Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 32 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
32
Dung lượng
684,69 KB
Nội dung
ĐẠI HỌC HUẾ TRƯỜNG ĐẠI HỌC SƯ PHẠM - - - - - TIỂU LUẬN MÔN HỌC ĐIỆN TỬ HỌC ỨNG DỤNG TRONG VẬT LÝ THỰC NGHIỆM CHUYÊN NGÀNH: VẬT LÝ LÝ THUYẾT VÀ VẬT LÝ TOÁN K21 GVHD TS. Đặng Xuân Vinh HVTH: Phạm Tùng Lâm Huế, 03- 2014 i MỤC LỤC Mục lục . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 MỞ ĐẦU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 Những nguyên lý cơ bản và các đặc trưng đo lường 4 1.1 Các định nghĩa và đặc trưng chung . . . . . . . . . . . . 4 1.2 Phân loại cảm biến . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Cảm biến tích cực . . . . . . . . . . . . . . . . . . 5 1.2.2 Cảm biến thụ động . . . . . . . . . . . . . . . . . 9 1.3 Các đại lượng ảnh hưởng . . . . . . . . . . . . . . . . . . 10 1.4 Mạch đo . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Sai số của phép đo . . . . . . . . . . . . . . . . . . . . . 13 1.5.1 Định nghĩa . . . . . . . . . . . . . . . . . . . . . 13 1.5.2 Phân loại . . . . . . . . . . . . . . . . . . . . . . 13 1.6 Chuẩn cảm biến . . . . . . . . . . . . . . . . . . . . . . . 14 1.6.1 Chuẩn đơn giản . . . . . . . . . . . . . . . . . . . 15 1.6.2 Chuẩn nhiều lần . . . . . . . . . . . . . . . . . . 15 1.7 Độ nhạy . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.7.1 Định nghĩa . . . . . . . . . . . . . . . . . . . . . 16 1.7.2 Độ nhạy trong chế độ tĩnh . . . . . . . . . . . . . 16 1.7.3 Độ nhạy trong chế độ động . . . . . . . . . . . . 17 1.8 Độ tuyến tính . . . . . . . . . . . . . . . . . . . . . . . . 18 1 1.8.1 Điều kiện có tuyến tính . . . . . . . . . . . . . . . 18 1.8.2 Đường thẳng tốt nhất - độ lệch tuyến tính . . . . 18 1.9 Độ nhanh - thời gian hồi đáp . . . . . . . . . . . . . . . 19 1.10 Giới hạn sử dụng cảm biến . . . . . . . . . . . . . . . . . 19 1.11 Các yêu cầu của cảm biến . . . . . . . . . . . . . . . . . 21 2 Cảm biến biến dạng 22 2.1 Các định nghĩa và nguyên lý chung . . . . . . . . . . . . 22 2.1.1 Định nghĩa một số đại lượng cơ học . . . . . . . . 22 2.1.2 Nguyên lý chung . . . . . . . . . . . . . . . . . . 23 2.2 Đầu đo điện tở kim loại . . . . . . . . . . . . . . . . . . 26 2.2.1 Vật liệu và phương pháp chế tạo . . . . . . . . . . 26 2.2.2 Các đặc trưng chủ yếu . . . . . . . . . . . . . . . 27 KẾT LUẬN . . . . . . . . . . . . . . . . . . . . . . . . . . 30 TÀI LIỆU THAM KHẢO . . . . . . . . . . . . . . . . . . 31 2 MỞ ĐẦU "Cảm biến" trong tiếng anh là "sensor" xuất phát từ chữ sense theo nghĩa La tinh là cảm nhận. Người xưa đã nhờ đã nhờ vào các giác quan và bộ não của mình để tìm hiểu thế giới tự nhiên và học cách sử dụng hiểu biết này nhằm mục đích khai thác thế giới xung quanh phục vụ đời sống của họ. Trong thời đại phát triển của khoa học kỹ thuật ngày nay, việc nhận biết các vật thể, hiện tượng trong thế giới bao quanh được tăng cường nhờ phát triển các dụng