1. Trang chủ
  2. » Khoa Học Tự Nhiên

Bài tập tổng hợp dạng tuyển sinh hình chóp

8 9,6K 130

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 542 KB

Nội dung

Bài tập tổng hợp dạng tuyển sinh hình chóp Bài tập tổng hợp dạng tuyển sinh hình chóp Bài tập tổng hợp dạng tuyển sinh hình chóp Bài tập tổng hợp dạng tuyển sinh hình chóp Bài tập tổng hợp dạng tuyển sinh hình chóp Bài tập tổng hợp dạng tuyển sinh hình chóp

Trang 1

BÀI TẬP TỔNG HỢP DẠNG TUYỂN SINH VỀ HÌNH CHÓP PHẦN 1:

Câu 1 Cho hình chóp S.ABC có SA = 3a, SA tạo với đáy (ABC) một góc 60 0 Tam giác ABC vuông tại B, góc ACB = 30 0 Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trọng tâm G của ∆ABC Tính thể tích khối chóp S.ABC theo a

Câu 2 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy

Gọi E là trung điểm của BC góc giữa SC và (SAB) bằng 30 0 Hãy tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng DE và SC theo a

Câu 3 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành với AB = 2a, BC = a 2

,BD = a 6 Hình chiếu vuông góc của S lên mặt phẳng ABCD là trọng tâm G của tam giác BCD, biết SG = 2a Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng

AC và SB theo a

Câu 4 Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a và góc BAD = 60 0

Hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD) là trung điểm H của đoạn AO Góc giữa SB với mặt phẳng (SAC) là 300 Tính thể tích khối chóp S.DHBC và khoảng cách giữa hai đường thẳng SA và BC

Câu 5 Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh 2a Mặt bên SAB

là tam giác đều, SI vuông góc với mặt (SCD) với I là trung điểm của AB Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa 2 đường thẳng SO và AB

Câu 6 Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với BC = CD = DA = a; AB

= 2a cạnh bên SA vuông góc với mặt phẳng (ABCD); SC tạo với mặt phẳng (ABCD) một góc bằng 60 Tính thể tích khối chóp S.ABCD và diện tích mặt cầu ngoại tiếp hình chóp 0

S.ABCD theo a

Câu 7 Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với AD = BC = 13

4

= 2a, mặt phẳng (SCD) vuông góc với (ABCD) Tam giác ASI cân tại S, với I là trung điểm của AB, SB tạo với mặt phẳng (ABCD) một góc 30 Tính theo a thể tích khối chóp 0

S.ABCD và khoảng cách giữa SI và CD

Câu 8 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a 2, SA = SB, SA vuông góc với AC, mặt (SCD) tạo với đáy góc một góc 60 Tính thể tích k.chóp S.ABCD0

Câu 9 Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB = BC = a,

Trang 2

AD = 2a Đường thẳng SA vuông góc với mặt phẳng (ABCD), góc giữa mặt phẳng (SCD) với mặt phẳng (ABCD) bằng 60 Tính theo a thể tích khối chóp S.ABCD và khoảng cách 0

từ đỉnh B đến mặt phẳng (SCD)

Câu 10 Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = a 2, góc giữa hai mặt phẳng (SAC) và (ABCD) bằng 60 Gọi H là trung điểm của AB Biết mặt 0

bên SAB là tam giác cân tại đỉnh S và thuộc mặt phẳng vuông góc với mặt phẳng đáy Tính thể tích khối chóp S.ABCD và bán kính mặt cầu ngoại tiếp hình chóp S.AHC

Câu 11 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a Hình chiếu vuông góc

của S lên mặt phẳng (ABCD) trùng với trọng tâm tam giác ABD Cạnh SD tạo với đáy (ABCD) một góc bằng 60 Tính thể tích khối chóp S.ABCD và khoảng cách từ A đến mặt 0

phẳng (SBC) theo a

Câu 12.Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a và góc BAD= 60 0 Hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD) là trung điểm H của đoạn AO Góc giữa SB với mặt phẳng (SAC) bằng 30 Tính thể tích khối chóp S.DHBC0

Câu 13 Cho hình chóp S.ABCD có đáy ABCD là hình thoi, hai đường chéo AC = 2 3a ,

BD = 2a cắt nhau tại O, hai mặt phẳng (SAC) và (SBD) cùng vuông góc với (ABCD) Biết

khoảng cách từ tâm O đến mặt (SAB) bằng 3

4

a , tính thể tích khối chóp S.ABCD theo a và

góc giữa 2 mặt phẳng (SAB) và (SBD)

