1. Trang chủ
  2. » Trung học cơ sở - phổ thông

MỘT số đề THI vào lớp 10 – hà nội từ năm 1988 đến 2010

22 1,6K 31

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 2,25 MB

Nội dung

MỘT số đề THI vào lớp 10 – hà nội từ năm 1988 đến 2010 MỘT số đề THI vào lớp 10 – hà nội từ năm 1988 đến 2010 MỘT số đề THI vào lớp 10 – hà nội từ năm 1988 đến 2010 MỘT số đề THI vào lớp 10 – hà nội từ năm 1988 đến 2010 MỘT số đề THI vào lớp 10 – hà nội từ năm 1988 đến 2010 MỘT số đề THI vào lớp 10 – hà nội từ năm 1988 đến 2010 MỘT số đề THI vào lớp 10 – hà nội từ năm 1988 đến 2010 MỘT số đề THI vào lớp 10 – hà nội từ năm 1988 đến 2010 MỘT số đề THI vào lớp 10 – hà nội từ năm 1988 đến 2010

T liÖu «n thi vµo líp 10 NguyÔn V¨n T©m MỘT SỐ ĐỀ THI VÀO LỚP 10 – HÀ NỘI TỪ NĂM 1988 ĐẾN 2010 ĐỀ 1 (năm học 1988 – 1989) Bài 1: (2,5 điểm) Cho biểu thức A = 22 2 2 3 : 4 4 2 2 2 2 xx x x x x x x x − −         − − + − − − + a) Rút gọn. b) Tính số trị của A khi x =1 Bài 2: (2,5 điểm) Giải bài toán bằng cách lập phương trình Một xe tải đi từ tỉnh A đến tỉnh B với vận tốc 40 km/h. Sau khi đi được 1 giờ 30 phút một xe con cũng khởi hành từ tỉnh A đến tỉnh B với vận tốc 60 km/h. Hai xe gặp nhau khi chúng đã đi được một nửa quãng đường AB. Tính quãng đường AB. Bài 3: Cho tứ giác ABCD nội tiếp được trong một đường tròn và P là trung điểm của cung AB không chứa C và D. Hai dây PC lần lượt cắt dây AB tại E và F. Các dây AD và PC kéo dài cắt nhau tại I; các dây BC và PD kéo dài cắt nhau tại K. CHứng minh rằng: a) góc CID = góc CKD. b) Tứ giác CDFE nội tiếp được c) IK//AB d) Đường tròn ngoại tiếp ∆AEF tiếp xúc với PA tại A. Bài 4: (1 điểm) Tìm giá của x để biểu thức M = (2x – 1) 2 - 3 212 +−x đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó. ĐỀ 2: (năm học 1989 – 1990) Bài 1: Cho A = 144 1 : 21 1 14 5 21 2 1 22 ++ −       − − − − + − xx x x x x x a) Rút gọn A và nêu điều kiện phải có của x b) Tính giá trị của x để A = -1/2 Bài 2: Giải bài toán bằng cách lập phương trình Một ô tô dự định đi từ tỉnh A đến tỉnh B với vận tốc 50km/h. Sau khi đi được 2/3 quãng đường với vận tốc đó, vì quãng đường khó đi nên người lái xe phải giảm vận tốc mỗi giờ 10km trên quãng đường còn lại. Do đó ô tô đến tỉnh B chậm 30 phút so với dự định. Tính quãng đường AB. Bài 3: Xét hình vuông ABCD và một điểm E bất kỳ trên cạnh BC. Tia Ax vuông góc với AE cắt cạnh CD kéo dài tại F, kẻ trung tuyến AI của ∆AFE và kéo dài cắt cạnh CD tại K. Đường thẳng qua E và song song với AB cắt AI tại G. a) Chứng minh AE = AF. b) chứng minh tứ giác EGFK là hình thoi. Trêng THCS Xu©n Canh 1 T liÖu «n thi vµo líp 10 NguyÔn V¨n T©m c) CHứng minh ∆AKF~ ∆CAF và