1. Trang chủ
  2. » Y Tế - Sức Khỏe

Ophthalmic Drug Delivery Systems - part 10 ppt

66 286 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 66
Dung lượng 515,16 KB

Nội dung

40. X. Liu, C. R. Brandt, B. T. Gabelt, P. J. Bryar, M. E. Smith, and P. L. Kaufman. (1999). Herpes simplex virus mediated gene transfer to primate ocular tissues. Exp. Eye. Res., 69:385–395. 41. C. R. Brandt, R. E. Kalil, and S. Agarwala. (2000). Replication competent, a virulent herpes simplex virus as a vector for neural and ocular gene therapy. US Patent 6,106,826, August 22, 2000. 42. E. L. Berson. (1994). Retinitis pigmentosa and allied diseases. In: D. M. Albert, F. A. Jakobiec, eds. Principles and Practice of Ophthalmology, Vol. 2. Saunders, Philadelphia, pp. 1214–1237. 43. S. L. Bernstein and P. Wong (1998). Regional expression of disease-related genes in human and monkey retina. Mol. Vis., 4:24. 44. D. T. Organisciak and B. S. Winkler. (1994). Retinal light damage: Practical and theoretical considerations. Prog. Retin. Eye Res., 13:1–29. 45. C. Grimm, A. Wenzel, F. Hafezi, and C. E. Reme. (2000). Gene expression in the mouse retina: The effect of damaging light. Mol. Vis., 6:252–260. 46. T. Murata, J. Cui, K. E. Taba, J Y. Oh, C. Spee, D. R. Hinton, and S. J. Ryan. (2000). The possibility of gene therapy for the treatment of choroidal neovascularization. Ophthalmology, 107:1364–1373. 47. R. Niven, J. Smith, and Y. Zhang. (1997). Toward development of a non-viral gene therapeutics. Adv. Drug Deliv. Rev., 26:135–150. 48. H. Pollard, J. S. Remy, G. Loussouarn, S. Demolombe, J. P. Behr, and D. Escande. (1998). Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J. Biol. Chem., 273:7507–7511. 49. F. D. Ledley. (1995). Nonviral gene therapy: The promise of genes as phar- maceutical products. Hum. Gene Ther., 6:1129–1144. 50. J. W. Streilein. (1996). Ocular immune privilege and the Faustian dilemma. Invest. Ophthalmol. Vis. Sci., 37:1940–1950. 51. H. Kimura, Y. Ogura, T. Moritera, Y. Honda, Y. Tabata, and Y. Ikada. (1994). In vitro phagocytosis of polylactide microspheres by retinal pigment epithelial cells and intracellular drug release. Curr. Eye Res., 13:353–360. 52. J. Zabner, A. J. Fasbender, T. Moninger, K. A. Poellinger, and M. J. Welsh. (1995). Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem., 270:18997–19007. 53. Y. Xu. and F. C. Szoka. (1996). Mechanism of DNA release from cationic liposome/DNA complex used in cell transfection. Biochemistry, 35:5616–5623. 54. J. Flensburg, S., Eriksson, and H. Lindblom. (1988). Purification of super- coiled plasmid DNA by ion exchange chromatography. DNA Protein Eng. Tech., 1:85–90. 55. M. Cotten, A. Baker, M. Saltik, E. Wagner, and M. Buschle. (1994). Lipopolysaccharide is a frequent contaminant of plasmid DNA preparations and can be toxic to primary human cells in the presence of adenovirus. Gene Ther., 1:239–246. 56. M. A. Hickman, R. W. Malone, K. Lehmann-Buinsma, T. R. Sih, D. Knoell, F. C. Szoka, R. Walzem, D. M. Carlson, and J. S. Powell. (1994). Gene Gene, Oligonucleotide, and Ribozyme Therapy 647 Copyright © 2003 Marcel Dekker, Inc. expression following direct injection of DNA into liver. Human Gene Ther., 5:1477–1483. 57. J. P. Yang and L. Huang. (1996). Direct gene transfer to mouse melanoma by intratumor injection of free DNA. Gene Ther., 3:542–548. 58. M. Kriegler. (1990). Gene transfer. In: Gene Transfer and Expression: A Laboratory Manual. W. H. Freeman and Co., New York, pp. 3–8. 59. J. Vacik, B. S. Dean, W. E. Zimmer, and D. A. Dean. (1999). Cell-specific nuclear import of plasmid DNA. Gene Ther., 6:1006–1014. 60. D. A. Dean, J. N. Byrd, and B. S. Dean. (1999). Nuclear targeting of plasmid DNA in human corneal cells. Curr. Eye Res., 19:66–75. 61. S. A. Johnston and D. C. Tang. (1994). Gene gun transfection of animal cells and genetic immunization. Methods Cell Biol., 43:353–365. 62. W. H. Sun, J. K. Burkholder, J. Sun, J. Culp, X. G. Lu, T. D. Pugh, W. B. Ershler, and N. S. Yang. (1992). In vivo cytokine gene transfer by gene gun reduces tumor growth in mice. Proc. Natl. Acad. Sci. USA, 89:11277–11281. 63. D. L. Tanelian, M. A. Barry, S. A. Johnston, T. Le, and G. Smith (1997). Controlled gene gun delivery and expression of DNA within the cornea. Bio Techniques, 23:484–488. 