 1 3 x y 1 2x x x x y 1 2 x 2, y 2 y x x 2, y 2 x 3 2x 2 x       + = − + − = −   ÷  ÷        ⇔     + = + =      =  −  − = −    = −    ⇔ ⇔     + = + =      =     = =   + =    = = −  ⇔ ⇔   = = − = −     = − =   − =           Câu I II: ( ) ( ) 2 1 1 1 2 4 2 2 2 2 0 0 0 3 1 2 2 2 2 1 0 2 2 d x xdx 1 1 dt I x x 1 2 2 t t 1 x x 1 1 dt 1 du 2 2 1 3 3 t u 2 2 2 = = = + + + + + + = =       + + +  ÷  ÷  ÷       ∫ ∫ ∫ ∫ ∫ Đ t ặ 2 3 3 dy u tan y, y ; du 2 2 2 2 cos y π π   = ∈ − ⇒ = ×  ÷   ( ) 3 3 2 2 6 6 1 3 u y ;u y 2 6 2 3 3 dy 1 1 2 I dy 3 2 3 6 3 cos y 1 tan y 4 π π π π π π = ⇒ = = ⇒ = π ⇒ = = = × × + ∫ ∫ Câu IV: G i M, N là trung đi m BC, AD, g i H là hình chi u vuông góc t N xu ng SM. Ta có:ọ ể ọ ế ừ ố · ( ) ( ) ( ) ( ) 2 ABCD 2 SABCD 2 2 2 2 2 2 2 2 2 2 SABCD SMN ,d A; SBC d N; SBC NH 2 NH 2 4 MN S MN sin sin sin tan 1 SI MI.tan sin cos 1 4 1 4 V 3 sin cos 3.sin .cos sin sin 2cos 2 sin .sin .2cos 3 3 1 sin .cos 3 V min sin .cos max s = α = = = ⇒ = = ⇒ = = α α α α = α = = α α ⇒ = × × = α α α α α + α + α α α α ≤ = ⇒ α α ≤ ⇔ α α ⇔ 2 2 1 in 2cos cos 3 α = α ⇔ α = Câu V: Ta có: N M I D A B C S H ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 a b a b a ab b ab a b a b 1 ab a b 1 ab a b abc ab a b c 1 1 c a b 1 a b c ab a b c + = + − + ≥ + ⇒ + + ≥ + + = + + = + + ⇒ ≤ = + + + + + + T ng tươ ự suy ra OK! Câu VI: 1. Gi s ả ử ( ) M x;y d 3x y 5 0.∈ ⇔ − − = ( ) ( ) ( ) ( ) ( ) ( ) AB CD MAB MCD AB 5,CD 17 AB 3;4 n 4;3 PT AB: 4x 3y 4 0 CD 4;1 n 1; 4 PT CD : x 4y 17 0 S S AB.d M;AB CD.d M;CD 4x 3y 4 x 4y 17 5 17 4x 3y 4 x 4y 17 5 17 3x y 5 0 4x 3y 4 x 4y 17 3x y 5 0 3x 7y 21 0 = = − ⇒ ⇒ + − = ⇒ − ⇒ − + = = ⇔ = + − − + ⇔ × = × ⇔ + − = − + − − =   ⇒  + − = − +   − − =  + − = ⇔ uuur uuur uuur uuur ( ) 1 2 7 M ;2 ,M 9; 32 3 3x y 5 0 5x y 13 0        ⇒ − −  ÷  − − =      − + =    2. G i ọ ( ) ( ) 1 2 M d M 2t;1 t; 2 t , N d N 1 2t ';1 t ';3∈ ⇒ − − + ∈ ⇒ − + + ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 MN 2t 2t ' 1;t t '; t 5 2 2t 2t ' 1 t t ' t 5 0 MN.u 0 2 2t 2t ' 1 t t ' 0 MN.u 0 6t 3t ' 3 0 t t ' 1 3t 5t ' 2 0 M 2;0; 1 , N 1;2;3 ,MN 1;2; 4 x 2 y z 1 PT MN : 1 2 4 ⇒ − + − + − +   − + − − + + − + = =   ⇔   − + − + + = =     − + + =  ⇔ ⇔ = =  − + − =  ⇒ − − − + ⇒ = = − uuuur uuuur uur uuuur uur uuuur Câu VII: 0 0 1 1 2 2 3 3 2010 2010 2010 2010 2010 2010 2010 2 C 2 C 2 C 2 C 2 C A 1 2 3 4 2011 = − + − + + Ta có: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) k k k k k 2010 k k 1 k 1 2011 1 2 2011 1 2 2011 2011 2011 2011 2011 0 0 2011 2 2010! 2 2010! 2 C 1 k 1 k! 2010 k ! k 1 k 1 ! 2010 k ! 2 2011! 1 1 2 C 2011 k 1 ! 2011 k 1 ! 4022 1 A 2 C 2 C 2 C 4022 1 1 2 1 2 C 4022 2011 + + − − − = = + − + + − − = × = − × − + − −   ⇒ = − × − + − + + −     = − × − + − − =   . S GIÁO D C – ĐÀO T O H I PHÒNGỞ Ụ Ạ Ả Đ THI TH Đ I H C L N 2 – THÁNG 12/2010Ề Ử Ạ Ọ Ầ TR NG THPT CHUYÊN TR N PHÚƯỜ Ầ Môn thi: TOÁN H C – Kh i A, BỌ ố Th i gian: 180 phútờ Đ CHÍNH TH CỀ Ứ Câu. C 2 C 2 C 2 C A 1.2 2.3 3.4 4.5 2011.2012 = − + − + + ĐÁP ÁN Đ THI TH ĐH L N 2 Ề Ử Ầ Câu I: 1. a) TXĐ: { } 2¡ b) S bi n thi n c a hàm s :ự ế ủ ố -) Gi i h n, ti m c n:ớ ạ ệ ậ +) x 2 x. m c n đ ng.ệ ậ ứ +) x x lim y lim y 1 y 1 →−∞ →+∞ = = ⇒ = là ti m c n ngang.ệ ậ -) B ng bi n thi nả ế : ( ) 2 4 y' 0 x 2 x 2 = − < ∀ ≠ − c) Đ thồ ị : -) Đ th c t Ox t i ồ ị ắ ạ ( ) 2;0− ,

Ngày đăng: 20/10/2014, 15:00

TỪ KHÓA LIÊN QUAN

w