1. Trang chủ
  2. » Luận Văn - Báo Cáo

TIỂU LUẬN AN TOÀN DỮ LIỆU TRÌNH BÀY NHÓM Zn, Zn

6 663 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 69 KB

Nội dung

TIỂU LUẬN AN TOÀN DỮ LIỆU TRÌNH BÀY NHÓM Zn, ZnNội dung trình bày:Khái niệm về nhóm Zn, ZnVí dụ minh họaCác bài toán về nhóm Zn, ZnỨng dụng nhóm Zn, Zn. Ví dụKhái niệm về nhóm Zn, ZnKhái niệm về nhóm ZnKhái niệm: Cho n là một số nguyên dương. Tập hợp các số nguyên không âm bé hơn n được gọi là nhóm ZnKí hiệu Zn= {0,1,2,…,n1}Ví dụ: Z7= {0,1,2,3,4,5,6}Z26= {A, B,…,X, Y, Z} – Bảng chữ cái

BÁO CÁO TIỂU LUẬN Môn học: AN TOÀN DỮ LIỆU Đề bài: TRÌNH BÀY NHÓM Zn, Zn* Người thực hiện: Nguyễn Văn Uy Mã học viên: 13025208 Email: nguyenvanuy.cntt@gmail.com Sđt: 01656253187 Giảng viên hướng dẫn: PGS.TS. Trịnh Nhật Tiến Nội dung trình bày:  Khái niệm về nhóm Zn, Zn* Ví dụ minh họa  Các bài toán về nhóm Zn, Zn*  Ứng dụng nhóm Zn, Zn*. Ví dụ 1. Khái niệm về nhóm Z n , Z n * 1.1. Khái niệm về nhóm Z n - Khái niệm: Cho n là một số nguyên dương. Tập hợp các số nguyên không âm bé hơn n được gọi là nhóm Z n - Kí hiệu Z n = {0,1,2,…,n-1} - Ví dụ: Z 7 = {0,1,2,3,4,5,6} Z 26 = {A, B,…,X, Y, Z} – Bảng chữ cái 1.2. Khái niệm về nhóm Z n * - Khái niệm: Cho n là số nguyên dương. Tập hợp các số p thuộc Z n và nguyên tố cùng nhau với n hợp thành nhóm Z n * - Kí hiệu Z n * = { p Zn \ gcd(p,n)=1 } - Ví dụ minh họa Z 7 *= {1,2,3,4,5,6} vì thỏa mãn gcd(1,7)= gcd(2,7)=gcd(3,7)=gcd(4,7)=gcd(5,7)=gcd(6,7)=1 Z 8 *={1,3,5,7} vì thỏa mãn gcd(1,8)= gcd(3,8)=gcd(5,8)=gcd(7,8) 2. Các bài toán về nhóm Z n , Z n * 2.1. Nhóm Cyclic Z n và phép cộng (+) lập thành nhóm Cyclic có phần tử sinh là 1, phần tử trung lập e=0 Kí hiệu (Z n , +) gọi là nhóm cộng, đó là nhóm hữu hạn có cấp n 2.2. Tập thặng dư thu gọn theo mod n Kí hiệu Z n * = {x ∈ Z n , x là nguyên tố cùng nhau với n}. Tức là x phải ≠ 0. Z n * được gọi là Tập thặng dư thu gọn theo mod n, có số phần tử là φ(n). Z n * với phép nhân mod n lập thành một nhóm (nhóm nhân), pt trung lập e = 1. Tổng quát (Z n * , phép nhân mod n ) không phải là nhóm Cyclic. Nhóm nhân Z n * là Cyclic chỉ khi n có dạng: 2, 4, p k , hay 2p k với p là nguyên tố lẻ. 2.3. Hàm Euler Cho số nguyên dương n, số lượng các số nguyên dương bé hơn n và nguyên tố cùng nhau với n được ký hiệu φ (n) và gọi là hàm Euler. Nhận xét: Nếu p là số nguyên tố, thì φ (p) = p-1 Ví dụ: Tập các số nguyên không âm nhỏ hơn 7 là Z 7 = {0, 1, 2, 3, 4, 5, 6}. Do 7 là số nguyên tố, nên Tập các số nguyên dương nhỏ hơn 7 và nguyên tố cùng nhau với 7 là Z 7 * ={1, 2, 3, 4, 5, 6}. Khi đó /Z/ = φ (p) = p-1 = 7 - 1 = 6. Định lý: về Hàm Euler. Nếu n là tích của hai số nguyên tố n = p.q, thì φ (n) = φ (p). φ (q) = (p-1).