1. Trang chủ
  2. » Giáo Dục - Đào Tạo

PHƯƠNG PHÁP THỐNG KÊ TRONG HẢI DƯƠNG HỌC Phạm Văn HuấnTừ khóa: Đại lượng docx

14 516 3

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 565,84 KB

Nội dung

Từ khóa: Đại lượng ngẫu nhiên, luật phân bố, phân bố thống kê, tiêu chuẩn phù hợp, ước lượng tham số, xác suất tin cậy, khoảng tin cây, quá trình ngẫu nhiên, tương quan, phương pháp bìn

Trang 1

Từ khóa: Đại lượng ngẫu nhiên, luật phân bố, phân bố thống kê, tiêu chuẩn phù hợp, ước lượng tham số, xác suất tin cậy, khoảng tin

cây, quá trình ngẫu nhiên, tương quan, phương pháp bình phương nhỏ nhất, khai triển phổ, phân tích điều hòa, là trơn, chu trình tuần

hoàn, trung bình trượt

Tài liệu trong Thư viện điện tử Trường Đại học Khoa học Tự nhiên có thể được sử dụng cho mục đích học tập và nghiên cứu

cá nhân Nghiêm cấm mọi hình thức sao chép, in ấn phục vụ các mục đích khác nếu không được sự chấp thuận của nhà xuất

bản và tác giả

PHƯƠNG PHÁP THỐNG KÊ TRONG

HẢI DƯƠNG HỌC

Phạm Văn Huấn

Trang 2

ĐẠI HỌC QUỐC GIA HÀ NỘI

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

Phạm Văn Huấn

PHƯƠNG PHÁP THỐNG KÊ

TRONG HẢI DƯƠNG HỌC

Nhà xuất bản Đại học Quốc gia Hà Nội - 2010

Lời nói đầu

Giáo trình “Phương pháp thống kê trong hải dương học” phục vụ cho môn học cùng tên với thời lượng hai tín chỉ trong chương trình đào tạo cử nhân ngành hải dương học ở Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội

Sách chọn giới thiệu một cách tóm tắt những khái niệm, phương pháp cơ bản của lý thuyết thống kê toán học hay được sử dụng trong phân tích số liệu quan trắc hải dương học và được sắp xếp thành năm chương theo nhóm vấn đề Đầu mỗi chương thường ôn lại những khái niệm và công thức cơ bản từ toán học thống kê, sau đó giới thiệu sự ứng dụng thông qua các thí dụ để rèn luyện thói quen hiểu ý nghĩa thực tế của khái niệm và kỹ năng thực hành tính toán cụ thể của sinh viên Cuối mỗi chương có phụ lục gồm các đoạn mã chương trình máy tính chính là nhằm mục đích đó Những thí dụ ứng dụng phương pháp thống kê trong hải dương học chưa bao quát hết những vấn đề hải dương học thống kê, mới chỉ giới thiệu ở mức độ giúp cho sinh viên bước đầu biết áp dụng các khái niệm và phương pháp, tính toán đúng theo các công thức liên quan, chưa giành chú ý nhiều đến cách đặt vấn đề, lý giải kết quả phân tích và

ý nghĩa thực tế của mỗi bài toán Nội dung sách cũng chưa bao gồm những kết quả nghiên cứu biển và đại dương theo hướng thống kê trong hải dương học trên thế giới và ở Việt Nam Sinh viên ngành hải dương học sẽ thấy những khía cạnh này trong các môn học cơ sở khác của ngành như hải dương học khu vực, thông tin và dự báo khí tượng thủy văn biển, thủy triều, sóng và các bài báo khoa học, sách chuyên khảo