64. S. A. Konig Merediz, E. P. Zhang, B. Wittig, and F. Hoffmann. (2000). Ballistic transfer of minimalistic immunologically defined expression con- structs for IL-4 and CTLA4 into the corneal epithelium in mice after ortho- topic corneal allograft transplantation. Graefes Arch. Clin. Exp. Ophthalmol., 238:701–707. 65. A. Shiraishi, R. L., Converse, C. Y. Liu, F. Zhou, C. W. Kao, and W. W. Kao. (1998). Identification of the cornea-specific keratin 12 promoter by in vivo particle mediated gene transfer. Invest. Ophthalmol. Vis. Sci., 39:2554– 2561. 66. P. L. Felgner. (1996). Improvements in cationic liposomes for in vivo gene transfer. Hum. Gene Ther., 7:1791–1793. 67. E. Tomlinson and A. Rolland (1996). Controllable gene therapy: Pharmaceutics of non-viral gene delivery systems. J. Control. Rel., 39:357–372. 68. T. S. Ledley and F. D. Ledley. (1994). Multicompartment, numerical model of cellular events in the pharmacokinetics of gene therapies. Hum. Gene Ther., 5:679–691. 69. S. T. Crooke. (1997). Advances in understanding the pharmacological proper- ties of antisense oligonucleotides. Adv. Pharmacol., 40:1–49. 70. B. Tavitian, S., Terrazzino, B., Ku ¨ hnast, S. Marzabal, O. Stettler, F. Dolle ´ , J R. Deverre, A. Jobert, F Hinnen, B. Bendriem, C. Crouzel, and L. D. Giamberardino. (1998). In vivo imaging of oligonucleotides with positron emission tomography. Nat. Med., 4:467–471. 71. H. Farhood, S. Serbina, and L. Huang. (1995). The role of dioleoylphospha- tidylethanolamine in cationic liposome mediated gene transfer. Biochem. Biophys. Acta, 1235:289–295. 72. A. Katchalsky. (1964). Polyelectrolytes and their biological interactions. Biophys. J., 4:9–41. 648 Das and Miller Copyright © 2003 Marcel Dekker, Inc. 73. H. Moroson. (1971). Polycation-treated tumor cells in vivo and in vitro. Cancer Res., 31:373–380. 74. E. Mayhew and S. J. Nordling. (1966). Electrophoretic mobility of mouse cells and homologous isolated nuclei. J. Cell Physiol., 68:75–80. 75. P. Delpine, C. Guillaume, V. Floch, S. Loisel, J. J. Yaouanc, J. C. Clement, H. Des Abbayes, and C. Ferec. (2000). Cationic phosphonolipids as nonviral vectors: in vitro and in vivo applications. J. Pharm. Sci., 89:629–638. 76. D. L. Stull. (2000). New tools enable gene delivery: Companies improve exist- ing technologies and offer new ones. Scientist, 14(24):30. 77. L. Vitiello, A. Chonn, J. D. Wasserman, C. Duff, and R. G. Worton. (1996). Condensation of plasmid DNA with polylysine improves liposome-mediated gene transfer into established and primary muscle cells. Gene Ther., 3:396–404. 78. G. Osaka, K. Carey, A. Cuthbertson, P. Godwoski, T. Patapoff, A. Ryan, T. Gadek, and J. Mordenti. (1996). Pharmacokinetics, tissue distribution, and expression efficiency of plasmid [P-33] DNA following intravenous adminis- tration of DNA/cationic lipid complexes in mice: Use of a novel radionuclide approach. J. Pharm. Sci., 85:612–618. 79. D. D. Lasic. (1997) Liposomes in Gene Delivery. CRC Press, Boca Raton, FL. 80. T. Matsuo, I. Masuda, T. Yasuda, and N. Matsuo. (1996). Gene transfer to the retina of rat by liposome eye drops. Biochem. Biophys. Res. Commun., 219:947–950. 81. K. Abul-Hassan, R. Walmsley, and M. Boulton. (2000). Optimization of non- viral gene transfer to human primary retinal pigment epithelial cells. Curr. Eye Res., 20:361–366. 82. M. Hangai, Y. Kaneda, H. Tanihara, and Y. Honda. (1996). In vivo gene transfer into the retina mediated by a novel liposomes system. Invest. Ophthalmol. Vis. Sci., 37:2678–2685. 83. T. Hara, F. Liu, D. Liu, and L. Huang (1997). Emulsion formulations as a vector for gene delivery in vitro and in vivo. Adv. Drug Deliv. Rev., 24:265– 271. 84. C. Plank, W. Zauner, and E. Wagner. (1998). Application of membrane-active peptides for drug and gene delivery across cellular membranes. Adv. Drug Deliv. Rev., 34:21–35. 85. E. Wagner. (1999). Application of membrane-active peptides for nonviral gene delivery. Adv. Drug Deliv. Rev., 38:279–289. 86. L. Shewring, L. Collins, S. L. Lightman, S. Hart, K. Gustafsson, and J. W. Fabre. (1997). A nonviral vector system for efficient gene transfer to corneal endothelial cells via membrane integrins. Transplantation, 64:763–769. 87. E. Wagner (1999). Application of membrane-active peptides for nonviral gene delivery. Adv. Drug Deliv. Rev., 38:279–289. 