(q-1). φ (n) = |Z n * | 2.4. Một số kết quả đã được chứng minh - Định lý Lagrange: Nếu G là nhóm cấp n và α ∈ G, thì Cấp của α là ước của n. - Hệ quả: Giả sử α ∈ * n Z có Cấp m, thì m là ước của φ(n). - Định lý: Nếu p là số nguyên tố thì * p Z là nhóm Cyclic. - Nếu b ∈ * n Z thì b φ (n) ≡ 1 (mod n). Nếu p là số nguyên tố thì φ(p) = p-1. - Do đó với b ∈ * p Z (tức b nguyên tố với p), thì b φ (p) ≡ 1 (mod n), hay b p -1 ≡ 1 (mod n). 2.5. Phần tử nghịch đảo đối với phép nhân Định nghĩa: Cho a ∈ Z n , nếu tồn tại b ∈ Z n sao cho a b ≡ 1 (mod n), ta nói b là phần tử nghịch đảo của a trong Z n và ký hiệu a -1 . Một phần tử có phần tử nghịch đảo, gọi là khả nghịch. Định lý: UCLN (a, n) = 1 ⇔ Phần tử a ∈ Z n có phần tử nghịch đảo. 2.6. 2.7. 3. Các ứng dụng về nhóm Z n , Z n * 3.1. Tìm phần tử nghịch đảo bằng Thuật toán Euclid mở rộng. Input a,n (n>0) Output x= a -1 mod n 1. g 0 =n; g 1 =a; x0=0; x 1 =1;i=1; 2. while g i >0 do begin q:=g i -1 div g i ; g i +1=g i -1 – q.g i ; x i +1= x i -1 – qx i ; i=i+1; end 3. x:=x i – 1; 4. if x>0 then return x 5. else return n+x Ví dụ: Tìm phần tử nghịch đảo của 213 trong Z 466 Tức là phải giải phương trình 213 x ≡ 1 (mod 466), x sẽ là phần tử nghịch đảo của 213. Tương đương x= 213 -1 mod 466 i g i x i q 0 466 0 \ 1 213 1 2 2 40 -2 5 3 13 11 3 4 1 -35 13 5 0 Return n+x=466+x i-1 =466-35=431 Vậy 431 là phần tử nghịch đảo của 213 trong Z 466 . PGS.TS. Trịnh Nhật Tiến Nội dung trình bày:  Khái niệm về nhóm Zn, Zn* Ví dụ minh họa  Các bài toán về nhóm Zn, Zn*  Ứng dụng nhóm Zn, Zn* . Ví dụ 1. Khái niệm về nhóm Z n , Z n * 1.1. Khái niệm. BÁO CÁO TIỂU LUẬN Môn học: AN TOÀN DỮ LIỆU Đề bài: TRÌNH BÀY NHÓM Zn, Zn* Người thực hiện: Nguyễn Văn Uy Mã học viên: 13025208 Email: nguyenvanuy.cntt@gmail.com Sđt:. hợp các số p thuộc Z n và nguyên tố cùng nhau với n hợp thành nhóm Z n * - Kí hiệu Z n * = { p Zn gcd(p,n)=1 } - Ví dụ minh họa Z 7 *= {1,2,3,4,5,6} vì thỏa mãn gcd(1,7)= gcd(2,7)=gcd(3,7)=gcd(4,7)=gcd(5,7)=gcd(6,7)=1 Z 8 *={1,3,5,7}

Ngày đăng: 20/10/2014, 00:44

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w