về biển

Tác giả

Trang 3

MỤC LỤC

Chương 1 Khái niệm về đại lượng ngẫu nhiên 3

1.1 Những đại lượng ngẫu nhiên và luật phân bố 3

1.2 Quy luật phân bố chuẩn 7

Phụ lục chương 1 10

Chương 2 Những khái niệm cơ bản của lý thuyết xử lý số liệu quan trắc 13

2.1 Hàm phân bố thống kê 13

2.2 Sự phù hợp của phân bố lý thuyết và phân bố thống kê 15

2.2.1 Tiêu chuẩn χ2 15

2.2.2 Sơ đồ ứng dụng tiêu chuẩn χ2 để đánh giá sự phù hợp 18

2.2.3 Tiêu chuẩn phù hợp của Kolmogorov 19

2.3 Khái niệm về ước lượng tham số của phân bố 20

2.4 Ước lượng của kỳ vọng toán học và phương sai 20

2.5 Khoảng tin cậy và xác suất tin cậy 20

2.5.1 Khoảng tin cậy đối với kỳ vọng toán học 22

2.5.2 Khoảng tin cậy đối với phương sai 23

2.5.3 Những phương pháp chính xác dựng khoảng tin cậy cho các tham số của đại lượng ngẫu nhiên phân bố chuẩn 25

2.6 Ước lượng xác suất theo tần suất 30

Phụ lục chương 2 34

Chương 3 Khái niệm về hệ các đại lượng ngẫu nhiên và ứng dụng 37

3.1 Hệ các đại lượng ngẫu nhiên 37

3.2 Các đặc trưng số của hệ hai đại lượng ngẫu nhiên Mô men tương quan Hệ số tương quan 39

3.3 Phép là trơn các mối phụ thuộc thực nghiệm bằng phương pháp bình phương nhỏ nhất 41

Phụ lục chương 3 49

Chương 4 Những khái niệm cơ bản của lý thuyết hàm ngẫu nhiên và ứng dụng 51

4.1 Các đặc trưng của hàm ngẫu nhiên 51

4.2 Khái niệm về hàm ngẫu nhiên dừng 52

4.3 Tính chất egođic của những hàm ngẫu nhiên dừng 53

4.4 Xác định các đặc trưng của hàm ngẫu nhiên dừng egođic theo một hiện 53

4.5 Khai triển phổ hàm ngẫu nhiên dừng trên khoảng thời gian hữu hạn 54

Phụ lục chương 4 61

Chương 5 Ứng dụng lý thuyết hàm ngẫu nhiên vào phân tích số liệu hải dương học 63

5.1 Phân tích chuỗi thời gian trong hải dương học 63

5.1.1 Phân tích các chu trình tuần hoàn 64

5.1.2 Xác định các chu trình tuần hoàn bằng phương pháp phân tích điều hòa 65

5.2 Phổ phương sai của chuỗi thời gian 68

5.3 Loại bỏ chu trình tuần hoàn khỏi chuỗi thời gian 69

5.3.1 Loại bỏ chu trình tuần hoàn bằng phân tích điều hòa 69

5.3.2 Loại bỏ biến trình năm từ chuỗi quan trắc năm 71

5.3.3 Loại bỏ chu trình tuần hoàn và phân tích các chu trình không tuần hoàn trong thực tế xử lý số liệu 71

5.4 Hàm tương quan và hàm phổ đối với chuỗi thời gian các yếu tố hải dương học 73

Phụ lục chương 5 75

Tài liệu tham khảo 77

Trang 4

Chương 1

KHÁI NIỆM VỀ ĐẠI LƯỢNG NGẪU NHIÊN

1.1 Những đại lượng ngẫu nhiên và luật phân bố

Đại lượng ngẫu nhiên là đại lượng mà trong thử nghiệm có thể nhận

một giá trị nào đó không biết trước cụ thể Những giá trị có thể có của đại

lượng ngẫu nhiên rời rạc có thể được kể ra từ trước Những giá trị có thể

có của đại lượng ngẫu nhiên liên tục không thể kể ra trước được và chúng

phân bố liên tục trên một khoảng nào đó

Đối với đại lượng ngẫu nhiên rời rạc X , nếu ta biết xác suất P của

từng giá trị có thể có của nó x1 , x2 , , xn, tức biết

=

=

=

=

=

=

=

n

n n

p

p x X P p

x X P p x

X

P

1

2 2 1

1

1

;

;

;