88. M. X. Tang and F. C. Szoka. (1997). The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the result- ing complexes. Gene Ther., 4:823–832. 89. O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. Behr. (1995). A versatile vector for gene and oligonucleotide Gene, Oligonucleotide, and Ribozyme Therapy 649 Copyright © 2003 Marcel Dekker, Inc. transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA, 92:7297–7301. 90. E. Chaum, M. P. Hatton, and G. Stein. (1999). Polyplex-mediated gene trans- fer into human retinal pigment epithelial cells in vitro. J. Cell Biochemistry, 76:153–160. 91. C. L. Bashford, G. M. Alder, G. Menestrina, K. J. Micklem, J. J. Murphy, and C. A. Pasternak. (1986). Membrane damage by hemolytic viruses, toxins, complement and other cytotoxic agents: A common mechanism blocked by divalent cations. J. Biol. Chem., 261:9300–9308. 92. S. Choksakulnimitr, S. Masuda, H. Tokuda, Y. Takakura, and M. Hashida. (1995). In vitro cytotoxicity of macromolecules in different cell culture sys- tems. J. Control. Rel., 34:233–241. 93. M. X. Tang and F. C. Szoka. (1997). The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the result- ing complexes. Gene Ther., 4:823–832. 94. J. C. Roberts, M. K. Bhagat, and R. T. Zera. (1996). Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J. Biomed. Materials Res., 30:53–65. 95. L. Qin, D. R. Pahud, Y. Ding, A. U. Bielinska, J. F. Kukowska-Latallo, J. R. Baker, Jr., and J. Bromberg. (1998). Efficient transfer of genes into murine cardiac grafts by Starburst polyamidoamine dendrimers. Hum. Gene Ther., 9:553–560. 96. T. Hudde, S. A. Rayner, R. M. Comer, M. Weber, J. D. Isaacs, H. Waldmann, D. F. P. Larkin, and A. J. George. (1999). Activated polyami- doamine dendrimers, a non-viral vector for gene transfer to the corneal endothelium. Gene Ther., 6:939–943. 97. A. Urtti, J. Polansky, G. M. Lui, and F. C. Szoka. (2000). Gene delivery and expression in human retinal pigment epithelial cells: effects of synthetic car- riers, serum, extracellular matrix and viral promoters. J. Drug Target., 7:413– 421. 98. M. A. Kay, D. Liu, and P. M. Hoogerbrugge. (1997). Gene therapy. Proc. Natl. Acad. Sci. USA, 94:12744–12746. 99. D. Pogocki and C. Schoneich. (2000). Chemical stability of nucleic acid- derived drugs. J. Pharm. Sci., 89:443–456. 100. I. Jaaskelainen, J. Monkkonen, and A. Urtti. (1994). Oligonucleotide cationic liposome interactions. A physicochemical study. Biochem. Biophys. Acta, 1195:115–123. 101. T. J. Anchordoquy, L. G. Girouard, J. F. Carpenter, and D. J. Kroll. (1998). Stability of lipid/DNA complexes during agitation and freeze-thawing. J. Pharm. Sci., 87:1046–1051. 102. S. D. Allison and T. J. Anchordoquy. (2000). Mechanisms of protection of cationic lipid-DNA complexes during lyophilization. J. Pharm. Sci., 89:682– 691. 103. L. M. Crowe et al. (1993). Does the preferential exclusion hypothesis apply to hydrated phospholipid bilayers? Cryobiology, 30:224–225. 650 Das and Miller Copyright © 2003 Marcel Dekker, Inc. 104. B. Detrick, C. N. Nagineni, L. R. Grillone, K. P. Anderson, S. P. Henry, and J. J. Hooks (2001). Inhibition of human cytomegalovirus replication in a human retinal epithelial cell model by antisense oligonucleotides. Invest. Ophthalmol. Vis Sci., 42:163–169. 105. P. E. Rakoczy, M. C. Lai, M. Watson, U. Seydel, and I. Constable. (1996). Targeted delivery of an antisense oligonucleotide in the retina: Uptake, dis- tribution, stability and effect. Antisense Nucleic Acid Drug Dev., 6:207–213. 106. A. E. Heufelder and R. S. Bahn. (1995). Modulation of cellular functions in retroorbital fibroblasts using antisense oligonucleotides targeting the c-myc protooncogene. Invest. Ophthalmol. Vis. Sci., 36:1420–1432. 107. K. K. Jain. (1998). Antisense therapy. In: Textbook of Gene Therapy. Hogrefe & Huber Publishers, Kirkland, WA, pp. 73–99. 108. W. F. Lima, B. P. Monia, D. J. Ecker, and S. M. Freier. (1992). Implication of RNA structure on antisense oligonucleotide hybridization kinetics. Biochemistry, 31:12055–12061. 109. J. R. Wyatt, T. A. Vickers, J. L. Roberson, R. W. Buckheit, Jr., T. Klimkait, E. DeBaets, P. W. Davis, B. Rayner, J. L. Imbach, and D. J. Ecker. (1994). Combinatorially selected guanosine-quartet structure is a potent inhibitor of human immunodeficiency virus envelope-medicated cell fusion. Proc. Natl. Acad. Sci. USA, 91:1356–1360. 