Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 20 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
20
Dung lượng
275,59 KB
Nội dung
386 Zuccheri and Samor ` ı itself approximately 18 times on average. When not complexed with proteins (like in nucleosomes), the supercoiled DNA should be in the interwound form, which is called “plectonemic.” What is almost constantly found in the SFM literature is the imaging of DNA plasmids that simply do not appear plectonemic, even if the authors describe them as supercoiled. Among other researchers, we have seen and reported plasmids that appeared too loosely coiled for their native superhelical density. A comparison between theoretical and com- putational evaluations would also suggest that plasmids with a native superhelical density should be significantly more coiled under the conditions of SFM imaging (Vologodskii, 1992; Vologodskii and Cozzarelli, 1994). The shape of supercoiled plasmids in SFM images is often very open, with only one or two apparent crossovers. Sometimes it is dif- ficult to distinguish the loosely coiled plasmids from the relaxed plasmids that can have “random flops,” especially if they are very long. At times, strange looking supercoiled plasmids have been presented. The superhelical density should be spread homogeneously along the entire length of the molecule, where no extended sections have a significantly looser appearance. On the contrary, many reports show plasmids with apparently highly coiled sections and other sections which are completely loose (Pope et al., 2000). It is our understanding that this could be due to local condensation conditions, which can drive some strand-to-strand contacts not only due to supercoiling. Under the conditions of DNA deposition and dehydration adopted for SFM imaging, some condensation could occur, especially if enabled by the superhelical tension. These conditions could even drive the molecules toward unnatural shapes. A seriously limited number of EM studies demonstrate nicely interwound plectonemic plasmids; among them, the cryo-EM studies demonstrate the nicest ones (Adrian et al., 1990). As mentioned earlier, the cryo-EM pic- tures generated much criticism (Gebe et al., 1996). Theoretical evaluations suggest that the motivation of the highly coiled forms is due to the very low temperature equilibration of the plasmids (Gebe et al., 1996). Evidence is building toward the idea that under the normal conditions of imaging the observed shapes are normally fairly loose. If the ionic strength of the solution to deposit is very high, then the deposited plasmids can appear as highly coiled. A good example is that of Lyubchenko and Shlyakhtenko (1997), who produced very nice images by depositing on AP-mica a plasmid solution with a very high concentration of NaCl. Supercoiled plasmids deposited on freshly cleaved mica are normally loosely coiled, unless uranyl-acetate is used in the dehydration phase to pre- serve the structure of the molecules (Cherny et al., 1998; F. Nagami et al., unpublished results). In this case (see Fig. 8), the plasmids can be highly coiled, and it is very easy to distinguish between relaxed and supercoiled plasmids in which case, the statistical evaluation of the two populations is very similar to the quantitative analysis by agarose gel electrophoresis. On the other hand, in a few cases, very coiled plasmids were imaged at low ionic strength on either freshly cleaved mica or oxidized silicon (Hansma et al., 1996; Yoshimura et al., 2000). Under high ionic strength conditions, plasmids are extremely coiled and can be seen as coiled on the surfaces especially if the experimental conditions (AP-mica or uranyl acetate) can limit their mobility before the ionic conditions are