;

thì ta nói rằng đại lượng ngẫu nhiên ấy hoàn toàn đã được xác định về

phương diện xác suất Mối liên hệ giữa các giá trị có thể có của đại lượng

ngẫu nhiên và những xác suất tương ứng của chúng được gọi là luật phân

bố của đại lượng ngẫu nhiên Luật phân bố có thể được cho bởi bảng

phân bố hoặc đa giác phân bố

Đối với đại lượng ngẫu nhiên liên tục, chúng ta không thể kể ra hết

tất cả các giá trị có thể có, hơn nữa từng giá trị riêng biệt của đại lượng

ngẫu nhiên liên tục thường có xác suất bằng không, nên người ta cho

phân bố bằng hàm phân bố F (x ):

(X x)

P x

F( )= < (1.1) Người ta còn gọi F (x ) là hàm phân bố tích phân hay luật phân bố tích phân

Hàm phân bố là đặc trưng vạn năng nhất của đại lượng ngẫu nhiên

Nó tồn tại cho cả các đại lượng ngẫu nhiên rời rạc lẫn liên tục Hàm phân

bố có tính chất là hàm không giảm, tức F( )x2 ≥F( )x1 nếu x2 > x1, bằng không ở âm vô cùng (F( −∞)=0) và bằng một ở dương vô cùng

(F( +∞)=1) Hàm phân bố của đại lượng ngẫu nhiên rời rạc bất kỳ luôn luôn là một hàm bậc thang gián đoạn Trong thực tế thông thường hàm phân bố của đại lượng ngẫu nhiên liên tục là hàm liên tục

Khi giải những bài toán thực tế nhiều khi đòi hỏi tính xác suất của

sự kiện đại lượng ngẫu nhiên rơi vào khoảng giá trị từ x đến xx:

) ( ) (

)

P < < + Δ = + Δ −

hoặc xác suất trung bình đối với một đơn vị độ dài trong khoảng giá trị

đó

x

x F x x F

Δ

− Δ

(

Nếu Δx→0 thì

) ( ) ( ) ( ) (

x

x F x x F

Δ

− Δ

+

Δ (1.2) Hàm f (x ) (đạo hàm của hàm phân bố) đặc trưng cho mật độ mà các giá trị của đại lượng ngẫu nhiên phân bố ở điểm đã cho Hàm này

được gọi là mật độ phân bố (hay “mật độ xác suất”) của đại lượng ngẫu

Trang 5

nhiên Đôi khi người ta còn gọi hàm f (x ) là hàm phân bố vi phân hoặc

luật phân bố vi phân của đại lượng ngẫu nhiên liên tục X

Xác suất giá trị của đại lượng ngẫu nhiên X rơi vào khoảng từ α

đến β sẽ bằng

=

<

α

β

P( ) ( ) (1.3)

Có thể biểu thị hàm mật độ phân bố qua hàm phân bố bằng công

thức (1.2) Ngược lại, có thể biểu thị hàm phân bố qua hàm mật độ

= x f x dx x

F ( ) ( ) (1.4) Mật độ phân bố là hàm không âm ( f ( x ) ≥ 0 ), tích phân của hàm

mật độ với các giới hạn vô cùng bằng một ( ∫∞

= 1 )

( dx x

f ) Như vậy, đường cong phân bố luôn luôn nằm trên trục hoành, diện tích đầy đủ giới

hạn bởi đường cong phân bố và trục hoành bằng một

Thứ nguyên của hàm phân bố F ( x ) giống như xác suất không có

thứ nguyên, thứ nguyên của mật độ phân bố f (x ) nghịch đảo với thứ

nguyên của đại lượng ngẫu nhiên

Trong nhiều vấn đề thực tế, không nhất thiết phải đặc trưng đại

lượng ngẫu nhiên một cách đầy đủ bằng hàm phân bố F (x ) mà chỉ cần

chỉ ra những tham số bằng số riêng biệt ở mức độ nào đó đặc trưng cho

những nét chủ yếu của đại lượng ngẫu nhiên Đó là những đặc trưng số

của đại lượng ngẫu nhiên:

1) Kỳ vọng toán học (giá trị trung bình) của đại lượng ngẫu nhiên:

Nếu đại lượng ngẫu nhiên rời rạc X có các giá trị có thể có

n

x x

x1 , 2 , , với xác suất p1 , p2 , , pn thì kỳ vọng toán học của đại lượng ngẫu nhiên sẽ bằng