AF 2 = KF.CF d) Giả sử E chuyển động trên cạnh BC. Chứng minh rằng EK = BE + DK và chu vi ∆ECK không đổi. Bài 4: Tìm giá trị của x để biểu thức y = 2 2 19892 x xx +− đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó. ĐỀ 3: (năm học 1990 – 1991) Bài 1: Cho biểu thức P =         + − −         − + + − − − 13 23 1: 19 8 13 1 13 1 x x x x xx x a) Rút gọn P b) Tính giá trị của x để P = 6/5 Bài 2: Giải bài toán bằng cách lập phương trình Một xe tải và một xe con cùng khởi hành từ tỉnh A đến tỉnh B. Xe tải đi với vận tốc 30km/h, xe con đi với vận tốc 45km/h. Sau khi đi được ¾ quãng đường AB, xe con tăng thêm vận tốc 5km/h nữa trên quãng đường còn lại. Tính quãng đường AB, biết rằng xe con đến tỉnh B sớm hơn xe tải 2 giờ 20 phút. Bài 3: Cho đường tròn (O), một dây AB và một điểm C ở ngoài đường tròn nằm trên tia AB. Từ điểm chính giữa của cung lớn AB kẻ đường kính PQ của đường tròn cắt dây AB tại D. Tia CP cắt đường tròn tại điểm thứ hai I. Các dây AB và QI cắt nhau tại K. a) Chứng minh tứ giác PDKI nội tiếp được. b) Chứng minh CI.CP = CK.CD c) Chứng minh IC là tia phân giác của góc ngoài tại đỉnh I của ∆IAB. d) Giả sử A, B, C cố định. Chứng minh rằng khi đường tròn (O) thay đổi nhưng vẫn đi qua A, B thì đường thẳng Qi luôn đi qua một điểm cố định. Bài 4: Tìm giá trị của x để biểu thức y = x - 1991−x đạt giá trị nhỏ nhất , tìm giá trị nhỏ nhất đó. ĐỀ 4: (năm 1991 – 1992) Bài 1: Trêng THCS Xu©n Canh 2 T liÖu «n thi vµo líp 10 NguyÔn V¨n T©m Xét biểu thức Q = ( )( )       + + − − − + −+ −         − − − 3 2 2 3 23 9 :1 9 3 x x x x xx x x xx a) Rút gọn Q b) tính giá trị của x để Q < 1 Bài 2: Giải bài toán bằng cách lập phương trình Một đoàn xe vận tải dự định điều hành một số xe cùng loại để vận chuyển 40 tấn hàng. Lúc sắp khởi hành, đoàn được giao thêm 14 tấn hàng nữa. Do đó phải điều thêm 2 xe cùng loại và mỗi xe ban đầu phải chở thêm 0,5 tấn. Tính số lượng xe phải điều theo dự định, biế rằng mỗi xe đều phải chở số hàng như nhau. Bài 3: Cho đoạn thẳng AB và một điểm C nằm giữa A và B. Người ta kẻ trên nửa mặt phẳng bờ AB hai tia Ax và By vuông góc với AB. Trên tia Ax lấy một điểm I. Tia vuông góc với CI tại C cắt By tại K. Đường tròn đường kính IC cắt IK tại P. a) CHứng minh tứ giác CPKB nội tiếp được. b) chứng minh AI.BK = AC. CB c) CHứng minh ∆APB vuông. d) Giả sử A, B, I cố định. Hãy xác định vị trí của điểm C sao cho diện tích hình thang vuông ABKI lớn nhất. Bài 4: Chứng minh rằng các đường thẳng có phương trình y = (m – 1)x + 6m – 1991 (m tùy ý)luôn đi qua một điểm duy nhất mà ta có thể xác định được toạ độ của nó. ĐỀ 5: (năm học 1993 – 1994) Bài 1: Cho biểu thức B =         ++ + −         − − − + 1 2 1: 1 1 1 2 xx x xxx xx a) Rút gọn B b) Tính B khi x = 325 + Bài 2: Giải bài toán bằng cách lập phương trình Hai người thợ cùng làm một công việc trong 7 giờ 12 phút thì xong công việc. Nếu người thứ nhất làm trong 5 giờ và người thứ hai làm trong 6 giờ thì cả hai người làm được ¾ công việc. Hỏi mỗi người làm riêng công việc đó mấy giờ thì xong? Bài 3: Cho nửa đường tròn tâm O đường kính AB và K là điểm chính giữa cung AB. Trên cung AB lấy một điểm M (khác K, B). Trên tia AM lấy điểm N sao cho: AN = BM. Kẻ dây BP // KM. Gọi Q là giao điểm của các đường thẳng AP và BM. a) So sánh ∆AKN và ∆BKM. b) chứng minh ∆KMN vuông cân. Trêng THCS Xu©n Canh 3 T liÖu «n thi vµo líp 10 NguyÔn V¨n T©m c) Tứ giác ANKP là hình gì? Tại sao? d) Gọi R, S lần lượt là giao điểm thứ hai của QA, QB với đường tròn ngoại tiếp ∆OMP. CHứng minh rằng khi M di động trên cung KB thì trung điểm I của RS luôn nằm trên một đường tròn cố định. Bài 4: Giải phương trình x x x x 2 2 1 2 1 1 + = + + + ĐỀ 6: (năm học 1994 – 1995) Bài 1: Cho biểu thức M =         − + − + + +         − − + + + + 12 2 12 1 1:1 12 2 12 1 x xx x x x xx x x a) Rút gọn M b) Tính giá trị của M khi x = )223( 2 1 + Bài 2: Giải bài toán bằng cách lập phương trình Hai vòi nước cùng chảy vào một bể không có nước và chảy đầy bể trong 4 giờ 48 phút. Nếu chảy riêng thì vòi thứ nhất có thể chảy đầy bể nhanh hơn vòi thứ hai là 4 giờ. Hỏi nếu chảy riêng thì mỗi vòi sẽ chảy đầy bể trong bao lâu? Bài 3: Cho hai đường tròn (O1) và (O2) tiếp xúc ngoài nhau tại A và tiếp tuyến chung Ax. Một đường thẳng d tiếp xúc với (O1) và (O2) lần lượt tại các điểm B, C và cắt Ax tại điểm M. Kẻ các đường kính BO 1 D, CO 2 E. a) Chứng minh rằng M là trung điểm của BC. b) Chứng minh rằng ∆O 1 MO 2 vuông c) Chứng minh rằng B, A, E thẳng hàng; C, A, D thẳng hàng. d) Gọi I là trung điểm của DE. Chứng minh rằng đường tròn ngoại tiếp ∆IO 1 O 2 tiếp xúc với đường thẳng BC. Bài 4: Tìm m để hệ phương trình sau đây có nghiệm. x 2 – (2m – 3)x – 6 = 0 2x 2 + x + (m – 5) = 0 Đề 7: (năm học 1995 – 1996) Bài 1: (2,5 điểm) Trêng THCS Xu©n Canh 4 T liÖu «n thi vµo líp 10 NguyÔn V¨n T©m Cho biểu thức A =         − + − − +         − − 1 2 2 1 : 1 1 1 a a a a aa a) Rút gọn biểu thức A b) Tìm các giá trị của a để A > 6 1 Bài 2: Cho phương trình x 2 – 2(m + 2)x + m + 1 = 0 ( x là ẩn) a) Giải phương trình khi m = 2 3 − b) Tìm các giá trị của m đ ể phương trình có hai nghiệm tr ái dấu. c) G ọi x 1 , x 2 là hai nghi ệm của phư ơng tr ình. T ìm giá trị của m để: x 1 (1 – 2x 2 ) –x 2 (1 – 2x 1 ) = m 2 Bài 3: Cho ∆ABC (AC > AB, góc BAC > 90 0 ), I, K theo thứ tự là các trung điểm của