1. Trang chủ
  2. » Khoa Học Tự Nhiên

ERIQ Lemma and Application

7 257 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 161,59 KB

Nội dung

Trang 1

E.R.I.Q lemma and applications Nguyen Hoang Son 10Math2 Luong The Vinh High School

I/Preface

The E.R.I.Q (Equal-Ratio-In-Quadrilateral) lemma was named by vittasko

at the webpage Mathlinks.ro.It's useful to prove the collinearity in elementary

geometry.This little article only introduce some it's application.The following

statement:

E.R.I.Q lemma:Let 2 distinct line (41); (42); A1; A2; A3(41); B1; B2; B3(42) such that: A1A2

A1A3 =

B1B2

B1B3 = k.C1A1B1; C2A2B2; C3A3B3 satisfy: A1C1

C1B1 =

A2C2

C2B2 =

A3C3

C3B3 Then C1; C2; C3 and C1C2

C1C3 = k Proof

A2

Y

C3

T Z

A1

A3

B1

B3 C1

X

Trang 2

+Let X; Y ; Z; T be the points such that A1C1XA2; A1C1ZA3; B1C1Y B2; B1C1T B3

is parallelogram respectively

+Applying Thales's theorem X; C2; Y ; Z; C3; T ⇒ C1; C2; C3 and C1C2

C1C3

=

A1A2

A1A3 =

B1B2

B1B3 = k Out Proof is completed then

II/It's applycation in elementary geometry

Now,We begin by The following problem:

Problem 1: (The Gauss's line):Let ABCD be a quadrilateral.E ≡ AB ∩ CD; E ≡ AD ∩ BC then the midpoint of AC; BD; EF are collinear

Proof

K

J

I L

M

F

E

A

D

Trang 3

+Let L; I; M be midpoint of AC; BD; EF respectively.Construct parallelo-gram JEHF such that JAB; HDC.We'll have

+DF

AF =

F H

AJ =

DK

AB ⇒ AB

AJ =

DK

F H =

DC

CH.Applying E.R.I.Q lemma for 2 line BAJ and DCH.We'll get I; L; M(QED)

Problem 2:Let ABCD incribed (O) and a point so-called M.Call X; Y ; Z; T ; U; V are the projection of M onto AB; BC; CD; DA; CA; BD respectively.Call I; J ; H are the midpoint of XZ; UV ; Y T respectively.Prove that N; P ; Q

Proof There are three case for consideration

+Case 1: M ≡ O.This case make the problem become trivial

+Case 2:M lies on (O).According to the Simson's line then XY ZT UV be-come a complete quadrilateral and we can conclude that IJH is the Gauss's line of XY ZT UV (QED)

H

I

J

V

U

Y

Z

T

X

C

A

D

B

M

Trang 4

+ Case 3: M not coincide O and not lies on (O)

G

F

E H'

I' J'

I J

H

T

V

Z

U

X

Y

U'

V'

Z'

T'

Y'

X'

O M'

M

A

D

C B

+Let OM meet (O) at M0.Call X0, Y0, Z0, T0, U0, V0 are the projections of

M0 onto AB, BC, CD, DA, AC, BD.For the same reason at Case 2,We'll have

I0, J0, H0 are collinear (With I0, J0, H0 are the midpoint of X0Z0, U0V0, Y0T0 respectively

Trang 5

+Y Y0

Y E =

M M0

M O =

T T0

T F Applying E.R.I.Q Lemma above we'll get H, H0, G and GH0

GH =

EY0

EY =

OM0

OM = k +Anagolously, We'll get I, I0, G; J, J0, G and GI0

GI =

GJ0

GJ =

GH0

GH = k(i).Morever, I0, J0, H0(ii)

+From (i); (ii) ⇒ I, J, H(QED)

Problem 3: Let 2 equal circle (O1); (O2)meet each other at P ; Q.O be the

midpoint of P Q.2 line through P meet 2 circle at A; B; C; D(A; C(O1); B; D(O2)).M; N

be midpoint of AD; BC.Prove that M; N; O

Proof

L

K

J

O N

B

Q

P A

C

Trang 6

+J ≡ AB ∩ CQ; K ≡ CD ∩ QB.Let L be midpoint of KJ.It's follow that

ON L(i) is the Gauss's line of complete quadrilateral QBP CJK

+It's easy to see 4QCD ∼ 4QAB; 4QAJ ∼ 4QDK ⇒ J A

DK =

AQ

QD = AB

CD ⇒ J A

AB =

DK

CD.Applying E.R.I.Q lemma we'll get N; M; L(ii) +From (i); (ii) We'll have M; N; O (QED)

Problem 4: Let ABC be a triangle.F ; G be arbitrary point AB; AC.Take

D; Emidpoint of BF ; CG.Show that the center of nine-point circle of 4ABC; 4ADE; 4AF G are collinear

Proof

O3 M3'' O2

O1

M3'

G3 G2

G1

M2'

M1'

M2'' M1''

M2

E

D

M1

M3

A

F

G

Trang 7

+Applying E.R.I.Q for 2 line F DB and CEG.We'll get M1; M2; M3 and

M1M2

M1M3 =

1

2.It's implies that G1; G2; G3 and G1G2

G1G3 =

1 2 +Let M0

1; M100; M20; M200; M30; M300 be the midpoint AF ; AG; AD; AE; AB; AC respectively and O1; O2; O3 be the circumcenter of 4AF G; 4ADE; 4ABC +It's easy to see that M0

1M20 = M20M30 = F B

2 ; M

00

1M200 = M200M300 = GC

2 and

O1; O2; O3;O1O2

O1O2 =

1 2 +Applying E.R.I.Q lemma for 2 line G1G2G3; O1O2O3.We'll get E1; E2; E3 are collinear (E1; E2; E3 is the center of nine-point of AF G; ADE; ABC).We are done

THE END Son Nguyen Hoang 10Math2 Luong The Vinh High School For the Gifted,Bien Hoa City,Viet Nam

Email:luachonmotvisao2121@gmail.com

Ngày đăng: 21/08/2014, 14:35

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w