=

=

= +

+ +

+ + +

=

i i i n

i i

n

i i i n

n n

p

p x p

p p

p x p

x p x X m

1 1

1

2 1

2 2 1 1

Như vậy, kỳ vọng toán học của đại lượng ngẫu nhiên là tổng của các tích của tất cả các giá trị có thể có của đại lượng ngẫu nhiên với những xác suất của các giá trị ấy

Kỳ vọng toán học có liên quan với trung bình số học Giả sử chúng

ta thực hiện N thí nghiệm độc lập, trong mỗi lần thí nghiệm đại lượng

X nhận giá trị xác định: giả sử giá trị x1 xuất hiện m1 lần, giá trị x2

xuất hiện m2 lần, nói chung, giá trị xi xuất hiện mi lần Công thức tính trung bình số học các giá trị quan trắc đại lượng X sẽ là

N

m x m

x m x m

m m

m x m

x m x X

n

n

+ + +

+ + +

=

]

2 1

2 2 1 1

* 2

2

1

=

= +

+ +

i

n i i i

i i

n

N

m x N

m x N

m x N

m

trong đó

N

m

i∗ = là tần suất (hay xác suất thống kê)

Như vậy, trung bình số học của các giá trị quan trắc của đại lượng ngẫu nhiên bằng tổng của các tích của tất cả các giá trị có thể có của đại lượng ngẫu nhiên với tần suất của những giá trị đó

Đối với đại lượng ngẫu nhiên liên tục X kỳ vọng toán học tính theo công thức

Trang 6

[ ] ∫∞

=

mx M ( ) (1.7)

2) Mốt của đại lượng ngẫu nhiên là giá trị hay xảy ra nhất của nó

Cụm từ “hay xảy ra nhất” chỉ hoàn toàn chính xác đối với các đại lượng

ngẫu nhiên rời rạc, đối với đại lượng ngẫu nhiên liên tục thì mốt là giá trị

mà tại đó mật độ xác suất cực đại Người ta ký hiệu mốt bằng chữ M

Trên hình 1.1 biểu diễn mốt của các đại lượng ngẫu nhiên rời rạc và liên

tục

x

p i

M

x

f(x)

Hình 1.1 Biểu diễn mốt của các đại lương ngẫu nhiên rời rạc và liên tục

Trong trường hợp tổng quát thì mốt và kỳ vọng toán học của đại

lượng ngẫu nhiên không trùng nhau Khi nào phân bố là đối xứng và có

mốt (tức có một mốt) và tồn tại kỳ vọng toán học thì kỳ vọng toán học

trùng với mốt và tâm đối xứng của phân bố

3) Trung vị của đại lượng ngẫu nhiên (thường chỉ dùng cho đại

lượng liên tục) là giá trị Me của nó sao cho

) (

)

P < = >

Trên đồ thị phân bố, trung vị là hoành độ của điểm mà diện tích giới

hạn bởi đường cong phân bố bị chia làm đôi Trong trường hợp phân bố

đối xứng có mốt thì trung vị trùng với kỳ vọng toán học và mốt

4) Các mô men:

Mô men gốc bậc s của đại lượng ngẫu nhiên rời rạc X là tổng dạng

=

= n

s i

1

α (1.8) Đối với đại lượng ngẫu nhiên liên tục X , mô men gốc bậc s là tích phân

[ ] ∫∞

= x f x dx

X s

α (1.9)

Từ các công thức (1.8) và (1.9) thấy rằng kỳ vọng toán học chính là

mô men gốc bậc một

Các công thức (1.8) và (1.9) có thể thống nhất thành một công thức chung cho cả các đại lượng ngẫu nhiên rời rạc lẫn liên tục là

α (1.10) Như vậy, mô men gốc bậc s của đại lượng ngẫu nhiên X là kỳ vọng toán học của mũ bậc s của đại lượng ngẫu nhiên đó

5) Đại lượng ngẫu nhiên Xo nhận được bằng công thức

x

o

m X

X = − (1.11)

gọi là đại lượng ngẫu nhiên quy tâm tương ứng của đại lượng X Dễ dàng thấy rằng kỳ vọng toán học của đại lượng ngẫu nhiên quy tâm bằng không