changed (e.g., in a rinsing step). Uranyl acetate might have the dual role of limiting the mobility and increasing the ionic strength. (Not all salts would work in this way.) 17. SFM of Single DNA Molecules 387 Fig. 8 SFM image of plasmid DNA deposited on freshly cleaved mica and dehydrated from a solution containing uranyl acetate. Highly supercoiled, completely relaxed, and fragmented linear DNA molecules are very easy to distinguish from the images under these conditions. Courtesy of Fuji Nagami (F. Nagami, G. Zuccheri, B. Samor`ı, and R. Kuroda (2002). Time-lapse imaging of conformational changes in supercoiled DNA by scanning force microscopy. Anal. Biochem. 300, 170 –176). Thus, why are the same plasmids so loosely coiled under conditions that should still preserve their coiling? We presently believe that the electrostatic interactions with the surface and the statistical effects of being confined in a very thin layer of solution strongly increase the intramolecular strand-to-strand repulsion. The electrostatic repulsion should keep the DNA strands apart, and thus uncoil them, except in the presence of a high con- centration of salt that screens the charges. The natural partition of a linking deficit in DNA between writhing and twisting of the chain might be altered in favor of twisting under these conditions. We are not aware of computer simulations that consider these factors to determine the partition of supercoiling under strongly spatially confined conditions. A partial B-to-A transition has been known to occur on DNA on the surface of mica (see Section III,E). Under these conditions, the superhelical tension should be greatly reduced (Krylov et al., 1990) and might help to bring the supercoiled DNA to a low state of coiling. It appears to us that the shape of supercoiled DNA evidenced from SFM images could be the result of multiple factors and further evidences are awaited to completely clarify the issue. Imaging supercoiled DNA in fluid at high ionic strength seems to be the only safe method to have nice plectonemic DNA on freshly cleaved mica under completely con- trolled conditions and without the aid of extraneous molecules. To image plectonemic DNA in air, strongly adhesive surfaces (like AP-mica) need to be coupled to the high- ionic-strength environment. Nicked plasmids appear open on freshly cleaved mica since they have the mobility to respond to the high electrostatic repulsion between strands. This same repulsion that opens them up like circles is also responsible for the self- avoiding that causes DNA strands to never overlap if imaged on mica under nontrapping 388 Zuccheri and Samor ` ı conditions (Rivetti et al., 1996). When imaged under trapping conditions, supercoiled DNA might appear more nicely plectonemic. Unfortunately, under the same conditions, nicked plasmids might display many chain crossovers, due to their random adsorption and trapping on the surface (such as for the many rosette-like shapes shown by Lyubchenko and Shlyakhlenko, 1997), and they will be more difficult to visualize and characterize. VIII. Conclusions and Perspectives After several years of SFM experiments on DNA, there are many questions that micro- scopists would still like to answer. Newer techniques and instruments are still emerging, often from the close collaboration of chemists and biologists with physicists. Newer technologies and interdisciplinary approaches will certainly expand the knowledge on the structure and behavior of DNA in the following years. A. SFM Single-Molecule Stretching Experiments on DNA: Only a Brief Note on a Booming Issue The last few years have seen the emergence of force spectroscopy as a new field of research. Using several kinds of force transducers, measured small forces