cụ đo lường và phân tích mà ta gọi là cảm biến. Cảm biến được định nghĩa như một dụng cụ dùng để biến đổi các đại lượng vật lý và các đại lượng không điện cần đo thành các đại lượng điện có thể đo được (như dòng điện, điện thế, điện dung, trở kháng ). Nó là thành phần quan trọng nhất trong một thiết bị đo hay trong một hệ thống điều khiển tự động. Nguyên lý hoạt động của một cảm biến, trong nhiều trường hợp thực tế, cũng chính là nguyên lý của phép đo hay của phương tiện điều khiển tự động. Ứng dụng của cảm biến biến dạng không chỉ giới hạn ở việc đo ứng lực cơ học. Trên thực tế, tất cả các đại lượng vật lý, đặc biệt là các đại lượng cơ học, đều có thể đo được bằng đầu đo biến dạng nếu tác động của chúng lên một vật trung gian làm cho vật này bị biến dạng. Thí dụ, các đại lượng như áp suất, lực, gia tốc đều có thể đo được bằng đầu đo biến dạng. Trong công nghiệp, các đại lượng cảm biến thường dùng như loại cảm biến có đầu đo điện trở kim loại, đầu đo điện trở bán dẫn-áp điện trở, ứng suất kế dây rung và các đầu đo dùng trong chế độ động. Trong giới hạn tiểu luận này, tôi chỉ xét tới cảm biến đầu đo điện trở kim loại. 3 Chương 1 Những nguyên lý cơ bản và các đặc trưng đo lường 1.1 Các định nghĩa và đặc trưng chung Các đại lượng vật lý là đối tượng đo lường như nhiệt độ, áp suất, được gọi là đại lượng cần đo, kí hiệu là m. Sau khi tiến hành các công đoạn thực nghiệm để đo m (dùng các phương tiện điện để xử lý tín hiệu) ta nhận được đại lượng điện tương ứng ở đầu ra. Đại lượng điện này cùng với sự biến đổi của nó chứa đựng tất cả các thông tin cần thiết để nhận biết m. Việc đo đạc m thực hiện được là nhờ sử dụng các cảm biến. Cảm biến là một thiết bị chịu tác động của đại lượng cần đo m không có tính chất điện và cho ta một đặc trưng mang bản chất điện (như điện tích, điện áp, dòng điện hoặc trở kháng) ký hiệu là s. Đặc trưng điện s là hàm của đại lượng cần đo m: s = F (m) (1.1) trong đó s là đại lượng đầu ra hoặc phản ứng của cảm biến và m là đại lượng đầu vào hay kích thích (có nguồn gốc là đại lượng cần đo). Việc 4 đo đạc s cho phép nhận biết giá trị của m. Để dễ sử dụng, thông thường người ta chế tạo cảm biến sao cho có sự liên hệ tuyến tính giữa biến thiên đầu ra s và biến thiên đầu vào m: s = S. m (1.2) trong đó S là độ nhạy của cảm biến. Một trong những vấn đề quan trọng khi thiết kế và sử dụng cảm biến là làm cho độ nhạy S của chúng không đổi, nghĩa là S ít phụ thuộc nhất vào các yếu tố sau: ∗ Giá trị của đại lượng cần đo m (độ tuyến tính) và tần số thay đổi của nó (dải thông), ∗ Thời gian sử dụng (độ già hóa), ∗ Ảnh hưởng của các đại lượng vật lý khác (không phải là đại lượng đo) của môi trường xung quanh. 