Câu 14 Cho hình chóp S.ABCD là hình thang vuông tại A ( AD//BC ), AB = BC = a, AD =

2a Gọi M là trung điểm của AD, N là trung điểm của CM Hai mặt phẳng (SNA) và (SNB)

cùng vuông góc với mặt phẳng đáy và khoảng cách giữa hai đường SB và CD bằng 2

11

a

Tính thể tích khối chóp S.ABCD và khoảng cách tứ SA đến CD theo a

Câu 15 Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SAB là tam giác cân tại S và

nằm trong mặt phẳng vuông góc với đáy Gọi M là điểm thuộc AD sao cho MD = 2MA Tính theo a thể tích khối chóp S.BCDM và khoảng cách giữa hai đường SA và CM biết mặt phẳng (SBD) tạo với mặt phẳng đáy một góc 60 0

Câu 16 Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SAB là tam giác cân tại S và

nằm trong mặt phẳng vuông góc với đáy Gọi M là điểm thuộc AD sao cho MD = 2MA

Trang 3

Tính theo a thể tích khối chóp S.BCDM và khoảng cách từ C đến mặt (SBD) biết SC tạo với mặt phẳng đáy một góc 60 0

Câu 17 Cho hình chóp S.ABC có đáy là tam giác vuông tại B, góc BAC= 60 0, AB = a 3, SAC là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy Gọi M thuộc đường

3

MB→ = − CB→ Tính theo a thể tích khối chóp S.ABC và khoảng cách giữa

hai đường thẳng SA và BC biết đường thẳng SM tạo với mặt phẳng đáy một góc 60 0

Câu 18 Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh AB =2a, BD = AC 3, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD) Gọi M là trung điểm của SD , góc giữa mặt phẳng (AMC) và (ABCD) bằng 30 Tính thể tích khối 0

chóp S.ABCD và khoảng cách giữa SB và CM

Câu 19 Cho hình chóp S.ABCD có đáy ABCD là hình thoi canh a, BCD= 120 0, cạnh bên

SD vuông góc với mặt phẳng đáy, mặt phẳng (SAB) tạo với (SBC) một góc 60 Gọi K là 0

trung điểm của SC Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa AD và BK

Câu 20 Cho tứ diện ABCD có AB = AC = a 2, BD = CD = a 3, BC = 2a góc tạo bởi hai mặt phẳng (ABC) và (BCD) bằng 45 Tính theo a thể tích khối tứ diện ABCD và khoảng 0

cách từ B đến mặt phẳng (ACD)

-Hết phần

1 -ĐÁP ÁN

Câu 1 Cho hình chóp S.ABC có SA = 3a, SA tạo với đáy (ABC) một góc 60 0 Tam giác ABC vuông tại B, góc ACB

= 300 Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trọng tâm G của ∆ABC Tính thể tích khối chóp S.ABC theo a.

Trang 4

Câu 2 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy Gọi E là trung điểm của

BC góc giữa SC và (SAB) bằng 30 0 Hãy tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng DE

và SC theo a.

Giải:

Trang 5

Câu 3 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành với AB = 2a, BC = a 2 ,BD = a 6 Hình chiếu vuông góc của S lên mặt phẳng ABCD là trọng tâm G của tam giác BCD, biết SG = 2a Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng AC và SB theo a.

Giải:

Câu 4 Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a và góc BAD = 600 Hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD) là trung điểm H của đoạn AO Góc giữa SB với mặt phẳng (SAC) là 300 Tính thể tích khối chóp S.DHBC và khoảng cách giữa hai đường thẳng SA và BC.

Giải:

Trang 6

Câu 5 Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh 2a Mặt bên SAB là tam giác đều, SI vuông

góc với mặt (SCD) với I là trung điểm của AB Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa 2 đường thẳng SO và AB.

Hướng dẫn giải:

Câu 6 Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với BC = CD = DA = a; AB = 2a cạnh bên SA vuông

góc với mặt phẳng (ABCD); SC tạo với mặt phẳng (ABCD) một góc bằng 600 Tính thể tích khối chóp S.ABCD và diện tích mặt cầu ngoại tiếp hình chóp S.ABCD theo a.

Câu 7 Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với AD = BC = 13

4

a ; AB = 2a, mặt phẳng (SCD)

Trang 7

vuông góc với (ABCD) Tam giác ASI cân tại S, với I là trung điểm của AB, SB tạo với mặt phẳng (ABCD) một góc

0

30 Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa SI và CD.