can be applied to properly selected parts of a molecule in order to study its behavior and the forces that hold its structure together. The SFM cantilever is one of the most frequently used force transducers for force spectroscopy. Many groups are already working in SFM force spectroscopy of DNA, studying the forces that not only keep the double helix together but also might determine its behavior in the interaction with proteins or other molecules (Clausen-Schaumann et al., 2000; Lee et al., 1994; Noy et al., 1997; Strunz et al., 2000; Strunz et al., 1999). B. The Structure of ss-DNA Relatively few SFM studies have been done on single-stranded nucleic acids. Some possible reasons are the variability, complexity, and fragility of their structures. Recent studies have shown that some useful information can also be gathered from single- stranded DNA (Zuccheri et al., 2000). It can be easily predicted that some of the numerous interesting questions regarding single-stranded DNA and RNA will find answers as a result of SFM studies. Acknowledgments We are grateful to Pasquale De Santis (University La Sapienza, Rome, Italy) for the very helpful discussion on DNA curvature and flexibility, to Giuseppe Gargiulo (University of Bologna, Italy) for sharing his DNA constructs, and to Fuji Nagami (University of Tokyo, Japan) not only for helpful discussion but also for sharing his images of supercoiled plasmids. This work was supported by Programmi Biotecnologie Legge 95/95 (MURST 5%); MURST PRIN (Progetti Biologia Strutturale 1997–1999 and 1999–2001). 17. SFM of Single DNA Molecules 389 References Adrian, M., Ten Heggeler-Bordier, B., Wahli, W., Stasiak, A. Z., Stasiak, A., and Dubochet, J. (1990). Direct visualization of supercoiled DNA molecules in solution. EMBO J. 9(13), 4551–4554. Aich, P., Labiuk, S. L., Tari, L. W., Delbaere, L. J., Roesler, W. J., Falk, K. J., Steer, R. P., and Lee, J. S. (1999). M-DNA: A complex between divalent metal ions and DNA which behaves as a molecular wire. J. Mol. Biol. 294(2), 477–485. Anselmi, C., Bocchinfuso, G., De Santis, P., Savino, M., and Scipioni, A. (1999). Dual role of DNA intrinsic curvature and flexibility in determining nucleosome stability. J. Mol. Biol. 286(5), 1293–1301. Argaman, M., Golan,R.,Thomson, N. H., and Hansma, H. G. (1997). Phase imaging of moving DNA molecules and DNA molecules replicated in the atomic force microscope. Nucl. Acids Res. 25(21), 4379–4384. Bamdad, C. (1998). A DNA self-assembled monolayer for the specific attachment of unmodified double- or single-stranded DNA. Biophys. J. 75(4), 1997–2003. Bates, A. D., and Maxwell, A. (1993). “DNA Topology.” Oxford, New York; IRL Press, Oxford University Press. Baur, C., Gazen, B. C., Koel, B., Ramachandran, T. R., Requicha, A. A. G., and Zini, L. (1997). Robotic nanomanipulation with a scanning probe microscope in a networked computing environment. J. Vacuum Sci. Technol. B (Microelectronics and Nanometer Structures) 15(4), 1577–1580. Bednar, J., Furrer, P., Katritch, V., Stasiak, A. Z., Dubochet, J., and Stasiak, A. (1995). Determination of DNA persistence length by cryo-electron microscopy. Separation of the static and dynamic contributions to the apparent persistence length of DNA. J. Mol. Biol. 254(4), 579–594. Bettini, A., Pozzan, M., Valdevit, E., and Frontali, C. (1980). Microscopic persistence length of native DNA: its relation to average molecular dimensions. Biopolymers 19, 1689–1694. Bezanilla, M., Brake, B., Nudler, E., Kashlev, M., Hansma, P. K., and Hansma, H. G. (1994). Motion and enzymatic degradation of DNA in the atomic force microscope. Biophys. J. 67(6), 2454–2459. Bezanilla, M., Manne, S., Laney, D. E., Lyubchenko, Y. L., and Hansma, H. G. (1995). Adsorption of DNA to mica, silylated mica, and minerals—Characterization by atomic force microscopy. Langmuir 11(2), 655– 659. Binnig, G. (1992). Force microscopy. Ultramicroscopy 42(JUL), 7–15. Binnig, G., Quate, C. F., and Gerber, C. (1986). Atomic force microscope. Phys. Rev. Lett. 56(9), 930– 933. Binnig, G., and Rohrer, H. (1984). Scanning tunnelling microscopy. In “Trends in Physics” (J. Janta and J. Pantoflicek, eds.) Vol. 1, 38– 48. European Physical Society, Prague. Binnig, G., Rohrer, H., Gerber, C., and Weibel, E. (1982a). Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61. Binnig, G., Rohrer, H., Gerber, C., and Weibel, E. (1982b). Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40(2), 178–180. Boles, T. C., White, J. H., and Cozzarelli, N. R. (1990). Structure of plectonemically supercoiled DNA. J. Mol. Biol. 213(4) 931–951. Bustamante, C., Guthold, M., Zhu, X., and Yang, G. (1999). Facilitated target location on DNA by individual Escherichia coli RNA polymerase molecules observed with the scanning force microscope operating in liquid. J. Biol. Chem. 274(24), 16,665–16,668. Bustamante, C., and Rivetti, C. (1996). Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. Annu. Rev. Biophys. Biomol. Struct. 25, 395– 429. Bustamante, C., Vesenka, J., Tang, C. L., Rees, W.,Guthold, M., and Keller, R. (1992). Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry 31(1), 22–26. Bustamante, C., Zuccheri, G., Leuba, S. H., Yang, G., and Samor`ı, B. (1997). Visualization and analysis of chromatin by scanning force microscopy. Methods—A Companion Methods Enzymol. 12(1), 73–83. Calladine, C. R., and Drew, H. R. (1992). “Understanding DNA : The molecule and How it works.” Academic Press, San Diego, London. Cherny, D. I., Fourcade, A., Svinarchuk, F., Nielsen, P. E., Malvy, C., and Delain, E. (1998). Analysis of various sequence-specific triplexes by electron and atomic force microscopies. Biophys. J. 74(2 Pt 1), 1015– 1023. 390 Zuccheri and Samor ` ı Cheung, C. L., Hafner, J. H., and Lieber, C. M. (2000). Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high-resolution imaging. Proc. Natl. Acad. Sci. U.S.A. 97(8), 3809–3813. Clausen-Schaumann, H., Rief, M., Tolksdorf, C., and Gaub, H. E. (2000). Mechanical stability of single DNA molecules. Biophys. J. 78(4), 1997–2007. Coury, J. E., Anderson, J. R., McFail-Isom, L., Williams, L. D., and Bottomley, L. A. (1997). Scanning force microscopy of small ligand-nucleic acid complexes: Tris(o-phenanthroline)ruthenium(II) as a test for a new assay. J. Am. Chem. Soc. 119, 3792–3796. Coury, J. E., McFail-Isom, L., Williams, L. D., and Bottomley, L. A. (1996). A novel assay for drug-DNA binding mode, affinity, and exclusion number: scanning force microscopy. Proc. Natl. Acad. Sci. U.S.A. 93(22), 12,283–12,286. Cozzarelli, N. R., Boles, T. C., White, J. H., and Cozzarelli (1990). Primer on the topology and geometry of DNA supercoiling. In “DNA Topology and Its Biological Effects” (N. R. Cozzarelli and J. C. Wang, eds.), pp. 139–215. CSH Laboratory Press, Cold Spring Harbor, NY. Crothers, D. M. (1998). DNA curvature and deformation in protein-DNA complexes: A step in the right direction [comment]. Proc. Natl. Acad. Sci. U.S.A. 95(26), 15,163–15,165. Crothers, D. M., Drak, J., Kahn, J. D., and Levene, S. D. (1992). DNA bending, flexibility, and helical repeat by cyclization kinetics. Methods in Enzymology 212, 3–29. Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T., and Smalley, R. E. (1996). Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147–150. Dame, R. T., Wyman, C., and Goosen, N. (2000). H-NS mediated compaction of DNA visualized by atomic force microscopy. Nucl. Acids Res. 28(18), Davenport, R. J., Wuite, G. J., Landick, R., and Bustamante, C. (2000). Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase [see comments]. Science 287(5462), 2497–2500. Diau, E. W. G., Herek, J. L., Kim, Z. H., and Zewail, A. H. (1998). Femtosecond activation of reactions and the concept of nonergodic molecules. Science 279(5352), 847–851. Dubochet, J., Adrian, M., Dustin, I., Furrer, P., and Stasiak, A. (1992). Cryoelectron microscopy of DNA molecules in solution. Methods in Enzymology 211, 507–518. Dustin, I., Furrer, P., Stasiak, A., Dubochet, J., Langowski, J., and Egelman, E. (1991). Spatial visualization of DNA in solution. J. Struct. Biol. 107(1), 15–21. Erie, D. A., Yang, G., Schultz, H. C., and Bustamante, C. (1994). DNA bending by Cro protein in specific and nonspecific complexes: implications for protein site recognition and specificity. Science 266(5190), 1562–1566. Fang, Y., and Hoh, J. H. (1998). Surface-directed DNA condensation in the absence of soluble multivalent cations. Nucl. Acids Res. 26(2), 588–593. Fang, Y., and Hoh, J. H. (1999). Cationic silanes stabilize intermediates in DNA condensation. FEBS Lett. 459(2), 173–176. Fang, Y., Spisz, T. S., and Hoh, J. H. (1999). Ethanol-induced structural transitions of DNA on mica. Nucl. Acids Res. 27(8), 1943–1949. Fang, Y., Spisz, T. S., Wiltshire, T., D’Costa, N. P., Bankman, I. N., Reeves, R. H., and Hoh, J. H. (1998). Solid-state DNA sizing by atomic force microscopy. Anal. Chem. 70(10), 2123–2129. Feng, X. Z., Bash, R., Balagurumoorthy, P., Lohr, D., Harrington, R. E., and Lindsay, S. M. (2000). Confor- mational transition in DNA on a cold surface. Nucl. Acids Res. 28(2), 593–596. Fritzsche, W., Schaper, A., and Jovin, T. M. (1995). Scanning force microscopy of chromatin fibers in air and in liquid. Scanning 17(3), 148–155. Frontali, C. (1988). Excluded-volume effect on the bidimensional conformation of DNA molecules adsorbed to protein films. Biopolymers 27(8), 1329–1331. Frontali, C., Dore, E., Ferrauto, A., Gratton, E., Bettini, A., Pozzan, M. R., and Valdevit, E. (1979). An absolute method for the determination of the persistence length of native DNA from electron micrographs. Biopolymers 18(6), 1353–1373. Furrer, P., Bednar, J., Stasiak, A. Z., Katritch, V., Michoud, D., Stasiak, A., and Dubochet, J. (1997). Opposite effect of counterions on the persistence length of nicked and non-nicked DNA. J. Mol. Biol. 266(4), 711–721. 17. SFM of Single DNA Molecules 391 Gebe, J. A., Delrow, J. J., Heath, P. J., Fujimoto, B. S., Stewart, D. W., and Schurr, J. M. (1996). Effects of Na + and Mg 2+ on the structures of supercoiled DNAs: Comparison of simulations with experiments. J. Mol. Biol. 262(2), 105–128. Guthold, M., Zhu, X., Rivetti, C., Yang, G., Thomson, N. H., Kasas, S., Hansma, H. G., Smith, B., Hansma, P. K., and Bustamante, C. (1999). Direct observation of one-dimensional diffusion and transcription by Escherichia coli RNA polymerase. Biophys. J. 77(4), 2284–2294. Hafner, J. H., Cheung, C. L., and Lieber, C. M. (1999). Direct growth of single-walled carbon nanotube scanning probe microscopy tips. J. Am. Chem. Soc. 121, 9750–9751. Han, W., Dlakic, M., Zhu, Y. J., Lindsay, S. M., and Harrington, R. E. (1997). Strained DNA is kinked by low concentrations of Zn2+. Proc. Natl. Acad. Sci. U.S.A. 94(20), 10,565–10,570. Han, W., Lindsay, S. M., Dlakic, M., and Harrington, R. E. (1997). Kinked DNA [letter]. Nature 386(6625), 563. Hansma, H. G., Bezanilla, M., Zenhausern, F., Adrian, M., and Sinsheimer, R. L. (1993). Atomic force microscopy of DNA in aqueous solutions. Nucl. Acids Res. 21(3), 505–512. Hansma, P. K., Cleveland, J. P., Radmacher, M., Walters, D. A., Hillner, P. E., Bezanilla, M., Fritz, M., Vie, D., Hansma, H. G., Prater, C. B., Massie, J., Fukunaga, L., Gurley, J., and Elings, V. (1994). Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64(13), 1738–1740. Hansma, H., Golan, R., Hsieh, W., Daubendiek, S. L., and Kool, E. T. (1999). Polymerase Activities and RNA Structures in the Atomic Force Microscope. J. Struct. Biol. 127, 240–247. Hansma, H. G., and Laney, D. E. (1996). DNA binding to mica correlates with cationic radius: Assay by atomic force microscopy. Biophys. J. 70(4), 1933–1939. Hansma, H. G., Laney, D. E., Bezanilla, M., Sinsheimer, R. L., and Hansma, P. K. (1995). Applications for atomic force microscopy of DNA. Biophys. J. 68(5), 1672–1677. Hansma, H. G., Revenko, I., Kim, K., and Laney, D. E. (1996). Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids. Nucl. Acids Res. 24(4), 713–720. Hansma, H. G., Sinsheimer, R. L., Li, M. Q., and Hansma, P. K. (1992). Atomic force microscopy of single- and double-stranded DNA. Nucl. Acids Res. 20(14), 3585–3590. Hansma, H.G., Vesenka, J., Siegerist, C., Kelderman, G.,Morrett, H., Sinsheimer, R. O.,Elings, V., Bustamante, C., and Hansma, P. K. (1992). Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 256(5060), 1180 –1184. Heckl, W. M. (1998). The combination of AFM Nanodissection with PCR. BIOforum Int. 2, 133–138. Hegner, M., Wagner, P., and Semenza, G. (1993). Immobilizing DNA on gold via thiol modification for atomic force microscopy imaging in buffer solutions. FEBS Lett. 336(3), 452– 456. Henderson, E. (1992). Imaging and nanodissection of individual supercoiled plasmids by atomic force mi- croscopy. Nucl. Acids Res. 20(3), 445– 447. Israelachvili, J. N. (1992). “Intermolecular and Surface Forces.”. Academic Press, London. Jeltsch, A. (1998). Flexibility of DNA in complex with proteins deduced from the distribution of bending angles observed by scanning force microscopy. Biophys. Chem. 74, 53–57. Ji, X., Oh, J., Dunker, A. K., and Hipps, K. W. (1998). Effects of relative humidity and applied force on atomic force microscopy images of the filamentous phage fd. Ultramicroscopy 72(3– 4), 165–176. Joanicot, M., and Revet, B. (1987). DNA conformational studies from electron microscopy. I. Excluded volume effect and structure dimensionality. Biopolymers 26(2), 315–326. Karrasch, S., Dolder, M., Schabert, F., Ramsden, J., and Engel, A. (1993). Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophys. J. 65(6), 2437– 2446. Kasas, S., Thomson, N. H., Smith, B. L., Hansma, H. G., Zhu, X., Guthold, M., Bustamante, C., Kool, E. T., Kashlev, M., and Hansma, P. K. (1997). Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry 36(3), 461– 468. Keller, D. J., and Chih-Chung, C. (1992). Imaging steep, high structures by scanning force microscopy with electron beam deposited tips. Surf. Sci. 268(1–3), 333–339. Krylov, D., Makarov, V. L., and Ivanov, V. I. (1990). The B-A transition in superhelical DNA. Nucl. Acids Res. 18(4), 759–761. 392 Zuccheri and Samor ` ı Kumar, A., Larsson, O., Parodi, D., and Liang, Z. (2000). Silanized nucleic acids: a general platform for DNA immobilization. Nucl. Acids Res. 28(14), e71. Lee, G. U., Chrisey, L. A., and Colton, R. J. (1994). Direct measurement of the forces between complementary strands of DNA. Science 266(5186), 771–773. Lindsay, S. M., Tao, N. J., DeRose, J. A., Oden, P. I., Lyubchenko, Y. L., Harrington, R. E., and Shlyakhtenko, L. (1992). Potentiostatic deposition of DNA for scanning probe microscopy. Biophys. J. 61(6), 1570– 1584. Lyubchenko, Y. L., Gall, A. A., Shlyakhtenko, L. S., Harrington, R. E., Jacobs, B. L., Oden, P. I., and Lindsay, S. M. (1992). Atomic force microscopy imaging of double stranded DNA and RNA. J. Biomol. Struct. Dyn. 10(3), 589–606. Lyubchenko, Y. L., Jacobs, B. L., and Lindsay, S. M. (1992). Atomic force microscopy of reovirus dsRNA: A routine technique for length measurements. Nucl. Acids Res. 20(15), 