Các mô men của đại lượng ngẫu nhiên quy tâm được gọi là các mô men tâm Mô men tâm bậc s của đại lượng ngẫu nhiên X là kỳ vọng toán học của luỹ thừa bậc s của đại lượng ngẫu nhiên quy tâm tương ứng

Trang 7

[ ] [ ( )s]

x

o s

=

μ (1.12) Đối với đại lượng ngẫu nhiên rời rạc:

( )

=

= n

s x i

1

μ , (1.13) còn đối với đại lượng ngẫu nhiên liên tục:

( )

= x mx s f x dx

μ (1.14)

Rõ ràng đối với đại lượng ngẫu nhiên bất kỳ mô men tâm bậc một

bằng không

Tồn tại những công thức liên hệ giữa các mô men tâm và gốc như

sau:

⎫ +

=

=

=

, 2 3

,

, 0

3 2 3

3

2 2 2 1

x x

x

m m

m

α α

μ

α μ

μ

(1.15)

6) Mô men tâm bậc hai là đặc trưng đặc biệt quan trọng trong số các

mô men khác, được ký hiệu là D X [ ] (hoặc Dx) và thường gọi là

phương sai:

= M Xo

2

= ] [

D μ (1.16)

Như vậy, phương sai của đại lượng ngẫu nhiên X là kỳ vọng toán

học của bình phương đại lượng ngẫu nhiên quy tâm tương ứng

Các công thức để tính trực tiếp phương sai của các đại lượng ngẫu

nhiên rời rạc và liên tục tuần tự là:

( )

=

= n

i

i x

x X

1

2

] [

D , (1.17)

( )

X ] x ( ) [

(1.18)

Phương sai của các đại lượng ngẫu nhiên là đặc trưng phân tán, tản mạn của những giá trị đại lượng ngẫu nhiên xung quanh kỳ vọng toán học của nó

7) Phương sai có thứ nguyên bình phương của đại lượng ngẫu nhiên

Để đặc trưng rõ hơn độ tản mạn người ta dùng một đại lượng có thứ

nguyên trùng với thứ nguyên của đại lượng ngẫu nhiên gọi là độ lệch bình phương trung bình σ [ ]X (hay ký hiệu bằng σx):

] [ ]

σ (1.19) Phương sai và độ lệch bình phương trung bình có thể tính theo mô men gốc bậc hai α2 và kỳ vọng toán học bằng các công thức:

⎪⎭

=

=

=

,

2 2

2 2

x x

x

x x

m D

m D

α σ

α

(1.20)

8) Mô men tâm bậc ba μ3 dùng để đặc trưng tính bất đối xứng của

phân bố Nếu phân bố đối xứng đối với kỳ vọng toán học thì μ3 (và tất

cả các mô men bậc lẻ) bằng không (xét theo cấu trúc của các công thức (1.13) và (1.14))

Mô men tâm bậc ba có thứ nguyên lập phương đại lượng ngẫu nhiên Người ta dùng đại lượng

Trang 8

3

σ

μ

=

k

S (1.21)

không có thứ nguyên để đặc trưng cho tính bất đối xứng của phân bố gọi

là hệ số bất đối xứng Khi Sk > 0 ta có phân bố bất đối xứng dương

(đường cong 1), khi Sk < 0 − bất đối xứng âm (đường cong 2) trên hình

1.2

Hình 1.2 Các đường cong phân bố bất đối xứng

9) Mô men tâm bậc bốn dùng để đặc trưng “độ dốc”, tức mức độ

đỉnh nhọn hay đỉnh dẹt của phân bố Người ta dùng đại lượng gọi là độ

nhọn Ex của đại lượng ngẫu nhiên liên quan với mô men bậc bốn như

sau:

3 4

4 −

=

σ

μ

x

E (1.22) Đối với luật phân bố chuẩn rất quan trọng và thường gặp trong tự

nhiên thì tỷ số 3

4

4 =

σ

μ

, nên độ nhọn Ex = 0 Những phân bố có đỉnh nhọn hơn so với phân bố chuẩn thì Ex > 0, những phân bố có đỉnh dẹt

hơn so với phân bố chuẩn sẽ có Ex < 0 (xem hình 1.3)

x

0

f (x)