110. P. S. Eder, R. J. DeVine, J. M. Dagle, and J. A. Walder. (1991). Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3 0 exonuclease in plasma. Antisense Res. Dev., 1:141–151. 111. J. Goodchild, B. Kim, and P. C. Zamecnik. (1991). The clearance and degra- dation of oligodeoxynucleotides following intravenous injection into rabbits. Antisense Res. Dev., 1:153–160. 112. A. Teichman-Weinberg, U. Z. Littauer, and I. Ginzburg. (1988). The inhibi- tion of neurite outgrowth in PC12 cells by tubulin antisense oligodeoxynucleo- tides. Gene, 72:297–307. 113. T. Saison-Behmoaras, B. Tocque, I. Rey, M. Chassignol, N. T. Thuong, and C. Helene. (1991). Short modified antisense oligonucleotides directed against Ha-ras point mutation induce selective cleavage of the mRNA and inhibit T24 cells proliferation. EMBO J., 10:1111–1118. 114. Y. Rojanasakul. (1996). Antisense oligonucleotide therapeutics: Drug delivery and targeting. Adv. Drug Delivery Rev., 18:115–131. 115. S. T. Crooke. (1997). Advances in understanding the pharmacological proper- ties of antisense oligonucleotides. Adv. Pharmacol., 40:1–49. 116. C. H. Agris, K. R. Blake, P. S. Miller, M. P. Reddy, and P. O. Ts’o. (1986). Inhibition of vesicular stomatitis virus protein synthesis and infection by sequence-specific oligodeoxyribonucleoside methylphosphonates. Biochem- istry, 25:6268–6275. 117. F. Eckstein and G. Gish. (1989). Phosphorothioates in molecular biology. Trends Biochem. Sci., 14:97–100. 118. M. Matsukura, K. Shinozuka, G. Zon, H. Mitsuya, M. Reitz, J. S. Cohen, and S. Broder. (1987). Phosphorothioate analogs of oligodeoxynucleotides: Gene, Oligonucleotide, and Ribozyme Therapy 651 Copyright © 2003 Marcel Dekker, Inc. inhibitors of replication and cytopathic effects of human immunodeficiency virus. Proc. Natl. Acad. Sci. USA, 84:7706–7710. 119. E. H. Chang and P. S. Miller. (1991). Ras, an inner membrane transducer of growth stimuli. In: Prospects for Antisense Nucleic Acid Therapeutics for Cancer and AIDS (E. Wickstrom, ed). Wiley-Liss, New York, p. 115. 120. J. M. Campbell, T. A. Bacon, and E. Wickstrom. (1990). Oligodeoxynucleoside phosphorothioate stability in subcellular extracts, cul- ture media, sera and cerebrospinal fluid. J. Biochem. Biophys. Methods, 20:259–267. 121. R. P. Erickson and J. G. Izant, eds. (1991). Gene Regulation: Biology of Antisense RNA and DNA. Raven Press, New York. 122. J. A. H. Murray, ed. (1992) Antisense RNA and DNA. Wiley-Liss, New York. 123. C. A. Stein (1996). Phosphorothioate antisense oligodeoxynucleotides: Questions of specificity. Trends Biotechnol., 14:147–149. 124. M. K. Ghosh, K. Ghosh, O. Dahl, and J. S. Cohen. (1993). Evaluation of some properties of a phosphorodithioate oligodeoxyribonucleotide for anti- sense application. Nucleic Acids Res., 21:5761–5766. 125. P. Yaswen, M. R. Stampfer, K. Ghosh, and J. S. Cohen. (1993). Effects of sequence of thioated oligonucleotides on cultured human mammary epithelial cells. Antisense Res. Dev., 3:67–77. 126. M. K. Ghosh, K. Ghosh, and J. S. Cohen. (1993). Phosphorothioate-phos- phodiester oligonucleotide co-polymers: Assessment of antisense application. Anticancer Drug Des., 8:15–32. 127. C. A. Stein and A. M. Krieg. (1994). Problems in interpretation of data derived from in vitro and in vivo use of antisense oligodeoxynucleotides. Antisense Res. Dev., 4:67–69. 128. C. Waheslstedt. (1997). Modulation of receptors. Practical approaches to the regulation on antisense oligonucleotide gene knockout in the nervous system, March 16–19. Oxford University, UK. 129. R. S. Quartin and J. G. Wetmur. (1989). Effect of ionic strength on the hybridization of oligodeoxynucleotides with reduced charge due to methyl- phosphonate linkages to unmodified oligodeoxynucleotides containing com- plementary sequence. Biochemistry, 28:1040–1047. 130. C. A. Stein, K. Mori, S. L. Loke, C. Subasinghe, K. Shinozuka, J. S. Cohen, and L. M. Neckers. (1988). Phosphorothioate and normal oligodeoxyribonu- cleotides with 5 0 -linked acridine: Characterization and preliminary kinetics of cellular uptake. Gene, 72:333–341. 