AB, AC. Các đường tròn đường kính AB, AC cắt nhau tại điểm thứ hai D, tia BA cắt đường tròn (K) tại điểm thứ hai E, tia CA cắt đường tròn (I) tại điểm thứ hai F. a) Chứng minh ba điểm B, C, D thẳng hàng. b) CHứng minh tứ giác BFEC nội tiếp được. c) CHứng minh ba đường thẳng AD, BF, CE đồng qui. d) Gọi H là giao điểm thứ hai của tia DF với đường tròn ngoại tiếp ∆AEF. Hãy so sánh độ dài các đoạn thẳng DH, DE. Bài 4: Xét các phương trình bậc hai ax 2 + bx + c = 0 (1) cx 2 + bx + a = 0 (2) Tìm hệ thức giữa a, b, c là điều kiện cần và đủ để hai phương trình trên có một nghiệm chung duy nhất. Đề 8 (năm học 1996 – 1997) Bài 1: Cho biểu thức         − − −         −+− − − + = 1 2 1 1 : 1 22 1 1 x xxxxx x x A a) Rút gọn A b) Với giá trị nào của x thì A đạt giả trị nhỏ nhất và tìm giá trị nhỏ nhất đó. Bài 2: Giải bài toán bằng cách lập phương trình Trêng THCS Xu©n Canh 5 T liÖu «n thi vµo líp 10 NguyÔn V¨n T©m Một người đi xe máy từ A đến B cách nhau 120km với vận tốc dự định trước. Sau khi đi được 1/3 quãng đường AB người đó tăng thêm vận tốc 10km/h trên quãng đường còn lại. tìm vận tốc dự định và thời gian lăn bánh trên đường, biết rằng người đó đến B sớm hơn dự định 24 phút. Bài 3: Cho đường tròn (O) báng kính R và một dây BC cố định. Goi A là điểm chính giữa của cung nhỏ BC. Lấy điểm M bất kỳ trên cung nhỏ AC, kẻ tia Bx vuông góc với tia MA ở I và cắt tia CM tại D. a) Chứng minh góc AMD = góc ABC và MA là tia phân giác của góc BMD. b) CHứng minh A là tâm đường tròn ngoại tiếp ∆BCD và góc BDC có độ lớn không phụ thuộc vào vị trí điểm M. c) Tia DA cắt BC tại E và cắt đường tròn (O) tại điểm thứ hai F, chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp ∆BEF. d) Chứng minh tích P = AE. AF không đổi khi M di động. Tính P theo bán kính R và góc ABC = α Bài 4: Cho hai bất phương trình 3mx – 2m > x + 1 (1) m – 2x < 0 (2) Tìm m để hai bất phương trình trên có cùng một tập hơp nghiệm. Đề 9: (năm học 1997 – 1998) Bài 1: Cho biểu thức A =         − + + − + ++ + 1 2 1 1 1 1 : xx x xxx x x a) Rút gọn A b) Tìm x để A = 7 Bài 2: Giải bài toán bằng cách lập phương trình Một công nhân dự định làm 72 sản phẩm trong một thời gian đã định. Nhưng trong thực tế xí nghiệp lại giao làm 80 sản phẩm. Vì vạy mặc dù người đó đã làm mỗi giờ thêm 1 sản phẩm song thời gian hoàn thành công việc vẫn chậm so với dự định là 12 phút. Tính năng suất dự kiến, biết rằng mỗi giờ người đó làm không quá 20 sản phẩm. Bài 3: Cho đường tròn (O) bán kính R và một dây AB cố định (AB <2R) một điểm M bất kỳ nằm trên cung lớn AB (M khác A, B). Gọi I là trung điểm của dây AB và (O’) là đường tròn qua M, tiếp xúc với AB tại A. Đường thẳng