LỰA CHỌN TỐI ƯU HỖN HỢP BÊ TÔNG CÁT NCS. NGUYỄN THANH SANG Bộ môn Vật liệu xây dựng Viện KH&CN XDGT Trường Đại học Giao Thông Vận Tải Tóm tắt: Xác định thành phần hỗn hợp cốt liệu được mô tả đây là một phần rất quan trọng khi thiết kế hỗn hợp bê tông cát. Bài báo giới thiệu sự khác nhau của các đường cong cấp phối lý tưởng, đề xuất thiết kế hỗn hợp bằng phương pháp phân tích và phương pháp số. Phương pháp thiết kế hỗn hợp bê tông cát còn quan tâm đến các thông số hạt của cốt liệu. Mục đích của tối ưu hỗn hợp bê tông cát được đưa ra là từ việc chọn hỗn hợp cốt liệu cho phù hợp nhất từ cơ sở dự liệu. Các tính chất sau được chọn tối ưu: giá thành của vật liệu thô, chất lượng đầm chặt cốt liệu, tổng lượng nước và lượng xi măng. Việc lựa chọn hỗn hợp cốt liệu cũng như lựa chọn tối ưu thành phần của hỗn hợp bê tong cát nhờ sự hộ trợ của máy tính. Summary: Determination of ingredients of aggregate mixes is discussed as an important part of sand concrete mix design. Defferent types of “ideal” aggregate grading curves are presented in the work. Analytic and numerical method of aggregate mix design are proposed. A sand concrete mix design method is used, taking granulation parameters of aggregate into account. The task of concrete mix optimation implies selecting the most suitable sand concrete aggregate from Data Base. The following properties are to be optimized: cost raw materials, quality of aggregate packing, water and cement consumption. Computer programs for aggregate and sand concrete mix design as well as for sand concrete mix optimization have been developed. CT 2 I. THIẾT KẾ HỖN HỢP CỐT LIỆU Cốt liệu chiếm tới 60÷85% tổng thể tích của bê tông cát. Lựa chọn thích hợp loại cốt liệu cũng như thành phần hạt ảnh hưởng đến các tính chất của bê tông cát như: tính công tác của hỗn hợp bê tông cát cũng như cường độ, tính chống thấm, độ bền và giá thành của bê tông cát đông cứng, bởi vậy thiết kế hỗn hợp cốt liệu là một khâu quan trọng khi lựa chọn tối ưu hỗn hợp bê tông cát. Có hai cách xác định thành phần của hỗn hợp cốt liệu: dùng đường cong cấp phối lý tưởng hoặc dùng giá trị độ đặc của hỗn hợp cốt liệu theo lý thuyết và thực nghiệm. 1.1. Cấp phối cốt liệu lý tưởng Cấp phối cốt liệu được định nghĩa là mối quan hệ giữa kích cỡ sàng tiêu chuẩn X i (mm) và tổng lượng lọt qua sàng này Y i (X i ). Mối quan hệ này tính toán công thức hay đồ biểu. Tối ưu hóa cấp phối cốt liệu có nghĩa là dùng đường cong cấp phối lý tưởng thì cho một hỗn hợp cốt liệu có độ đặc tốt và cho bê tông cát có tính chất tốt. Có các đường cong lý tưởng dựa vào tính toán cơ bản lý thuyết kết hợp với thực nghiệm. Ví dụ đường cong Bolomey, Fuller, Graf [1,2,3]. Đường cong Fuller là phổ biến hơn cả. Nó được tính toán bằng công thức toán học như sau: YT i =100. maxi X/X trong đó: YT i : lượng lọt sàng lý tưởng (lý thuyết). X max : kích cỡ lớn