1.2 Phân loại cảm biến Dựa trên nguyên tắc hoạt động, cảm biến được phân thành 2 loại: Cảm biến tích cực và cảm biến thụ động. 1.2.1 Cảm biến tích cực Chúng hoạt động như một máy phát (trong đó s là điện tích, điện áp hay dòng), về mặt nguyên lý cảm biến tích cực thường dựa trên hiệu ứng vật lý biến đổi một dạng năng lượng nào đó (nhiệt, cơ hoặc bức xạ) thành năng lượng điện. Một số hiệu ứng thường gặp: 5 ∗ Hiệu ứng nhiệt điện: Giữa các đầu ra của hai dây dẫn có bản chất hóa học khác nhau được hàn lại với nhau thành một mạch điện có nhiệt độ ở hai mối hàn là T 1 và T 2 sẽ xuất hiện một suất điện động e(T 1 , T 2 ). Hiệu ứng này được ứng dụng để đo nhiệt độ T 1 khi biết trước nhiệt độ T 2 . Hình 1.1: Ứng dụng của hiệu ứng nhiệt điện ∗ Hiệu ứng hỏa điện: Một số tinh thể (gọi là tinh thể hỏa điện ví dụ như tinh thể sulfate triglycine) có tính phân cực điện tự phát phụ thuộc vào nhiệt độ. Trên các mặt đối diện của chúng tồn tại những điện tích trái dấu có độ lớn tỷ lệ thuận với độ phân cực điện. Hiệu ứng hỏa điện được ứng dụng để đo thông lượng của bức xạ ánh sáng. Hình 1.2: Ứng dụng của hiệu ứng hỏa điện ∗ Hiệu ứng áp điện: Khi tác dụng lực cơ học lên một vật làm bằng vật liệu áp điện, thí dụ thạch anh, sẽ gây nên biến dạng của vật 6 đó và làm xuất hiện lượng điện tích bằng nhau nhưng trái dấu trên các mặt đối diện của vật. Hiệu ứng này được ứng dụng để xác định lực hoặc các đại lượng gây nên lực tác dụng vào vật liệu áp điện (áp suất, gia tốc, .) thông qua việc đo điện áp trên hai bản cực của tụ điện. Hình 1.3: Ứng dụng của hiệu ứng áp điện ∗ Hiệu ứng cảm ứng điện từ: Trong một dây dẫn hay khung dây chuyển động trong từ trường không đổi sẽ xuất hiện một suất điện động tỷ lệ với từ thông gởi qua dây trong một đơn vị thời gian.Hiệu ứng này được ứng dụng để xác định tốc độ dịch chuyển của vật thông qua việc đo suất điện động cảm ứng. Hình 1.4: Ứng dụng của hiệu ứng cảm ứng điện từ ∗ Hiệu ứng quang điện: Khi chiếu vào vật liệu một bức xạ ánh sáng có bước sóng nhỏ hơn giá trị ngưỡng của vật liệu thì giải phóng các hạt dẫn tự do. Hiệu ứng này được ứng dụng để chế tạo các cảm biến quang (thí dụ các công tắc tự động đóng ngắt đèn chiếu sáng công 7 cộng). ∗ Hiệu ứng quang phát xạ điện tử: là hiện tượng các điện tử được giải phóng thoát ra khỏi vật liệu tạo thành dòng được thu lại dưới tác dụng của điện trường. ∗ Hiệu ứng quang điện trong chất bán dẫn: Khi một chuyển tiếp P - N được chiếu sáng sẽ phát sinh ra các cặp điện tử - lỗ trống, chúng chuyển động dưới tác dụng của điện trường của chuyển tiếp làm thay đổi hiệu điện thế giữa hai đầu chuyển tiếp. ∗ Hiệu ứng quang-điện-từ: Khi tác dụng một từ trường B vuông góc với bức xạ ánh sáng, trong vật liệu bán dẫn được chiếu sáng sẽ xuất hiện một hiệu điện thế theo hướng vuông góc với từ trường B và với hướng bức xạ ánh sáng. Hiệu ứng này cho phép nhận được dòng hoặc thế phụ thuộc vào độ chiếu sáng. Hình 1.5: Ứng dụng của hiệu ứng quang điện từ ∗ Hiệu ứng Hall: Trong một vật liệu (thường là bán dẫn) dạng tấm mỏng có dòng điện chạy qua đặt trong từ trường B có phương tạo thành góc θ với dòng điện I sẽ xuất hiện một hiệu điện thế V H theo hướng vuông góc với B và I. Biểu thức của hiệu điện thế V H có dạng: V H = K H .I.B.sinθ (1.3) trong đó K H là hệ số phụ thuộc vào vật liệu và kích thước hình học 8 của mẫu. Hiệu ứng Hall được ứng dụng để xác định vị trí của một vật chuyển động. Vật này được ghép nối cơ học với một thanh nam châm. Ở mọi thời điểm, vị trí của thanh nam châm xác định giá trị của từ trường B và góc θ tương ứng với tấm bán dẫn mỏng dùng làm vật trung gian. Vì vậy, hiệu điện thế V H đo được giữa hai cạnh của tấm bán dẫn trong trường hợp này (một cách gián tiếp) là hàm phụ thuộc vào vị trí của vật trong không gian. Hình 1.6: Ứng dụng của hiệu ứng Hall 1.2.2 Cảm biến thụ động Cảm biến thụ động thường được chế tạo từ những trở kháng có một trong các thông số chủ yếu nhạy với đại lượng cần đo. Một mặt giá trị của trở kháng phụ thuộc vào kích thước hình học của mẫu, mặt khác nó cũng phụ thuộc vào tính chất điện của vật liệu như điện trở suất ρ, từ thẩm µ, hằng số điện môi ε. Vì vậy, giá trị của trở kháng thay đổi dưới tác dụng của đại lượng đo ảnh hưởng riêng biệt đến kích thước hình học, tính chất điện hoặc ảnh hưởng đồng thời đến kích thước hình học và tính chất điện của vật liệu. Thông số hình học hoặc kích thước của trở kháng có thể thay đổi nếu cảm biến có phần từ chuyển động hoặc phần tử biến dạng. Trong 9 [...]... trưng điện, cơ và kích thước của cảm biến, - Áp suất, gia tốc, dao động (rung) có thể gây nên biến dạng và ứng suất trong một số phần tử cấu thành của cảm biến làm sai lệch tín hiệu hồi đáp, - Độ ẩm có thể làm thay đổi tính chất điện của vật liệu như hằng số điện môi ε, điện trở suất ρ, - Từ trường có thể gây nên suất điện động cảm ứng chồng lên tín hiệu có ích, ngoài ra nó còn làm thay đổi tính chất điện. .. hợp thứ nhất, cảm biến có chứa phần tử động, mỗi vị trí của phần tử chuyển động tương ứng với một giá trị của trở kháng cho nên đo trở kháng sẽ xác định được vị trí của đối tượng Đây là nguyên lý của nhiều loại cảm biến vị trí hoặc dịch chuyển (cảm biến điện thế, cảm biến cảm ứng có lõi động, tụ điện dùng bản cực di động, ) Trong trường hợp thứ hai, cảm biến có phần tử biến dạng Sự biến dạng được gây... tuyến tính hóa, có tác dụng làm cho tín hiệu điện tỷ lệ với sự thay đổi của đại lượng đo 1.8.2 Đường thẳng tốt nhất - độ lệch tuyến tính Khi chuẩn cảm biến người làm thực nghiệm nhận được một loạt các điểm tương ứng của si mi thường không nằm trên một đường thẳng Đó là vì có sự không chính xác trong khi đó và những sai lệch trong khi chế tạo cảm biến Tuy nhiên, từ các điểm thực nghiệm có thể tính được... tác dụng trực tiếp hoặc gián tiếp lên cảm biến Sự thay đổi của trở kháng (do biến dạng) liên quan đến lực tác động lên cấu trúc, nghĩa là tác động của đại lượng cần đo được biến đổi thành tín hiệu điện (hiệu ứng áp trở) Phụ thuộc vào bản chất của các vật liệu khác nhau, tính chất điện của chúng có thể nhạy với nhiều đại lượng vật lý như nhiệt độ, độ chiếu sáng, áp suất, độ ẩm, Nếu chỉ có một trong. .. đánh giá độ an toàn cho cho hoạt động của thiết bị là xác định ứng lực