MI cắt (O), (O’) lần lượt tại các giao điểm thứ hai là N, P. a) Chứng minh IA 2 = IP. IM b) Chứng minh tứ giác ANBP là hình bình hành. c) Chứng minh IB là tiếp tuyến của đường tròn ngoại tiếp ∆MBP. d) Chứng minh rằng khi M di chuyển thì trọng tâm G của ∆PAB chạy trên một cung tròn cố định. Bài 4: Trong hệ toạ độ vuông góc xOy cho Parabol: y = x 2 (P) Trêng THCS Xu©n Canh 6 T liÖu «n thi vµo líp 10 NguyÔn V¨n T©m Và đường thẳng y = x + m (d). Tìm m để (d) cắt hai nhánh của (P) tại A và B sao cho ∆AOB vuông tại O? Đề 10: (năm 2006 – 2007) Bài 1: Cho biểu thức P= ( )( )       − + +       − + − −+ ++ 1 1 1 1 : 1 12 23 aa a aa aa aa a) Rút gọn biểu thức P b) Tìm a để 1 8 11 ≥ + − a P Bài 2: Giải bài toán bằng cách lập phương trình Một ca nô xuôi dòng trên một khúc sông từ bến A đến bến B dài 80km, sau đó lại ngược dòng đến địa điểm C cách bến B 72 km, thời gian ca nô xuôi dòng ít hơn thời gian ngược dòng là 15 phút. Tính vận tốc riêng của ca nô biết vận tốc của dòng nước là 4km/h Bài 3: Tìm toạ độ giao điểm A và B của đồ thị hai hàm số y = 2x + 3 và y = x 2 . Gọi D và C lần lượt là hình chiếu vuông góc của A và B trên trục hoành. Tính diện tích tứ giác ABCD. Bài 4: Cho (O) đường kính AB = 2R, C là trung điểm của OA và dây MN vuông góc với OA tại C. Gọi K là điểm tuỳ ý trên cung nhỏ BM, H là giao điểm của AK và MN. a) CHứng minh tứ giác BCHK là tứ giác nội tiếp. b) Tính tích AH.AK theo R. c) Xác định vị trí của điểm K để tổng (KM + KN + KB) đạt giá trị lớn nhất và tính giá trị lớn nhất đó. Bài 5 Cho hai số dương x, y thoả mãn điều kiện x + y = 2 Chứng minh x 2 y 2 (x 2 + y 2 ) ≤ 2 Đ Ề 11: [2007 – 2008] – HÀ NỘI Ngày 20 – 6 – 2007 – Thời gian 120 phút Trêng THCS Xu©n Canh 7 T liÖu «n thi vµo líp 10 NguyÔn V¨n T©m Bài 1 ( 2,5 điểm) Cho biểu thức: P = 1 46 1 3 1 − − − + + − x x xx x 1/ Rút gọn biểu thức P 2/ Tìm x để 2 1 <P Bài 2 ( 2,5 điểm) Giải bài toán sau bằng cách lập phương trình: Một người đi xe đạp từ A đến B cách nhau 24 km. Khi từ B trở về A người đó tăng vận tốc lên 4 km/h so với lúc đi, vì vậy thời gian về ít hơn thời gian đi 30 phút. Tính vận tốc của xe đạp khi đi từ A đến B. Bài 3 ( 1 điểm) Cho phương trình 1/ Giải phương trình khi và . 2/ Tìm b, c để phương trình đã cho có hai nghiệm phân biệt và tích của chúng bằng 1. Bài 4 ( 3,5 điểm) Cho đường tròn (O; R) tiếp xúc với đường thẳng d tại A. Trên d lấy điểm H không trùng với điểm A và AH < R. Qua H kẻ đường thẳng vuông góc với d, đường thẳng này cắt đường tròn tai hai điểm E và B ( E nằm giữa B và H ). 