3983–3986. Lyubchenko, Y. L., and Shlyakhtenko, L. S. (1997). Visualization of supercoiled DNA with atomic force microscopy in situ. Proc. Natl. Acad. Sci. U.S.A. 94(2), 496 –501. Mou, J., Czajkowsky, D. M., Zhang, Y., and Shao, Z. (1995). High-resolution atomic-force microscopy of DNA: the pitch of the double helix. FEBS Lett. 371(3), 279–282. Murakami, M., Hirokawa, H., and Hayata, I. (2000). Analysis of radiation damage of DNA by atomic force microscopy in comparison with agarose gel electrophoresis. J. Biochem. Biophys. Methods 44, 31– 40. Murray, M. N., Hansma, H. G., Bezanilla, M., Sano, T., Ogletree, D. F., Kolbe, W., Smith, C. L., Cantor, C. R., Spengler, S., Hansma, P. K., and Salmeron, M. (1993). Atomic force microscopy of biochemically tagged DNA. Proc. Natl. Acad. Sci. U.S.A. 90(9), 3811–3814. Muzard, G., Theveny, B., and Revet, B. (1990). Electron microscopy mapping of pBR322 DNA curvature. Comparison with theoretical models. EMBO J. 9(4), 1289–1298. Muzzalupo, I., Nigro, C., Zuccheri, G., Samor`ı, B., Quagliariello, C., and Buttinelli, M. (1995). Deposition on mica and scanning force microscopy imaging of DNA molecules whose original B structure is retained. J. Vacuum Sci. Technol. A (Vacuum, Surfaces, and Films) 13(3, pt. 2), 1752–1754. Nishimura, S., Biggs, S., Scales, P. J., Healy, T. W., Tsunematsu, K., and Tateyama, T. (1994). Molecular-scale structure of the cation modified muscovite mica masal plane. Langmuir 10(12), 4554– 4559. Nishimura, S., Scales, P. J., Tateyama, H., Tsunematsu, K., and Healy, T. W. (1995). Cationic modification of muscovite mica - an electrokinetic study. Langmuir 11(1), 291–295. Noy, A., Vezenov, D. V., Kayyem, J. F., Meade, T. J., and Lieber, C. M. (1997). Stretching and breaking duplex DNA by chemical force microscopy. Chem. Biol. 4(7), 519–527. Oussatcheva, E. A., Shlyakhtenko, L. S., Glass, R., Sinden, R. R., Lyubchenko, Y. L., and Potaman, V. N. (1999). Structure of branched DNA molecules: gel retardation and atomic force microscopy studies. J. Mol. Biol. 292(1), 75–86. Paige, C. R., Kornicker, W. A., Hileman, O. E., and Snodgrass, W. J. (1992). Kinetics of desorption of ions from quartz and mica surfaces. J. Radioanal. Nucl. Chem. Art. 159, 37– 46. Pietrasanta, L. I., Schaper, A., and Jovin, T. M. (1994). Probing specific molecular conformations with the scanning force. Nucl. Acids Res. 22(16), 3288–3292. Pope, L. H., Davies, M. C., Laughton, C. A., Roberts, C. J., Tendler, S. J., and Williams, P. M. (1999). Intercalation-induced changes in DNA supercoiling observed in real-time by atomic force microscopy. Anal. Chim. Acta 400, 27–32. Pope, L. H., Davies, M. C., Laughton, C. A., Roberts, C. J., Tendler, S. J., and Williams, P. M. (2000). Atomic force microscopy studies of intercalation-induced changes in plasmid DNA tertiary structure [In Process Citation]. J. Microsc. 199(Pt 1), 68–78. Putman, C. A. J., van der Werf, K. O., de Grooth, B. G., and van Hulst, N. F. (1994). Tapping mode atomic force microscopy in liquid. Appl. Phys. Lett. 64(18), 2454 –2456. Rabke, C. E., Wenzler, L. A., and Beebe, T. P. Jr. (1994). Electron spectroscopy and atomic force microscopy studies of DNA adsorption on mica. Scan. Microsc. 8(3), 471– 480. Ramachandran, T. R., Madhukar, A., Chen, P., and Koel, B. E. (1998). Imaging and direct manipulation of nanoscale three-dimensional features using the noncontact atomic force microscope. J. Vacuum Sci. Technol. A (Vacuum, Surfaces, and Films) 16(3), 1425–1429. 