cơ học tác động lên các cấu trúc trong những điều kiện xác định Kết quả của sự tác động này là sự biến dạng của môi trường chịu ứng lực Quan hệ giữa ứng lực và biến dạng có thể được làm sáng tỏ bằng lý thuyết sức bền vật liệu và dựa vào mối quan hệ đó người ta tính được ứng lực khi đo biến dạng do nó gây ra Các cảm biến dùng để đo... khoảng thời gian khác nhau đặc trưng cho chế độ quá độ vậy người sử dụng phải biết các giới hạn ngưỡng của cảm biến và tuân thủ chúng trong khi sử dụng cảm biến - Vùng làm việc danh định: Vùng này tương ứng với những điều kiện sử dụng bình thường của cảm biến Biên giới của vùng là các giá trị ngưỡng mà các đại lượng đo, các đại lượng vật lý có liên quan đến đại lượng đo hoặc các đại lượng ảnh hưởng có... 2.2 Đầu đo điện tở kim loại Điện trở suất ρ của phần lớn các kim loại giảm khi áp suất tác dụng lên chúng tăng lên Dưới tác dụng của áp suất, thể tích của kim loại giảm xuống, khoảng cách giữa các nguyên tử cũng giảm đi, lực liên kết tăng lên Khi lực liên kết tăng lên thì dao động của nguyên tử giảm xuống và vì thế xác suất tán xạ cũng giảm theo Kết quả của những tác động trên đây làm cho điện trở suất... quả của những tác động trên đây làm cho điện trở suất của kim loại giảm xuống 2.2.1 Vật liệu và phương pháp chế tạo Các kim loại sử dụng làm điện trở phần lớn thuộc họ hợp kim Ni Bảng 5.1 liệt kê thành phần các hợp kim thường sử dụng và hệ số đầu đo tương ứng Các vật liệu khác nhau ở tính chất nhiệt (hệ số giãn nở, hệ số điện trở) và độ ổn định của chúng ở nhiệt độ cao Các đầu đo dùng dây dẫn biểu diễn... nguyên lý làm việc của cảm biến và các đại lượng liên quan, ví dụ + + Ω đối với nhiệt điện trở 0C µV 0C đối với cặp nhiệt Đối với các cảm biến khác nhau dùng dựa trên một nguyên lý vật lý, trị số của độ nhạy S có thể phụ thuộc vào vật liệu, kích thước hay kiểu lắp ráp Ngoài ra, độ nhạy có thể là hàm của các thông số bổ sung nếu như các thông số này ảnh hưởng đến hồi đáp của cảm biến 1.7.2 Độ nhạy trong. .. lượng điện ở đầu ra tương ứng với các giá trị không đổi mi của đại lượng đo khi đại lượng này đạt chế độ làm việc danh định Đặc trưng tĩnh của cảm biến chính là dạng chuyển đổi đồ thị của việc chuẩn đó và điểm làm việc Qi của cảm biến chính là đặc trưng tĩnh tương ứng với các giá trị mi , si Độ nhạy trong chế độ tĩnh ở điểm làm việc Qi bằng tỷ số giữa số gia s và m tương ứng Như vậy, độ nhạy trong . ĐẠI HỌC HUẾ TRƯỜNG ĐẠI HỌC SƯ PHẠM - - - - - TIỂU LUẬN MÔN HỌC ĐIỆN TỬ HỌC ỨNG DỤNG TRONG VẬT LÝ THỰC NGHIỆM CHUYÊN NGÀNH: VẬT LÝ LÝ THUYẾT VÀ VẬT LÝ TOÁN K21 GVHD TS. Đặng. cực điện. Hiệu ứng hỏa điện được ứng dụng để đo thông lượng của bức xạ ánh sáng. Hình 1.2: Ứng dụng của hiệu ứng hỏa điện ∗ Hiệu ứng áp điện: Khi tác dụng lực cơ học lên một vật làm bằng vật. nên lực tác dụng vào vật liệu áp điện (áp suất, gia tốc, .) thông qua việc đo điện áp trên hai bản cực của tụ điện. Hình 1.3: Ứng dụng của hiệu ứng áp điện ∗ Hiệu ứng cảm ứng điện từ: Trong một