1. Trang chủ
  2. » Luận Văn - Báo Cáo

nâng cao chất lượng bộ biến đổi dc-dc bằng bộ điều khiển trượt tóm tắt

26 273 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 681,33 KB

Nội dung

  NGUY NÂNG CAO CHNG B I DC-DC BNG B U KHIT    - 3      TS.    05 tháng 05  2013. * Có thể tìm hiểu luận văn tại: - Trung tâm Thông tin -  -  1 M U 1. Tính cp thit  tài - i vi bài toán chuy  n áp DC   u c ng dng trong thc t n i ngun tuyn tính, ngun ngt m (Switched Mode Power ng hn ch  n áp o, tng ln, cng knh, giá thành ln. - u khic ng dng cho b bii DC-DC n áp ra vc yêu cu. - B u khic thit k và so sánh vi b u khin PID cho thy kh nng d nâng cao chng ca b bin i DC-DC. 2. Mc tiêu nghiên cu. Thit k b u khit cho b bii DC-DC gim áp. 3ng và phm vi nghiên cu - Tìm hiu b bii DC-DC vi chuyn mng cách s dg trình toán hc. - Thc hin b u khin PID cho b bii DC-DC c nghiên c - Thit k b u khin cho b bii DC-DC bu khin t. - So sánh kt qu c t u khin trên và kt lun. 4.  pháp nghiên cu - Tìm hiu cu khin và xây dng mô hình, mô phng trên phn mm Matlab - Simulik. 5. B c tài. 2 Luc t ch Ngoài phn m u và kt lun, tài liu tham kho, lun   1 Gii thiu chung v b bii DC-DC  u khit  u khit cho b bii DC-DC  Mô phng kim chng trên nn Matlab- Simulink Kt lung phát trin c tài. C 1. GII THIU CHUNG V B BII DC-DC 1.1. GII THIU 1.2. PHÂN LOI CÁC B BII BÁN DN 1.3. KHÁI QUÁT V M 1.3.1. Khái nim 1.3.2. m c 1.3.3. Phân loi 1.3.4. Nguyên tc hong chung ca mc 1.3.5. u chn áp ra a. Phương pháp thay đổi độ rộng xung b. Phương pháp thay đổi tần số xung 1.4. CÁC B BIN I DC-DC 1.4.1. B bii gim áp (buck converter) 1.4.2. B bio áp (buck-boost converter) 1.4.3. B bi 1.5. CH  HONG CA CÁC B CHUYI N ÁP DC-DC 1.5.1. Ch  n liên tc 1.5.2. Ch  n 3 1.5.3 Chn giá tr L min cho chuyn áp DC-DC 1.6. KT LUN B bii DC-DC có nhit trt cu mch n, hong cho hiu sut cao nh t chiu, tn thp. B h bit làm th nào ta chc L min cho ba b chuyi (gim áp,  chc chn hong trong ch  c n áp. . U KHIT 2.1. GII THIU 2.2. CÁC H THNG CU TRÚC BIN 2.2.1. u khii vi các h thu chnh bng chuyn m 2.2.2. Các mt 2.2.3.  u khit U KHIT 2.3.2. u kin tn ti 2.3.3. u kin tip cn 2.3.4. Mô t h tht 2.3.5. Rung (chattering) 2.4. KT LUN ng v v u khit. Sau khi tìm hiu khin trên, tác gi lun pu khi cho vic nghiên cu bi vì m là tính bn vi vi s i ca nhi chính xác cao, phù hp vi u khin có tính phi tuyn m u khi t truyn th   m là xut hin hi ng 4 chattering, mt hing không mong mun, ng rt ln ch ng ca h u khi t. Vic nghiên cu hn ch hin  nâng cao chng h u khin chuyng. 3. U KHIT CHO B BII DC-DC 3.1. MÔ HÌNH CA H THNG CA B BII DC-DC GIM ÁP  tìm mô hình ca h thng ca b bii gim áp DC-DC, trong lun án này ta ch xét b bii gim áp DC-DC hong  ch  liên tc. Hình 3.1: Bộ biến đổi DC-DC giảm áp (u=1 là đóng, u=0 là ngắt)  hình 3.1, s thun tiu s dng h thng mô t liên n sai lo hàm c oref VVx  1 (3.1) C i dt dV dt dx x co  1 2 (3.2)  ref V n áp tham chin áp ra mong mun), V o là n áp ra thc trên ti, c i n qua ty 21 xx   (3.3) c i dt d C x 1 2   (3.4) 5 n áp ca m c: 2 1 2 1 x CRLC V LC x u LC V x L ref in   (3.13) (3.3) và (3.13n x 1 và x 2 ca b bi- 3.2 U KHIT CHO B BII DC-DC GIM ÁP 3.1.1. Mt phng pha mô t u khin cho t b gim áp DC-DC Có th vit lng thái ca b bii gim áp DC-DC  dng: DBuAxx   (3.19)  u c gi thi 0 hoc 1           CRLC A L 11 10 ,           LC V B in 0 ,          