1/ Chứng minh và 2/ Lấy điểm C trên d sao cho H là trung điểm của đoạn thẳng AC, đường thẳng CE cắt AB tại K. Chứng minh AHEK là tứ giác nội tiếp. 3/ Xác định vị trí điểm H để . Bài 5 ( 0,5 điểm) Cho đường thẳng Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng đó là lớn nhất Đ Ề 12: (NĂM HỌC 2008-2009) – ĐỀ CHÍNH THỨC Trêng THCS Xu©n Canh 8 T liÖu «n thi vµo líp 10 NguyÔn V¨n T©m Ngày thi: 18 – 6 – 2008 Bài 1 ( 2,5 điểm ) Cho biểu thức: xx x x x x P +         + += : 1 1 1) Rút gọn P 2) Tìm giá trị của P khi x = 4 3) Tìm x để P = 3 13 Bài 2 ( 2,5 điểm )Giải bài toán sau bằng cách lập phương trình: Tháng thứ nhất hai tổ sản xuất được 900 chi tiết máy. Tháng thứ hai tổ I vươt mức 15% và tổ II vượt mức 10% so với tháng thứ nhất, vì vậy hai tổ đã sản xuất được 1010 chi tiết máy. Hỏi tháng thứ nhất mỗi tổ sản xuất được bao nhiêu chi tiết máy? Bài 3 ( 3,5 điểm ) Cho parabol (P): y = 2 4 1 x và đường thẳng (d): y = mx + 1 1) Chứng minh với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. 2) Gọi A, B là hai giao điểm của (d) và (P). Tính diện tích tam giác OAB theo m (O là gốc tọa độ) Bài IV (3,5 điểm ) Cho đường tròn (O) có đường kính AB = 2R và E là điểm bất kì trên đường tròn đó (E khác A và B). Đường phân giác góc AEB cắt đoạn thẳng AB tại F và cắt đường tròn (O) tại điểm thứ hai là K. 1) Chứng minh tam giác KAF đồng dạng với tam giác KEA 2) Gọi I là giao điểm của đường trung trực đoạn EF với OE, chứng minh đường tròn (I) bán kính IE tiếp xúc với đường tròn (O) tại E và tiếp xúc với đường thẳng AB tại F. 3) Chứng minh MN // AB, trong đó M và N lần lượt là giao điểm thứ hai của AE, BE với đường tròn (I). 4) Tính giá trị nhỏ nhất của chu vi tam giác KPQ theo R khi E chuyển động trên đường tròn (O), với P là giao điểm của NF và AK; Q là giao điểm của MF và BK. Bài V ( 0,5 điểm ) Tìm giá trị nhỏ nhất của biểu thức A, biết: ĐỀ 13: SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Trêng THCS Xu©n Canh 9 T liÖu «n thi vµo líp 10 NguyÔn V¨n T©m ––––––––––– ĐỀ CHÍNH THỨC Năm học 2009-2010 Môn thi: Toán Ngày thi: 24 tháng 6 năm 2009 Thời gian làm bài: 120 phút C©u I. (2,5 điểm) Cho biểu thức: víi , x A x x x x x = + + ≥ ≠ − − + 1 1 0 4 4 2 2 1. Rút gọn biểu thức A. 2. Tính giá trị của biểu thức A khi x = 25 . 3. Tìm giá trị của x để A − = 1 3 . C©u II. (2,5 điểm) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình Hai tổ sản xuất cùng may một loại áo. Nếu tổ thứ nhất may trong 3 ngày, tổ thứ hai may trong 5 ngày thì cả hai tổ may được 1310 chiếc áo. Biết rằng trong một ngày tổ thứ nhất may được nhiều hơn tổ thứ hai là 10 chiếc áo. Hỏi mỗi tổ trong một ngày may được bao nhiêu chiếc áo? C©u III. (1,0 điểm) Cho phương trình (ẩn x): ( ) x m x m− + + + = 2 2 2 1 2 0 1. Giải phương trình đã cho khi m = 1. 