Câu 8 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a 2, SA = SB, SA vuông góc với AC, mặt (SCD) tạo với đáy góc một góc 600.Tính thể tích k.chóp S.ABCD

Câu 9 Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB = BC = a, AD = 2a Đường thẳng

SA vuông góc với mặt phẳng (ABCD), góc giữa mặt phẳng (SCD) với mặt phẳng (ABCD) bằng 600 Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ đỉnh B đến mặt phẳng (SCD).

Câu 10 Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = a 2, góc giữa hai mặt phẳng (SAC) và (ABCD) bằng 600 Gọi H là trung điểm của AB Biết mặt bên SAB là tam giác cân tại đỉnh S và thuộc mặt phẳng vuông góc với mặt phẳng đáy Tính thể tích khối chóp S.ABCD và bán kính mặt cầu ngoại tiếp hình chóp S.AHC

Câu 11 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a Hình chiếu vuông góc của S lên mặt phẳng

(ABCD) trùng với trọng tâm tam giác ABD Cạnh SD tạo với đáy (ABCD) một góc bằng 600 Tính thể tích khối chóp S.ABCD và khoảng cách từ A đến mặt phẳng (SBC) theo a

Câu 12.Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a và góc BAD= 60 0 Hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD) là trung điểm H của đoạn AO Góc giữa SB với mặt phẳng (SAC) bằng 300 Tính thể tích khối chóp S.DHBC

Câu 13 Cho hình chóp S.ABCD có đáy ABCD là hình thoi, hai đường chéo AC = 2 3a, BD = 2a cắt nhau tại O,

hai mặt phẳng (SAC) và (SBD) cùng vuông góc với (ABCD) Biết khoảng cách từ tâm O đến mặt (SAB) bằng 3

4

a ,

tính thể tích khối chóp S.ABCD theo a và góc giữa 2 mặt phẳng (SAB) và (SBD).

Câu 14 Cho hình chóp S.ABCD là hình thang vuông tại A ( AD//BC ), AB = BC = a, AD = 2a Gọi M là trung điểm

của AD, N là trung điểm của CM Hai mặt phẳng (SNA) và (SNB) cùng vuông góc với mặt phẳng đáy và khoảng cách

giữa hai đường SB và CD bằng 2

11

a

Tính thể tích khối chóp S.ABCD và khoảng cách tứ SA đến CD theo a.

Câu 15 Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SAB là tam giác cân tại S và nằm trong mặt phẳng

vuông góc với đáy Gọi M là điểm thuộc AD sao cho MD = 2MA Tính theo a thể tích khối chóp S.BCDM và khoảng

cách giữa hai đường SA và CM biết mặt phẳng (SBD) tạo với mặt phẳng đáy một góc 600.

Câu 16 Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SAB là tam giác cân tại S và nằm trong mặt phẳng

vuông góc với đáy Gọi M là điểm thuộc AD sao cho MD = 2MA Tính theo a thể tích khối chóp S.BCDM và khoảng cách từ C đến mặt (SBD) biết SC tạo với mặt phẳng đáy một góc 600.

Câu 17 Cho hình chóp S.ABC có đáy là tam giác vuông tại B, góc BAC= 60 0 , AB = a 3 , SAC là tam giác cân

Trang 8

tại S và nằm trong mặt phẳng vuông góc với đáy Gọi M thuộc đường thẳng BC sao cho 1

3

MB→ = − CB→ Tính theo a thể tích khối chóp S.ABC và khoảng cách giữa hai đường thẳng SA và BC biết đường thẳng SM tạo với mặt phẳng đáy một góc 600.

Câu 18 Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh AB =2a, BD = AC 3 , tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD) Gọi M là trung điểm của SD , góc giữa mặt phẳng (AMC)

và (ABCD) bằng 300 Tính thể tích khối chóp S.ABCD và khoảng cách giữa SB và CM.

Câu 19 Cho hình chóp S.ABCD có đáy ABCD là hình thoi canh a, BCD= 120 0 , cạnh bên SD vuông góc với mặt phẳng đáy, mặt phẳng (SAB) tạo với (SBC) một góc 600 Gọi K là trung điểm của SC Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa AD và BK.

Câu 20 Cho tứ diện ABCD có AB = AC = a 2 , BD = CD = a 3 , BC = 2a góc tạo bởi hai mặt phẳng (ABC) và (BCD) bằng 450 Tính theo a thể tích khối tứ diện ABCD và khoảng cách từ B đến mặt phẳng (ACD).

-Hết phần

Ngày đăng: 06/10/2014, 22:55

TỪ KHÓA LIÊN QUAN

w