131. R. Zhang, Z. Lu, X. Zhang, H. Zhao, R. B. Diasio, T. Liu, Z. Jiang, and S. Agrawal. (1995). In vivo stability and disposition of a self-stabilized oligo- deoxynucleotide phosphorothiote in rats. Clin. Chem., 41:836–843. 132. G. D. Gray, S. Basu, and E. Wickstrom. (1997). Transformed and immorta- lized cellular uptake of oligodeoxynucleoside phosphorothioate, 3 0 -alkyla- mino oligodeoxynucleotides, 2 0 -O-methyl oligoribonucleotides, oligodeoxynucleoside and methylphosphonates, and peptide nucleic acids. Biochem. Pharmacol., 53:1465–1476. 652 Das and Miller Copyright © 2003 Marcel Dekker, Inc. 133. Y. Shoji, S. Akhtar, A. Periasamy, B. Herman, and R. L. Juliano. (1991). Mechanism of cellular uptake of modified oligodeoxynucleotides containing methylphosphonate linkages. Nucleic Acids Res., 19:5543–5550. 134. T. L. Fisher, T. Terhorst, X. Cao, and R. W. Wagner (1993). Intracellular disposition and metabolism of fluorescently-labeled unmodified oligonucleo- tides microinjected into mammalian cells. Nucleic Acids Res., 21:3857–3865. 135. S. Wu-Pong, T. L. Weiss, and C. A. Hunt. (1992). Antisense c-myc oligodeox- yribonucleotide cellular uptake. Pharm. Res., 9:1010–1017. 136. R. M. Crooke. (1991). In vitro toxicology and pharmacokinetics of antisense oligonucleotides. Anticancer Drug Des., 6:609–646. 137. R. M. Crooke, M. J. Graham, M. E. Cooke, and S. T. Crooke. (1995). In vitro pharmacokinetics of phosphorothioate antisense oligonucleotides. J. Pharmacol. Exp. Ther., 275:462–473. 138. L. A. Yakubov, E. A. Deeva, V. F. Zarytova, E. M. Ivanova, A. S. Ryte, L. V. Yurchenko, and V. V. Vlassov. (1989). Mechanism of oligonucleotide uptake by cells: Involvement of specific receptors? Proc. Natl. Acad. Sci. USA, 86:6454–6458. 139. R. M. Bennett, G. T. Gabor, and M. J. Merritt. (1985). DNA binding to human leukocytes. Evidence for a receptor-mediated association, internaliza- tion, and degradation of DNA. J. Clin. Invest., 76:2182–2190. 140. S. Akhtar, S. Basu, E. Wickstrom, and R. L. Juliano. (1991). Interactions of antisense DNA oligonucleotide analogs with phospholipid membranes (lipo- somes). Nucl. Acids Res., 19:5551–5559. 141. J. A. Hughes, C. F. Bennett, P. D. Cook, C. J. Guinosso, C. K. Mirabelli, and R. L. Juliano. (1994). Lipid membrane permeability of 2 0 -modified derivatives of phosphorothioate oligonucleotides. J. Pharm. Sci., 83:597–600. 142. R. M. Crooke, M. J. Graham, M. E. Cooke, and S. T. Crooke. (1995). In vitro pharmacokinetics of phosphorothioate antisense oligonucleotides. J. Pharmacol. Exp. Ther., 275:462–473. 143. J. Zabner, A. J. Fasbender, T. Moninger, K. A. Poellinger, and M. J. Welsh. (1995). Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem., 270: 18997–19007. 144. J. L. Tonkinson and C. A. Stein (1994). Patterns of intracellular compartmen- talization, trafficking and acidification of 5 0 -fluorescein labeled phosphodie- ster and phosphorothioate oilogodeoxynucleotides in HL60 cells. Nucleic Acids Res., 22:4268–4275. 145. O. Zelphati and F. C. Szoka, Jr. (1997). Cationic liposomes as an oligonucleo- tide carrier: Mechanism of action. J. Liposome Res., 7:31–49. 146. O. Zelphati and F. C. Szoka. (1996). Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl. Acad. Sci. USA, 93 :11493–11498. 147. F. C. Szoka, Y. Xu, and O. Zelphati. (1997). How are nucleic acids released in cells from lipid-nucleic acid complexes? Adv. Drug Deliv. Rev., 24:291. 148. S. Wu-Pong. (2000). Alternative Interpretations of the oligonucleotide trans- port literature: Insights from nature. Adv. Drug Deliv. Rev., 44:59–70. Gene, Oligonucleotide, and Ribozyme Therapy 653 Copyright © 2003 Marcel Dekker, Inc. 149. D. J. Chin, G. A. Green, G. Zon, F. C. Szoka, Jr., and R. M. Straubinger. (1990). Rapid nuclear accumulation of injected oligodeoxyribonucleotides. New Biol., 2:1091–1100. 150. M. Cerruzzi, K. Draper, and J. Schwartz. (1990). Nucleos. Nucleot., 9:679– 695. 151. S. L. Loke, C. A. Stein, X. H. Zhang, K. Mori, M. Nakanishi, C. Subasinghe, J. S. Cohen, and L. M. Neckers. (1989). Characterization of oligonucleotide transport into living cells. Proc. Natl. Acad. Sci. USA, 86:3474–3478. 152. Y. Rojanaskul. (1996). Antisense oligonucleotide therapeutics: drug delivery and targeting. Adv. Drug Delivery Rev., 18:115–131. 