Ex < 0

Ex = 0

Ex > 0

Hình 1.3 Các đường cong phân bố có độ nhọn khác nhau

10) Nhiều khi người ta sử dụng những mô men tuyệt đối (gốc và tâm) mà trong số đó thường dùng nhất là mô men tâm tuyệt đối bậc một:

M M

o

m X

X ⎥⎦ ⎤ = −

⎢⎣

=

γ (1.23) gọi là độ lệch trung bình số học, cũng đặc trưng cho độ tản mạn

1.2 Quy luật phân bố chuẩn

Trong lý thuyết xác suất người ta đặc biệt quan tâm tới một kiểu luật

phân bố gọi là luật phân bố chuẩn (hay phân bố Gauss) Đây là kiểu phân

bố thường gặp nhất trong thực tế Người ta đã chứng minh được rằng tổng của một số lượng đủ lớn các đại lượng ngẫu nhiên độc lập (hoặc phụ thuộc ít) tuân theo những quy luật phân bố bất kỳ nào đó sẽ xấp xỉ tuân theo quy luật chuẩn và điều này được thể hiện càng chính xác nếu lấy tổng của càng nhiều các đại lượng ngẫu nhiên Điều hạn chế chủ yếu là các đại lượng ngẫu nhiên được cộng lại phải có vai trò đều nhau và tương

Trang 9

đối nhỏ trong tổng chung

Quy luật phân bố chuẩn được đặc trưng bởi mật độ xác suất dạng:

( )

2 2

2

2

1 )

π σ

m x

e x

f

= , (1.24) trong đó m− kỳ vọng toán học của đại lượng ngẫu nhiên X , σ − độ

lệch bình phương trung bình của nó

Hình 1.4 Đồ thị hàm mật độ phân bố chuẩn

Đường cong phân bố theo luật chuẩn có dạng hình đồi đối xứng

(hình 1.4) Tung độ cực đại của đường cong bằng

π

σ 2

1

ứng với hoành độ x=m Xa dần m mật độ phân bố giảm đi và khi x→± ∞

đường cong tiệm cận dần tới trục hoành Điểm m là tâm đối xứng của

phân bố, gọi là tâm tản mạn; tham số σ là đặc trưng tản mạn Khi σ

tăng thì tung độ cực đại giảm và đường cong phân bố trở nên phẳng hơn,

duỗi dài theo trục hoành, ngược lại, khi σ giảm đường cong phân bố nhô

cao lên trên, đồng thời co hẹp hai bên lại

Tính toán các đặc trưng bằng số của phân bố chuẩn cho các kết quả

sau: μ0 = 1 ; μ1 = 0 (và tất cả các mô men bậc lẻ bằng không);

; 15 ;

3

6

4 4

2

μ = = = nói chung các mô men bậc s tính theo công thức truy hồi μs = ( s − 1 ) σ2μs−2; Sk = 0 ; Ex = 0

Để tính được xác suất mà đại lượng ngẫu nhiên X tuân theo quy luật chuẩn với các tham số m và σ rơi vào khoảng giá trị từ α tới β

phải dùng công thức tổng quát

) ( ) ( )

P < < = − , (1.25) trong đó F (x ) − hàm phân bố của đại lượng ngẫu nhiên X tính theo công thức (1.4):

=

m x

dx e

dx x f x

2

2 ) (

2

1 )

( )

π

Nếu thay biến xm = t

σ có thể dẫn tích phân trên tới dạng

π

m x

dt e x

F

t

2

2

2

1 ) ( (1.26)

Tích phân (1.26) không biểu thị được bằng các hàm cơ bản, nhưng

có thể tính nó qua hàm đặc biệt biểu thị tích phân xác định của biểu thức

2

t

e− hay 2

2

t

e− (tích phân xác suất) đã lập thành bảng

Thí dụ, nếu ta dùng hàm

x = x e t2dt

2

2

1 ) (

π

φ , (1.27) thì ta tính

⎛ −

σ

x

F( ) (1.28)

Do đó

Trang 10

⎛ −

⎛ −

=

<

σ

α σ

β β

X

P( ) (1.29)