LC V D ref 0 . (3.20) ng 1,0u c v  hình 3.2. c chn là   0 2211  xCxcxcx T  (3.21)     21 ,ccC T    a h s mt ph t và   T xxx 21  ) mô t ng thng trong mt phng c t m hong nh cho b bii n áp: sai ln áp ra bo hàm sai lch bng 0). ) dn 0)( 1211  xcxcx   (3.22) ) mô t h thng trong ch  t. 6 Ta chn luu khin bám , 0)(0 0)(1       xkhi xkhi u   (3.23) Khi khóa (van) ngn qua cun cm ( L i c gi nh giá tr là không âm, L i tin v 0 và bng 0, t ngng n nn ca t tin v  ng vi ch  dn gián t s gii hn lên bin trng thái. Bin vùng này có th suy ra gii hn 0 L i . )( 1 12 xV CR x ref L  Hình 3.2: Quĩ đạo của hệ thống và đường trượt trong mặt phẳng pha của bộ biến đổi giảm áp 3.1.2. u kin tn t  chu kin tn tt ca b gim áp DC-DC ta lo hàm ) 0)(  xCx T   (3.34) .19) vào (3.34c 7 DCBuCAxCx TTT )(   (3.35) Vu kin tn tt t  ta có: . 0)(0 0)(0 )(         xkhiDCBuCAxC xkhiDCBuCAxC x TTT TTT     (3.36) S d.20) và (3.35) vu kiu 0u vi 0)( x  c 0)()( 1 2 2 2 11    LC VV x LC c x CR c cx inref L  (3.38)  vu kin th hai 1u vi 0)( x   trình (3.23 0)()( 21 2 2 2 12  c LC V x LC c x CR c cx ref L  (3.40)   0)( 1 x  và 0)( 2 x     ng thng trong mt phng pha v dng là ( 0, ref V ) và ( inref VV  ). Vùng tn ti ch  t trong hình 3.3 cho CRcc L21  và trong hình 3.4 cho CRcc L21  . Có th nhìn thy rng, giá tr ca c 1 gim thì gây ra s suy gim ca vùng tn ti ch  t (h s c 1 cng ca h thng trong ch  t). T ng ca h thng  bc 1 vi hng s thi gian 12 cc  y t n CR L    (3.38) và (3.40) s gii hn tn ti ch  t và là u chnh trong th. 8 Hình 3.3 : Vùng tồn tại của chế độ trượt trong mặt phẳng pha khi CR c c L 2 1  . Ranh giới các vùng được chỉ rõ bởi phương trình( 3.38) và (3.40). Điểm (V ref ,0) chắn vùng quĩ đạo khi khóa(van) đóng và điểm (V ref –V in ,,0) khi khóa(van) ngắt. Hình 3.4: Vùng tồn tại của chế độ trượt trong mặt phẳng pha khi CR c c L 2 1  . Ranh giới các vùng được chỉ rõ bởi phương trình (3.38) và (3.40). Điểm V ref ,0) chắn vùng quĩ đạo khi khóa(van) đóng và điểm (V ref –V in ,,0) khi khóa(van) ngắt [...]... cân bằng trong thời gian rất ngắn là 0.00005s, không xảy ra quá điều chỉnh và độ dao động điện áp ra rất nhỏ KẾT LUẬN VÀ KIẾN NGHỊ Luận văn đã giải quyết khá thành công yêu cầu của đề tài là nâng cao chất lượng bộ biến đổi DC-DC bằng điều khiển trượt mà cụ thể là bộ biến đổi giảm áp Bằng việc so sánh các kết quả mô phỏng giữa bộ điều khiển trượt và điều khiển PID ta thấy chất lượng điện áp ra bộ điều. .. điện áp ra bộ điều khiển trượt luôn ổn định và điều này thể hiện khả năng nâng cao chất lượng điện áp ra của bộ biển đổi DC-DC bằng bộ điều khiển trượt Luận văn này đã thực hiện được các yêu cầu sau: - Làm rõ cấu trúc, đưa ra mô hình toán học của bộ biến đổi giảm áp 24 - Nghiên cứu nguyên lý điều khiển trượt thông qua việc nghiên cứu các khái niệm về hệ thống cấu trúc biến, mặt trượt và tính tiếp... trượt - Xây dựng bộ điều khiển cho bộ biến đổi giảm áp trên cơ sở áp dụng nguyên lý điều khiển trượt, khảo sát tính ổn định trên mô hình toán học hệ thống - Đưa ra cấu trúc của các bộ điều khiển trên nền Matlab & Simulink Thực hiện mô phỏng khảo sát các đặc tính chất lượng hệ thống, hoàn thiện thiết kế cho hệ thống - So sánh kết quả điều khiển trượt với điều khiển PID để cho thấy rằng điều khiển trượt. .. khiển trượt có ưu thế hơn nhiều so với điều khiển PID - Đưa ra các kết