153. T. M. Woolf, D. A. Melton, and C. G. B. Jennings. (1992). Specificity of antisense oligonucleotides in vivo. Proc. Natl. Acad. Sci. USA, 89:7305–7309. 154. R. C. Bergan, E. Kyle, Y. Connell, and L. Neckers. (1995). Inhibition of protein-tyrosine kinase activity in intact cells by the aptameric action of oli- godeoxynucleotides. Antisense Res. Dev., 5:33–38. 155. C. A. Stein, J. L. Tonkinson, L. M. Zhang, L. Yakubov, J. Gervasoni, R. Traub, and S. A. Rotenberg. (1993). Dynamics of the internalization of phos- phodiester oligodeoxynucleotides in HL60 cells. Biochemistry, 32:4855–4861. 156. R. A. Stull, G. Zon, and F. C. Szoka. (1993). Single-stranded phosphodiester and phosphorothioate oligonucleotides bind actinomycin D and interfere with tumor necrosis factor-induced lysis in the L929 cytotoxicity assay. Antisense Res. Dev., 3:295–300. 157. A. M. Krieg, A. K. Yi, S. Matson, T. J. Waldschmidt, G. A. Bishop, R. Teasdale, G. A. Koretzky, and D. M. Klinman. (1995). CpG motifs in bacter- ial DNA trigger direct B-cell activation. Nature, 374:546–549. 158. P. S. Eder, R. J. DeVine, J. M. Dagle, and J. A. Walder (1991). Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3 0 exonuclease in plasma. Antisense Res. Dev., 1:141–151. 159. J Goodchild, B. Kim, and P. C. Zamecnik. (1991). The clearance and degra- dation of oligodeoxynucleotides following intravenous injection into rabbits. Antisense Res. Dev., 1:153–160. 160. A. Teichman-Weinberg, U. Z. Littauer, and I. Ginzburg. (1988). The inhibi- tion of neurite outgrowth in PC12 cells by tubulin antisense oligodeoxyribo- nucleotides. Gene, 72:297–307. 161. T. Saison-Behmoaras, B. Tocque, I. Rey, M. Chassignol, N. T. Thuong, and C. Helene. (1991). Short modified antisense oligonucleotides directed against Ha-ras point mutation induce selective cleavage of the mRNA and inhibit T24 cells proliferation. EMBO J., 10:1111–1118. 162. C. A. Stein and Y. C. Cheng. (1993). Antisense oligonucleotides as therapeutic agents—is the bullet really magical? Science, 261:1004–1012. 163. D. M. Tidd. (1990). A potential role for antisense oligonucleotide analogues in the development of oncogene targeted cancer chemotherapy. Anticancer Res., 10:1169–1182. 654 Das and Miller Copyright © 2003 Marcel Dekker, Inc. 164. C. A. Stein, and R. Narayanan (1996). Antisense oligodeoxynucleotides: Internationalization, compartmentalization and nonsequence specificity. Perspect. Drug Discov. Design, 4:41–50. 165. R. M. Crooke. (1991). In vitro toxicity and pharmacokinetics of antisense oligonucleotides. Anticancer Drug Des., 6:609–646. 166. Y. Rojanasakul. (1996). Antisense oligonucleotide therapeutics: drug delivery and targeting. Adv. Drug Delivery Rev., 18:115–131. 167. J. W. Jaroszewski, and J. S. Cohen. (1991). Cellular uptake of antisense oli- godeoxynucleotides. Adv. Drug Delivery Rev., 6:235–250. 168. D. R. Tovell and J. S. Colter (1969). The interaction of tritium-labeled mengo virus RNA and L cells: the effects of DMSO and DEAE-dextran. Virology, 37:624–631. 169. F. Dianzani, S. Baron, C. E. Buckler, and H. B. Levy. (1971). Mechanism of DEAE-D-dextran enhancement of polynucleotide induction of interferon. Proc. Soc. Exp. Biol. Med., 136:1111–1114. 170. J. P. Leonetti, B. Rayner, M. Lemaitre, C. Gagnor, P. G. Milhaud, J. L. Imbach, and B. Lebleu. (1988). Antiviral activity of conjugates between poly(L-lysine) and synthetic oligodeoxyribonucleotides. Gene, 72:323–332. 171. M. Stevenson and P. L. Iversen. (1989). Inhibition of human immunodefi- ciency virus type 1-mediated cytopathic effect by poly(L-lysine)-conjugated synthetic antisense oligodeoxyribonucleotides. J. Gen. Virol, 70:2673–2682. 172. J. P. Leonetti, G. Degols, and B. Lebleu. (1990). Biological activity of oligo- nucleotide – poly(L-lysine) conjugates: Mechanism of cell uptake. Bioconj. Chem., 1:149–153. 173. H. J. P. Ryser and W. C. Shen. (1978). Conjugation of methotrexate to poly(L-lysine) increases drug transport and overcomes drug resistance in cul- tured cells. Proc. Natl. Acad. Sci. USA, 75:3867–3870. 174. J. P. Leonetti, B. Reyner, M. Lemaitre, C. Gagnor, P. G. Milhaud, J. L. Imbach, and B. Lebleu. (1988). Antiviral activity of conjugates between poly(L-lysine) and synthetic oligodeoxyribonucleotides. Gene, 72:323–332. 