2. Tìm giá trị của m để phương trình đã cho có 2 nghiệm phân biệt ,x x 1 2 thoả mãn hệ thức: x x+ = 2 2 1 2 10 C©u IV. (3,5 điểm) Cho đường tròn (O, R) và điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm) 1. Chứng minh ABOC là tứ giác nội tiếp. 2. Gọi E là giao điểm của BC và OA. Chứng minh BE vuông góc với OA và OE.OA = R 2 . 3. Trên cung nhỏ BC của đường tròn (O, R) lấy điểm K bất kỳ (K khác B, C). Tiếp tuyến tại K của đường tròn (O, R) cắt AB, AC theo thứ tự tại P, Q. Chứng minh tam giác APQ có chu vi không đổi khi K chuyển động trên cung nhỏ BC. 4. Đường thẳng qua O và vuông góc với OA cắt các đường thẳng AB, AC theo thứ tự tại M, N. Chứng minh rằng PM QN MN+ ≥ . C©u V. (0,5 điểm) Giải phương trình: ( ) x x x x x x− + + + = + + + 2 2 3 2 1 1 1 2 2 1 4 4 2 . Đề 14: (Đề thi vào 10 – Hà Nội năm học 2010 – 2011) Bài 1: (2,5 điểm) Trêng THCS Xu©n Canh 10 [...]... 1 x = 0 x2 + x + Tp nghim: S = 0,25 { } 1 ;0 2 Trờng THCS Xuân Canh 18 T liệu ôn thi vào lớp 10 Nguyễn Văn Tâm 14: Bi 1: Bi 2: Bi 3: Trờng THCS Xuân Canh 19 T liệu ôn thi vào lớp 10 Nguyễn Văn Tâm Bi 4: Trờng THCS Xuân Canh 20 T liệu ôn thi vào lớp 10 Trờng THCS Xuân Canh Nguyễn Văn Tâm 21 T liệu ôn thi vào lớp 10 Nguyễn Văn Tâm Bi 5: Trờng THCS Xuân Canh 22 ... h phng trỡnh 2.5 * Gi: S ỏo t may c trong 1 ngy l x ( x Ơ; x > 10) S ỏo t may c trong 1 ngy l y ( y Ơ, y 0) * Chờnh lch s ỏo trong 1 ngy gia 2 t l: x y = 10 * Tng s ỏo t may trong 3 ngy, t may trong 5 ngy l: 3x + 5y = 1 310 y = x 10 x y = 10 Ta có hệ 3x + 5y = 1 310 3x + 5( x 10) = 1 310 Kt lun: y = x 10 8x 50 = 1 310 x = 170 ( thoả mãn điều kiện ) y = 160 Mi ngy t may c 170(ỏo),... x (chi tit) Thỏng th hai t th nht vt mc 15% nờn lm c 115%x = 1,15x (chi tit) Thỏng th hai t hai vt mc 10% nờn lm c 110% (900 x) = 1,1(900 x) (chi tit) Thỏng th hai c hai t lm c 101 0 chi tit Nờn ta cú phng trỡnh: Trờng THCS Xuân Canh 11 T liệu ôn thi vào lớp 10 Nguyễn Văn Tâm 1,15x + 1,1(900 x) = 101 0 Gii ra ta c x = 400 (TMK) Bi 3: 1) Xột phng trỡnh honh giao im ca (d) v (P): 1 2 x = mx + 1 x2 ... Xuân Canh 0,5 0,5 16 T liệu ôn thi vào lớp 10 Nguyễn Văn Tâm PK + KQ = PB + QC AP + PK + KQ + AQ = AP + PB + QC + QA AP + PQ + QA = AB + AC 4.4 0,5 Cỏch 1 Chu vi APQ = AB + AC = Không đổi 0,5 MOP ng dng vi NQO OM MP Suy ra: = QN NO MN 2 MP.QN = OM ON = 4 Bđt Côsi ( MP + QN ) 2 MN MP + QN ( đpcm ) MN 2 = 4MP.QN Trờng THCS Xuân Canh 17 Cỏch 2 T liệu ôn thi vào lớp 10 Nguyễn Văn Tâm 0,5 * Gi H l... (a2 + b2 + 2ab)2 (a + b)4 A = = 8 2 2 Đẳng thức xảy ra khi và chỉ khi a = b = 1, hay x = 2 Vậy ANN = 1 khi x = 2 13: HNG DN GII THI VO LP 10 THPT (2009-2 010) CU NI DUNG IM 1 Bi toỏn v phõn thc i s 2,5 1.1 Rỳt gn biu thc Trờng THCS Xuân Canh 14 T liệu ôn thi vào lớp 10 Nguyễn Văn Tâm t y = x x = y 2; y 0, y 2 Khi ú A = y2 1 1 + + 2 y 4 y 2 y +2 0,5 y2 y +2 y 2 = 2 + 2 + y 4 y 4 y2 4 = y 2... 