quả điều khiển trượt cho bộ biến đổi DC-DC tăng áp xuất phát từ ý tưởng luật điều khiển trượt của bộ biến đổi DC-DC giảm áp Trong tương lai đề tài có thể được phát triển theo hướng sau: - Thực hiện trên mô hình thực tế - Có thể đưa iL vào biến trạng thái để thực hiện điều khiển cho ba chuyển đổi giảm áp, tăng áp và đảo áp ... PID cho bộ biến đổi DC-DC giảm áp có các thông số mạch lực: C  220F , L  60H , RL  13, Vin  24V , Vo  12V , f s  100kHz là  s  3142 s  10681 Gc  10   S   s  91106 11 Hình 4.4: Sơ đồ khối điều khiển PID bộ giảm áp trên Matlab-SimulinkTM Ghép với mô hình mạch lực bộ biến đổi ta có sơ đồ mô phỏng Hình 4.5: Điều khiển PID cho bộ biến đổi giảm áp 4.2.2 Xây dựng bộ điều khiển trượt. .. 4.4 KẾT QUẢ ĐIỀU KHIỂN TRƯỢT CHO BỘ BIẾN ĐỔI DCDC TĂNG ÁP Điều khiển trượt cho bộ biến đổi DC-DC tăng áp có các thông số mạch lực là: C  220F , L  80H , RL  20, Vin  12V , Vo  24V , f s  100kHz Hình 4.28: Bộ biến đổi DC-DC tăng áp Khi mô phỏng ta thu được các kết quả sau : 23 Dien ap ra Vo 24 20 V 15 10 5 0 0 1 2 Timer(s) 3 4 x 10 -4 Hình 4.29: Điện áp ra của bộ biến đổi DC-DC tăng áp *Nhận xét:... gian xác lập và độ quá điều chỉnh Bộ điều khiển Điều khiển PID Điều khiển trượt Thời gian Độ quá Thời gian Độ quá xác lập điều chỉnh xác lập điều chỉnh Điện áp ra (Vo) 0.002s 3V 0.011s 0V Dòng điện qua L 0.002s 28A 0.011s 0A Thông số *Nhận xét: Nhìn vào bảng so sánh 4.1, ta thấy bộ điều khiển trượt có thời gian xác lập lớn (0.011s) gấp 9 lần so với PID (0.002s), nhưng b lại độ quá điều chỉnh không đáng... phân tích tính ổn định của chế độ trượt trong mặt phẳng pha cho bộ biến đổi DC-DC giảm áp, ta nhận thấy rằng để hệ thống hoạt động ổn định thì ta chọn hệ số c1  c2 RL C CHƯƠNG 4 MÔ PHỎNG KIỂM CHỨNG TRÊN NỀN MATLAB-SIMULINK 4.1 MẠCH LỰC BỘ BIẾN ĐỔI DC-DC GIẢM ÁP 4.1.1 Xây dựng thông số mạch lực Hình 4.1: Sơ đồ bộ biến đổi DC-DC giảm áp Tham số ban đầu của bộ chuyển đổi DC-DC giảm áp được chọn là Vin... 13 Ta thấy độ dao động dòng điện là 1A quanh giá trị cân bằng 9.2A và độ dao động điện áp rất nhỏ khoảng 0.003V 4.3 SO SÁNH KẾT QUẢ MÔ PHỎNG ĐIỀU KHIỂN TRƯỢT VỚI ĐIỀU KHIỂN PID Các kết quả sau đây được thực hiện mô phỏng điều khiển trượt với điều khiển PID trên cùng mô hình bộ biến đổi điện áp DC-DC giảm áp 4.3.1 Thời gian xác lập và độ quá điều chỉnh PID 15 Qua dieu chinh =3V 12 V 10 5 Thoi gian xac... Sử dụng bộ điều khiển trượt với mặt trượt  ( x)  c1 x1  c2 x2 , ta xác định luật điều khiển sau: (c1 x1  c2 x2 )  0  u  0 (c1 x1  c2 x2 )  0  u  1  u  sign(c1x1  c2 x2 ) Trong đó x1 là sai lệch điện áp đầu ra, x2 là đạo hàm của x1 và 12 c1,c2 là hằng số tích phân được lấy là dương Hình 4.8: Điều khiển trượt cho bộ biến đổi DC-DC giảm áp Giá trị c1,c2 được chọn sao cho giảm độ quá điều chỉnh . Hình 4.4: Sơ đồ khối điều khiển PID bộ giảm áp trên Matlab-Simulink TM Ghép vi mô hình mch lc b bi mô phng Hình 4.5: Điều khiển PID cho bộ biến đổi giảm áp 4.2.2 1 x và 12 c 1 ,c 2 là hng s c l Hình 4.8: Điều khiển trượt cho bộ biến đổi DC-DC giảm áp Giá tr c 1 ,c 2 c chn sao cho gi u chnh thp. ca h thng ca b bii gim áp DC-DC, trong lun án này ta ch xét b bii gim áp DC-DC hong  ch  liên tc. Hình 3.1: Bộ biến đổi DC-DC giảm áp (u=1 là đóng, u=0 là ngắt)

Ngày đăng: 31/08/2014, 18:32

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w