nhất cốt liệu, mm (điểm kết thúc đường cong lý tưởng). Đường cong lý tưởng được tính toán bắt đầu từ điểm (X 0 ,0) vì các hạt nhỏ hơn X 0 = 0.075mm được gọi là bột. Do đó để tính toán giá trị này đường cong lý tưởng Fuller có dạng như sau: YT i = T 0i XX − =T (X i -X 0 ) 0.5 trong đó: T là hệ số phụ thuộc vào kính cỡ lớn nhất của cốt liệu và phải quan tâm rằng độ cong đường cong Fuller có thể thay đổi phụ thuộc vào loại cốt liệu (góc cạnh hay tròn trơn) [5]. Hay nói cách khác đường cong Fuller cho kết quả tốt thì hỗn hợp bê tông cát cứng và có tính công tác thấp. Để cho hỗn hợp bê tông cát dẻo (độ sụt hình côn bằng 3cm và lớn hơn) và bê tông cát để bơm. Vì lý do này để thay đổi độ cong của đường cong lý tưởng Fuller phụ thuộc vào thành phần của bê tông cát và loại cốt liệu. Như vậy, biến đổi đường cong Fuller như sau: YT i = T n (X i - X 0 ) n trong đó: YT i : độ cong của đường cong lý tưởng (lý thuyết). T n : hệ số, phụ thuộc kích cỡ lớn nhất cốt liệu và bậc của biểu thức. Cấp phối lý tưởng của cốt liệu có thể xác định qua đường cong giới hạn trong hình vẽ. Các đường cong lý tưởng khác (cũng là biến đổi của đường cong Fuller với các bậc khác nhau) và đường cong giới hạn theo ASTM C33 [5] ở hình 1. CT 2 9. 5 4 .7 5 2.3 6 1.1 8 0.15 0 .6 0 .0 7 5 0.3 0 10 20 30 40 50 60 70 80 90 100 ĐK sàng (mm) Lượng lọt sàng % Vùng cho phép Fuller n=0.3 Fuller n=0.4 Fuller n=0.5 Fuller n=0.6 n = 0.3 n = 0.4 n=0.5 n = 06 Hình 1. Đường cong giới hạn của ASTM C33 và đường cong Fuller Cấp phối lý tưởng có thể đưa ra nếu tỷ lệ cát trên hỗn hợp cốt liệu là một tỷ lệ hợp lý. Nhưng cách này thì khó và không kinh tế. Thực nghiệm chuẩn bị sẵn các loại cát và cốt liệu thô với các cấp phối khác nhau: hoặc tự nhiên hay không gián đoạn thường dùng. Bởi vậy, mục đích này được xác định bằng tỷ lệ của mỗi cốt liệu trong hỗn hợp cốt liệu gồm có N thành phần để cho một độ đặc tốt nhất. Sau đây là phương pháp xác định tối ưu hóa hỗn hợp cốt liệu: phương pháp đồ biểu (ví dụ phương pháp gần đúng đường cong Fuller được đưa ra bởi Dutch Shockbeton [6], có hàm ý phân tích bằng phương pháp biểu đồ, phân tích tính toán bằng phương pháp bình phương tối thiểu, thực nghiệm và phương pháp phân tích dựa trên xác định độ đặc lớn nhất trong hỗn hợp cốt liệu. 1.2. Xác định hỗn hợp cốt liệu tối ưu dựa vào phương pháp phân tích và phương pháp số Mục đích của công việc: Có N loại cốt liệu (đường cong cấp phối các cốt liệu được xác định). Thành phần của mỗi loại cốt liệu trong hỗn hợp cốt liệu được xác định để sao cho có hỗn hợp mối tương quan tốt với đường cong lý tưởng. Biểu thức cho đường cong cấp phối hỗn hợp thực, Y i được tính như sau: Y i = ∑ = N 1j jij Y*k trong đó: k j : là tỷ lệ thành phần của cốt liệu thứ j. Y ji : lượng lọt sàng thực của cốt liệu thứ j Hệ số k j có thể được xác định bằng giá trị nhỏ nhất của tổng bình phương độ lệch giữa