Như vậy, chúng ta đã biểu thị xác suất của đại lượng ngẫu nhiên X

phân bố theo luật chuẩn với các tham số bất kỳ rơi vào khoảng giá trị cho

trước từ α đến β qua hàm phân bố tiêu chuẩn φ * x ( ) ứng với luật

phân bố chuẩn đơn giản nhất có các tham số tuần tự là m=0 và σ =1

Hàm φ * x ( ) đã được bảng hóa và các giá trị của nó có ở các sách giáo

khoa về lý thuyết xác suất và toán thống kê bất kỳ, ở các tài liệu chuyên

khảo và các cẩm nang toán học Bảng 1.1 là một dạng thuộc loại các bảng

đó

Độ lệch xác suất Trong nhiều ứng dụng lý thuyết xác suất người ta

thường dùng một đặc trưng tản mạn gọi là độ lệch xác suất, ký hiệu bằng

E

Độ lệch xác suất của đại lượng ngẫu nhiên X phân bố theo luật

chuẩn là nửa độ dài của một đoạn đối xứng qua tâm tản mạn mà xác suất

rơi vào đó bằng 0,5 (xem hình 1.5)

Có thể viết

( Xm <E)=0,5

P

hay

5 , 0 ) ( mE < X < m + E =

Dùng công thức (1.29) ta có:

⎛−

= +

<

<

σ

σ φ

E m X E m

Theo tính chất của hàm φ *

) ( 1 ) ( x = − ∗ − x

ta suy ra

5 , 0 1

σ

,

do đó

75 , 0

=

σ

x

f (x)

Hình 1.5 Biểu diễn độ lệch xác suất

Theo bảng giá trị của hàm φ∗ ta tìm ngược lại được

σ

σ = 0 , 674 → E = 0 , 674

E

(1.30)

Ý nghĩa của E là với số lượng lớn thí nghiệm về trung bình sẽ có một nửa số giá trị của đại lượng ngẫu nhiên X lệch khỏi m vượt quá E

và một nửa - nhỏ hơn E Vì vậy E còn được gọi là độ lệch trung tâm

Ngày đăng: 09/08/2014, 16:21

HÌNH ẢNH LIÊN QUAN

Hình 1.1. Biểu diễn mốt của các đại lương ngẫu nhiên rời rạc và liên tục - PHƯƠNG PHÁP THỐNG KÊ TRONG HẢI DƯƠNG HỌC Phạm Văn HuấnTừ khóa: Đại lượng docx
Hình 1.1. Biểu diễn mốt của các đại lương ngẫu nhiên rời rạc và liên tục (Trang 6)
Hình 1.2. Các đường cong phân bố bất đối xứng - PHƯƠNG PHÁP THỐNG KÊ TRONG HẢI DƯƠNG HỌC Phạm Văn HuấnTừ khóa: Đại lượng docx
Hình 1.2. Các đường cong phân bố bất đối xứng (Trang 8)
Hình 1.3. Các đường cong phân bố có độ nhọn khác nhau - PHƯƠNG PHÁP THỐNG KÊ TRONG HẢI DƯƠNG HỌC Phạm Văn HuấnTừ khóa: Đại lượng docx
Hình 1.3. Các đường cong phân bố có độ nhọn khác nhau (Trang 8)
Hình 1.4. Đồ thị hàm mật độ phân bố chuẩn - PHƯƠNG PHÁP THỐNG KÊ TRONG HẢI DƯƠNG HỌC Phạm Văn HuấnTừ khóa: Đại lượng docx
Hình 1.4. Đồ thị hàm mật độ phân bố chuẩn (Trang 9)
Hình 1.5. Biểu diễn độ lệch xác suất - PHƯƠNG PHÁP THỐNG KÊ TRONG HẢI DƯƠNG HỌC Phạm Văn HuấnTừ khóa: Đại lượng docx
Hình 1.5. Biểu diễn độ lệch xác suất (Trang 10)
Bảng 1.1. Bảng các giá trị của tích phân xác suất ∫ - PHƯƠNG PHÁP THỐNG KÊ TRONG HẢI DƯƠNG HỌC Phạm Văn HuấnTừ khóa: Đại lượng docx
Bảng 1.1. Bảng các giá trị của tích phân xác suất ∫ (Trang 11)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w