175. R. C. Lambert, Y. Maulet, J. L. Dupont, S. Mykita, P. Craig, S. Volsen, and A. Feltz. (1996). Polyethylenimine-mediated DNA transfection of peripheral and central neurons in primary culture: probing Ca 2þ channel structure and function with antisense oligonucleotides. Mol. Cell. Neurosci., 7:239–246. 176. G. J. Nabel, E. G. Nabel, Z. Y. Yang, B. A. Fox, G. E. Plautz, X. Gao, L. Huang, S. Shu, D. Gordon, and A. E. Chang. (1993). Direct gene transfer with DNA-liposome complexes in melanoma: Expression, biological activity, and lack of toxicity in humans. Proc. Natl. Acad. Sci. USA, 90:11307–11311. 177. N. J. Caplen, E. W. Alton, P. G. Middleton, J. R. Dorin, B. J. Stevenson, X. Gao, S. R. Durham, P. K Jeffery, M. E. Hodson, and C. Coutelle. (1995). Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat. Med., 1:39–46. 178. P. L. Felgner, Y. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northop, G. M. Ringold, and M. Danielsen. (1987). Lipofection: a highly Gene, Oligonucleotide, and Ribozyme Therapy 655 Copyright © 2003 Marcel Dekker, Inc. efficient lipid-mediated DNA transfection procedure. Proc. Natl. Acad. Sci. USA, 84:7413–7417. 179. C. F. Bennett, M. Y. Chiang, H. Chan, J. E. Shoemaker, and C. K. Mirabelli. (1992). Cationic lipids enhance cellular uptake and activity of phosphorothio- ate antisense oligonucleotides. Mol. Pharmacol. 41:1023–1033. 180. O. Zelphati and F. C. Szoka, Jr. (1996). Intracellular distribution and mechan- ism of delivery of oligonucleotides mediated by cationic lipids. Pharm. Res., 13:1367–1372. 181. P. L. Felgner. (1990). Particulate systems and polymers for in vitro and in vivo delivery of polynucleotides. Adv. Drug Del. Rev., 5:163–187. 182. H. Farhood, X. Gao, K. Son, Y. Y. Yang, J. S. Lazo, L. Huang, J. Barsoum, R. Bottega, and R. M. Epand. (1994). Cationic liposomes for direct gene transfer in therapy of cancer and other diseases. Ann. NY Acad. Sci. USA, 716:23–35. 183. P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold, and M. Danielsen. (1987). Lipofection: A highly efficient, lipid-mediated DNA transfection procedure. Proc. Natl. Acad. Sci. USA, 84:7413–7417. 184. P. L. Felgner and G. M. Ringold. (1989). Cationic liposome-mediated trans- fection. Nature, 337:387–388. 185. D. C. Litzinger, J. M. Brown, I. Wala, S. A. Kaufman, G. Y. Van, C. L. Farrell, and D. Collins. (1996). Fate of cationic liposomes and their complex with oligonucleotide in vivo. Biochem. Biophys. Acta, 1281:139–149. 186. R. L. Juliano and S. Akhtar. (1992). Liposomes as a drug delivery system for antisense oligonucleotides. Antisense Res. Dev., 2:165–176. 187. I. Jaaskelainen, J. Monkkonen, and A. Urtti. (1994). Oligonucleotide-cationic liposome interactions. A physicochemical study. Biochem. Biophys. Acta, 1195:115–123. 188. S. Capaccioli, G. Di Pasquale, E. Mini, T. Mazzei, and A. Quattrone. (1993). Cationic lipids improve antisense oligonucleotide uptake and prevent degra- dation in cultured cells and in human serum. Biochem. Biophys. Res. Commun., 197:818–825. 189. G. Hartmann, A. Krug, M. Bidlingmaier, U. Hacker, A. Eigler, R. Albrecht, C. J. Strasburger, and S. Endres. (1998). Spontaneous and cationic lipid- mediated uptake of antisense oligonucleotides in human monocytes and lym- phocytes. J. Pharmacol. Exp. Ther., 285:920–928. 190. C. J. Chu, J. Dijkstra, M. Z. Lai, K. Hong, and F. C. Szoka. (1990). Efficiency of cytoplasmic delivery of pH-sensitive liposomes to cells in culture. Pharm. Res., 7:824–834. 191. P. G. Milhaud, J. P. Bongartz, B. Lebleu, and J. R. Philippot. (1990). pH- sensitive liposomes and antisense oligonucleotide delivery. Drug Delivery, 3:67–73. 192. C. Y. Wang and L. Huang. (1989). Highly efficient DNA delivery mediated by pH-sensitive immunoliposomes. Biochemistry, 28:9508–9514. 656 Das and Miller Copyright © 2003 Marcel Dekker, Inc. [...]