đường cong cấp phối lý tưởng (lý thuyết) và đường cong cấp phối thực. H = min)YYT( M 1i 2 ii ∑ = ⎯→⎯− CT 2 M là số sàng. Sau khi sau khi đạo hàm của hàm H với biến k 1 , k 2 , k N-1 các biểu thức có dạng ma trận: (vì tổng ∑ − = N 1j j 1k) ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ −−−− − − 1N,1N2,1N1,1N 1N,22,21,2 1N,12,11,1 A AA A AA A AA x = ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ −1N 2 1 k k k ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ −1N 2 1 B B B (Ma trận các hệ số với các thành phần chưa biết ) ( Ma trận thành phần chưa biết) (Ma trận tự do) Trong đó A&B là các hệ số được xác định từ cấp phối các cốt liệu Trong phương pháp trên đường cong cấp phối thực gần xấp xỉ với giá trị với đường cong lý tưởng xác định ban đầu (tất cả các điểm của đường cong là giá trị đã biết ban đầu). Ví dụ, đường cong Fuller’s được xác định bắt đầu điểm (X 0 , 0) và kết thúc điểm (X max ,100). Có nghĩa là: đường cong Fuller được giả định quy cho điểm (X max ,100) Nhưng thực tế mỗi giá trị X max khác nhau thì sẽ cho một mối tương quan tốt nhất giữa đường cong thực và đường cong lý tưởng. Tính toán này cần thêm một thành phần chưa biết của hệ thống biểu thức (X max ) và do đó hệ thống biểu thức tính toán: ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − −−−−− − − N,N1N,N2,N1,N N,1N1N,1N2,1N1,1N N,21N,22,21,2 N,11N,12,11,1 AA AA AA AA AA AA AA AA x = ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − T k k k 1N 2 1 ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − N 1N 2 1 B B B B 9 .5 4 .75 2 .36 1 .18 0 . 6 0 . 1 5 0 . 3 0 . 0 75 0 10 20 30 40 50 60 70 80 90 100 ĐK sàng (mm) Lượng lọt sàng % 0 Cát Vĩnh Long Cát An Giang Đá mi Hóa An Đường lý tưởng Đường hh thực CT 2 9 . 5 4. 7 5 2 . 36 1 . 18 0 . 15 0. 6 0 . 3 0 . 075 0 10 20 30 40 50 60 70 80 90 100 ĐK sàng (mm) Lượng lọt sàng % Cát Vĩnh Long Cát Trị An Đường lý tưởng Đường hỗn hợp thực 0 Hình 2. Đường cong lý tưởng và đường cong thực của hỗn hợp cốt liệu (Hình 2a. Hỗn hợp 3 loại cốt liệu cho độ lệch chuẩn S =1.52 %) (Hình 2b. Hỗn hợp 2 loại cát cho độ lệch chuẩn S = 9.28 %) Để xác định thông số và giải hệ thống biểu thức cần có sự trợ giúp của máy tính. Cách này chính xác và rất nhanh đưa ra các giá trị thông số để chọn tối ưu hỗn hợp cốt liệu. Nhưng phải chú ý rằng, nhiều khi áp dụng phương pháp phân tích đưa ra kết quả không phù hợp. Ví dụ: tỷ lệ của cốt liệu k j có thể là một số âm hay lớn hơn 1. Phương pháp phân tích chỉ sử dụng được khi hệ số k j nằm trong giới hạn: 0 ≤ k j ≤ 1 Hầu hết các bảng kết quả đạt được, nếu phương pháp số được xác định hỗn hợp tối ưu cốt liệu. Phương pháp này trợ giúp cho ta xác định các thành phần có thể (tỷ lệ thành phần của mỗi cốt liệu trong hỗn hợp). Một thông số của hỗn hợp tối ưu là tổng bình phương. Độ lệch chuẩn (sai số tiêu chuẩn) giữa đường cong hỗn hợp cốt liệu thực và đường