0,5 15 T liệu ôn thi vào lớp 10 3.2 Nguyễn Văn Tâm * Bit thc ' x = ( m + 1) 2 ( m2 + 2) = 2m 1 Phng trỡnh cú 2 nghim x1 x2 ' x = 2m 1 0 m 1 2 0,25 b ( ) x1 + x2 = a = 2 m + 1 * Khi ú, theo nh lý viột x x = c = m2 + 2 1 2 a Ta có 2 2 x1 + x2 = ( x1 + x2 ) 2x1x2 2 2 = 4( m + 1) 2( m2 + 2) 0,25 = 2m2 + 8m 2 2 * Theo yêu cầu: x1 + x2 = 10 2m2 + 8m = 10 m = 1 2m2 + 8m 10 = 0 m = 5(... hai cung chn hai gúc ni tip bng nhau) ( hai gúc ni tip chn hai cung bng nhau) Xột tam giỏc KAF v tam giỏc KEA: chung ( chng minh trờn) (g-g) Trờng THCS Xuân Canh 13 T liệu ôn thi vào lớp 10 Nguyễn Văn Tâm 2) Vì E, I, O thẳng hàng nên (I ; IE) tiếp xúc với (O) tại E ã ã ả Vì OKE = IEF = IFE nên IF // OK Suy ra IF AB Vậy (I ; IE) tiếp xúc với AB ã ã ã 3) Vì IEN cân tại I và BOE cân tại O nên INE = OBE...T liệu ôn thi vào lớp 10 x Cho biu thc A = Nguyễn Văn Tâm + 3x + 9 vi x 0; x 9 x 3 x 9 2 x x +3 1) Rỳt gn biu thc A 1 3 3) Tỡm giỏ tr ln nht ca biu thc A Bi 2; (2,5 im) Gii bi toỏn sau bng cỏch lp phng trỡnh Mt mnh... Ta cú: Ta cú: SOAB = SABCD SOBC SOAD = ( AD + BC ).CD 1 OC.BC 1 OD AD 2 2 2 1 2 1 2 x + x1 ( x 2 x1 ) = 4 2 4 1 1 2 1 1 2 x 2 x 2 ( x1 ) x1 2 2 4 2 4 Trờng THCS Xuân Canh 12 T liệu ôn thi vào lớp 10 Nguyễn Văn Tâm p dng h thc Viột cho phng trỡnh (*) ta cú: x1 + x2 = 4m; x1.x2 = -4 (x1 x2)2 = (x1 + x2)2 4x1x2 = 16m2 + 16 = 16(m2 + 1) Bi 4 a) Chng minh ng dng vi Xột (O) cú Suy ra: Suy ra:... + KF R 2 + KO = R( 2 + 1) Chu vi PKQ nhỏ nhất là R( 2 + 1) , đạt đợc khi F trùng O Khi đó E, O, K thẳng hàng, tức là E là trung điểm của cung AB Bài V A = (x - 1)4 + (x - 3)4 + 6(x -1)2(x - 3)2 Đặt a = x - 1; b = 3 - x thì a + b = 2 Do đó A = a4 + b 4 + 6a2b2 = (a2 + b 2 )2 + (2ab) 2 Với hai số thực bất kì u, v, ta có (u - v)2 0 nên u2 + v2 2uv Suy ra u2 + v2 (u + v)2 áp dụng với u = a2 + b2 và . biết: ĐỀ 13: SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Trêng THCS Xu©n Canh 9 T liÖu «n thi vµo líp 10 NguyÔn V¨n T©m – – – – – – ĐỀ CHÍNH THỨC Năm học 2009-2 010 Môn thi: . T liÖu «n thi vµo líp 10 NguyÔn V¨n T©m MỘT SỐ ĐỀ THI VÀO LỚP 10 – HÀ NỘI TỪ NĂM 1988 ĐẾN 2 010 ĐỀ 1 (năm học 1988 – 1989) Bài 1: (2,5 điểm) Cho biểu thức A =. + = + + + 2 2 3 2 1 1 1 2 2 1 4 4 2 . Đề 14: (Đề thi vào 10 – Hà Nội năm học 2 010 – 2011) Bài 1: (2,5 điểm) Trêng THCS Xu©n Canh 10 T liÖu «n thi vµo líp 10 NguyÔn V¨n T©m Cho biểu thức A = 9 93 3 2 3 − + − − + + x x x x x x

Ngày đăng: 08/10/2014, 07:32

TỪ KHÓA LIÊN QUAN

w