... product In this chapter, we will discuss the requirements for ophthalmic delivery systems in which a drug is incorporated in a carrier for its pharmacological effect on the human eye and is reviewed as a new drug product by the FDA’s Drug Center (CDER) V CLINICAL TESTING OF NEW OPHTHALMIC DRUG DELIVERY SYSTEMS A Human Versus Animal Testing Human drug products are often tested during development in animals... marketing approval The terms drug and new drug are inclusive of the drug substance and the drug product It is important to understand that a new drug is not just a newly discovered chemical or biological compound This can best be illustrated by several examples of when a drug can become a new drug for regulatory purposes: 1 The drug is a new derivative of a known molecule such as a prodrug of epinephrine 2... potential for Copyright © 2003 Marcel Dekker, Inc Regulatory Considerations 679 For oral drugs, the dose-response testing is a crucial parameter; however, it has not been a rigorous part of most topical ophthalmic drug- development programs The drug delivery researcher may find that these data are missing for his or her drug and needs to establish this relationship for optimization An example of this occurred... compliance for clinical trial manufacture (10) VI MARKETING NEW OPHTHALMIC DRUG DELIVERY SYSTEMS FOR HUMAN USE Once a manufacturer has obtained sufficient information from clinical trials in humans, safety testing in animals, and chemistry and manufacturing experience to establish that the new ophthalmic drug delivery system is safe and effective for its intended use, a New Drug Application is submitted to the... Copyright © 2003 Marcel Dekker, Inc Regulatory Considerations 669 application, $100 ,000 for each manufacturing facility, and $10, 000 for each product dosage form and strength Human drug applications that are exempt from user fees include those for clinical investigations, generic drug approvals, over-the-counter drug approvals, orphan drug approvals, and pediatric use approvals Fees may be waived in certain... study is intended to be used as part of the NDA to establish safety and effectiveness, it would be important to know if the FDA has any serious questions about the protocol before proceeding Ophthalmic drug clinical development generally follows three phases, particularly if the drug is a new molecule and this is its first introduction into humans Phase 1 for ophthalmic drugs usually is focused on the... previously approved drug has been discovered to have a new therapeutic use such as a nonsteroidal anti-inflammatory agent used to inhibit miosis during cataract surgery 3 A component of a drug is new for drug use such as an EVA polymer film to control the release of pilocarpine in the eye or a gel-forming polymer to extend the duration of IOP-lowering of timolol maleate 4 Two or more approved drugs are combined... Dekker, Inc 680 Roehrs and Krueger ophthalmic IND? In general, to begin clinical testing, FDA will require at least the same duration of testing in animals as proposed for human exposure The requirements will vary with the particular drug and the novelty of the particular delivery system The approach of one company in establishing the safety/toxicity profile of ophthalmic drugs and devices has recently... Kreuter (1978) Nanoparticles and nanocapsules—new dosage forms in the nanometer size range Pharm Acta Helv., 53:33–39 206 J Heller (1993) Polymers for controlled parenteral delivery of peptides and proteins Adv Drug Del Rev., 10: 163–204 207 W Lin, A G Coombes, M C Davies, S S Davis, and L Illum (1993) Preparation of sub -1 00 nm human serum albumin nanospheres using a pHcoacervation method J Drug Target.,... modification of the approved drug (21 CFR 314.430) For the new ophthalmic delivery system of an approved drug, the basic human clinical and animal safety studies would not have to be repeated but only referenced to the approved drug s NDA Full reports would only be required for demonstration of safety and efficacy of the new delivery system, i.e., the changes made to the approved drug A complete chemistry, . therapeutics: drug delivery and targeting. Adv. Drug Delivery Rev., 18:115–131. 167. J. W. Jaroszewski, and J. S. Cohen. (1991). Cellular uptake of antisense oli- godeoxynucleotides. Adv. Drug Delivery. pharmaceu- tical drug product will be essential. The commercial consideration for development of an ophthalmic drug delivery system is not limited to new therapeutic agents. Many existing ophthalmic drugs. T24 cells proliferation. EMBO J., 10: 1111–1118. 114. Y. Rojanasakul. (1996). Antisense oligonucleotide therapeutics: Drug delivery and targeting. Adv. Drug Delivery Rev., 18:115–131. 115. S.

Ngày đăng: 10/08/2014, 00:20

TỪ KHÓA LIÊN QUAN