cong lý tưởng cho tất cả các sàng S = 1M )YYT( M 1i 2 ii − − ∑ = Với sự trợ giúp của máy tính xác định loại cốt liệu phối hợp với nhau. Thực tế thì thường sử dụng từ 2 ÷ 4 cốt liệu cho hỗn hợp bê tông cát. II. TỐI ƯU HỖN HỢP BÊ TÔNG CÁT 2.1. Các cơ sở dữ liệu cho đường cong cốt liệu tự nhiên và đường cong lý tưởng CT 2 Mục tiêu của tối ưu hỗn hợp bê tông cát là tính toán các thành phần bê tông cát khác nhau với các cốt liệu hỗn hợp khác nhau, và sau đó chọn ra các tỷ lệ tốt nhất của hỗn hợp bởi việc so sánh tính kinh tế, những đặc trưng tính cơ học cũng như độ bền của vật liệu này. Bước đầu tiên của chương trình tối ưu hỗn hợp Bê tông cát là tạo cơ sở dữ liệu cho các cốt liệu. Cơ sở dữ liệu của các cốt liệu bao gồm các thông tin: Tên và cơ sở xác nhận cốt liệu, giá cả, thông số về góc cạnh (mô đun độ mịn, số góc cạnh và hệ số góc cạnh), cấp phối, độ đặc, độ hút nước, cường độ và chống ẩm. 2.2. Phương pháp thiết kế hỗn hợp bê tông cát Để xác định thành phần của hỗn hợp bê tông cát bao gồm các bước sau: * Tính toán hỗn hợp cốt liệu với phương pháp số trên đây * Xác định tỷ lệ N/X với các công thức thông dụng (Phụ thuộc cường độ của bê tông cát, cường độ xi măng và chất lượng cốt liệu) * Xác định tổng lượng N, đưa ra các thông số, hình dạng của cốt liệu: Cấp phối, hình dạng, tính chất bề mặt. Mục đích chính để xác định lượng nước hấp phụ (số góc cạnh) của cốt liệu được đưa vào để tính toán chiều dày màng nước và thành phần hạt, cấp phối hạt. Số góc cạnh của cốt liệu được tính toán sau: λ j = ∑ = λ∗ M 1i ii Q Ở đây: Q i : Lượng hạt ở sàng thứ i λ i : Là số góc cạnh được đưa ra tính toán tương ứng. Số góc cạnh của hỗn hợp cốt liệu được xác định: λ = ∑ = λ∗ N 1j jj K Lượng nước tổng là: W = K ∗ λ K: Hệ số xác định bởi cùng một hỗn hợp bê tông cát. Chú ý rằng phương pháp tiêu chuẩn chỉ quan tâm một số đặc tính chung của cốt liệu như: D max , mô đun độ mịn, không thể mô tả hoàn toàn các tính chất của cốt liệu. Phương pháp góc cạnh cho phép định trước các tính chất của hỗn hợp bê tông cát để tăng thêm chính xác. 2.3. Tối ưu nhiều mục tiêu của hỗn hợp bê tông cát 2.3.1. Nhập các dữ liệu tối ưu. a. Tính chất của bê tông cát và các yêu cầu cơ sở: Độ sụt côn, cường độ nén loại cốt liệu, lượng không khí cuốn vào, D max ) CT 2 b. Số cốt liệu sử dụng để trộn hỗn hợp. Số cốt liệu từ dữ liệu cơ sở (N 1 : Số loại cát hạt nhỏ; N 2 : số loại cát hạt lớn hoặc đá mi (thải phẩm mỏ đá)) Tổng loại cốt liệu của hỗn hợp (trong trường hợp có 2 loại cát nhỏ (Cát Vĩnh Long và Cát An Giang) và 2 loại cát hạt lớn (Cát trị An và Đá mi Hóa An) nên số hỗn hợp thí nghiệm là: N c = N 1 x N 2 = 4 2.3.2. Thiết kế hỗn hợp bê tông cát tất cả các cốt liệu hỗn hợp và xác định các đặc tính tối ưu + Thiết kế hỗn hợp cốt liệu với phương pháp số; xác định hệ số độ đặc cốt liệu. + Độ lệch chuẩn trung bình giữa đường cong thực và đường cong lý tưởng S + Mức độ đặc của hỗn hợp cốt liệu (cũng có thể đưa vào tính toán) Thiết kế hỗn hợp bê tông cát: Xác định thành phần bê tông cát trong 1m 3 theo các đặc tính của chất lượng bê tông cát bao gồm : + Tổng lượng xi măng trong 1m 3 bê tông cát: C + Tổng lượng nước trong 1m 3 bê tông cát: W + Độ đặc tính toán: d Xác định thông số kinh tế Giá thành vật liệu cho 1m 3 bê tông cát: Cost Xác định mỗi hàm mục tiêu φ i được đưa ra để đạt được tính chất tối ưu, giá trị từ 0 ÷ 1 2.3.3 Tính toán hàm mục tiêu chung cho tất cả hỗn hợp cốt liệu φ = 21 1 (*) y n ii i ηφ − − = ∑ Trong đó: n y : Số tính chất tối ưu : Hệ số tính toán ban đầu được chia ra để xác định tối ưu đối với các tính chất (hay mức độ ưu tiên cho từng hàm mục tiêu). i η ( 1n j = ∑ ) φ i : Hàm mục tiêu riêng với tính chất tối ưu. So sánh các hàm với các hỗn hợp cốt liệu khác nhau. Bê tông cát tốt nhất là trị số φ lớn nhất. III. KẾT LUẬN - Sử dụng phương pháp số: để thiết kế hỗn hợp cốt liệu dựa vào đường cong Fuller cho phép tính toán hỗn hợp cốt liệu với các loại bê tông cát khác nhau cũng như là sử dụng các loại cốt liệu tự nhiên hay nhân tạo. - Giá trị trung bình độ lệch tiêu chuẩn giữa đường cong lý tưởng và đường cong thực S phụ thuộc chất lượng chèn xếp của cốt liệu CT 2 - Sử dụng phương pháp số góc cạnh để thiết kế hốn hợp bê tông cát cho phép dự đoán các tính chất vật lý và cơ học của bê tông cát (cường độ, tính công tác) với các hệ số hiệu chỉnh không nhỏ hơn 0,95. Vào thời điểm này hệ số sai khác giữa thực nghiệm và kết quả của phương pháp chuẩn là 0,85 ÷ 0,9. + Ứng dụng máy tính cho phép thiết kế hỗn hợp bê tông cát một cách nhanh chóng và đơn giản để chọn ra các hệ số tối ưu về tính chất cơ lý cũng như tính kinh tế. Tài liệu tham khảo [1]. Gailis K. Betona sastava projecsana un kontrole. Riga, 1938, pp1-56. [2]. Graf O. Der Aufbau de Mortels und des betons. Berlin, 1930. [3]. Fouad M. Khalaf, J. Mat. in Civ. Engrg.Discussion of “Using Crushed Clay Brick as Coarse Aggregate in Concrete”, Volume 19, Issue 11, pp. 1011-1012 (November 2007). [4]. Julio Esteban Colmenares montanez, Suction and Volume changes of compacted sand-betonit mixture, The thesis of University of London, 2002. [5]. ASTM C33. [6]. Shockbeton Informaton. Schokbeton « Zwijindrecht ». Holland, 1974 ♦ . cốt liệu cho hỗn hợp bê tông cát. II. TỐI ƯU HỖN HỢP BÊ TÔNG CÁT 2.1. Các cơ sở dữ liệu cho đường cong cốt liệu tự nhiên và đường cong lý tưởng CT 2 Mục tiêu của tối ưu hỗn hợp bê tông cát là. hỗn hợp bê tông cát cũng như cường độ, tính chống thấm, độ bền và giá thành của bê tông cát đông cứng, bởi vậy thiết kế hỗn hợp cốt liệu là một khâu quan trọng khi lựa chọn tối ưu hỗn hợp bê. trước các tính chất của hỗn hợp bê tông cát để tăng thêm chính xác. 2.3. Tối ưu nhiều mục tiêu của hỗn hợp bê tông cát 2.3.1. Nhập các dữ liệu tối ưu. a. Tính chất của bê tông cát và các yêu cầu