17. SFM of Single DNA Molecules 393 Rippe, K., Guthold, M., von Hippel, P. H., and Bustamante, C. (1997). Transcriptional activation via DNA- looping: visualization of intermediates in the activation pathway of E. coli RNA polymerase ×sigma 54 holoenzyme by scanning force microscopy. J. Mol. Biol. 270(2), 125–138. Rippe, K., M¨ucke, N., and Langowski, J. (1997). Superhelix dimensions of a 1868 base pair plasmid determined by scanning force microscopy in air and in acqueous solution. Nucl. Acids Res. 25(9), 1736–1744. Rivetti, C., and Codeluppi, S. (2001). Accurate length determination of DNA molecules visualized by atomic force microscopy: Evidence for a partial B- to A-form transition on mica. Ultramicroscopy 87(1–2), 55–66. Rivetti, C., Guthold, M., and Bustamante, C. (1996). Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis. J. Mol. Biol. 264(5), 919–932. Rivetti, C., Guthold, M., and Bustamante, C. (1999). Wrapping of DNA around the E. coli RNA polymerase open promoter complex. EMBO J. 18(16), 4464 – 4475. Rivetti, C., Walker, C., and Bustamante, C. (1998). Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. J. Mol. Biol. 280(1), 41–59. Samor`ı, B. (1998). Stretching, tearing, and dissecting single molecules of DNA. Angew. Chem. Int. Ed. 37(16), 2198–2200. Samor`ı, B., Muzzalupo, I., and Zuccheri, G. (1996). Deposition of supercoiled DNA on mica for scanning force microscopy imaging. Scan. Microsc. 10(4), 953–962. Samor`ı, B., Nigro, C., Armentano, V., Cimieri, S., Zuccheri, G., and Quagliariello, C. (1993). DNA supercoiling imaged in 3 Dimensions by scanning force microscopy. Angew. Chem. Int. Ed. 32(10), 1461–1463. Schaper, A., Pietrasanta, L. I., and Jovin, T. M. (1993). Scanning force microscopy of circular and linear plasmid DNA spread on mica with a quaternary ammonium salt. Nucl. Acids Res. 21, 6004 –6009. Schepartz, A. (1995). Nonspecific DNA bending and the specificity of protein-DNA interactions. Science 269(5226), 989–990. Shlyakhtenko, L. S., Gall, A. A., Weimer, J. J., Hawn, D. D., and Lyubchenko, Y. L. (1999). Atomic force microscopy imaging of DNA covalently immobilized on a functionalized mica surface. Biophys. J. 77, 568–576. Shlyakhtenko, L. S., Potaman, V. N., Sinden, R. R., Gall, A. A., and Lyubchenko, Y. L. (2000). Structure and dynamics of three-way DNA junctions: atomic force microscopy studies. Nucl. Acids Res. 28(18), 34–72. Shpigelman, E. S., Trifonov, E. N., and Bolshoy, A. (1993). Curvature—Software for the analysis of curved DNA. CABIOS 9(4), 435– 440. Spisz, T. S., Fang, Y., Reeves, R. H., Seymour, C. K., Bankman, I. N., and Hoh, J. H. (1998). Automated sizing of DNA fragments in atomic force microscope images. Med. Biol. Eng. Comput. 36(6), 667–672. Steinberg, I. Z. (1994). Brownian motion of the end-to-end distance in oligopeptide molecules: Numerical solution of the diffusion equations as coupled first order linear differential equations. J. Theor. Biol. 166(2), 173–187. Strother, T., Hamers, R. J., and Smith, L. M. (2000). Covalent attachment of oligodeoxyribonucleotides to amine-modified Si (001) surfaces. Nucl. Acids Res. 28(18), 3535–3541. Strunz, T., Hegner, M., Oroszlan, K., Schumakovic, I., and G¨untherdt, H J. (2000). Force spectroscopy and dissociation kinetics of single molecules under an applied force. Single Mol. 1(2), 175. Strunz, T., Oroszlan, K., Schafer, R., and Guntherodt, H. J. (1999). Dynamic force spectroscopy of single DNA molecules. Proc. Natl. Acad. Sci. U.S.A. 96(20), 11,277–11,282. Thalhammer, S., Stark, R. W., Muller, S., Wienberg, J., and Heckl, W. M. (1997). The atomic force microscope as a new microdissecting tool for the generation of genetic probes. J. Struct. Biol. 119(2), 232–237. Theveny, B., and Revet, B. (1987). DNA orientation using specific avidin-ferritin biotin end labelling. Nucl. Acids Res. 15(3), 947–958. Thundat, T., Allison, D. P., Warmack, R. J., and Ferrell, T. L. (1992). Imaging isolated strands of DNA molecules by atomic force microscopy. Ultramicroscopy 42(44, pt.B), 1101–1106. Thundat, T., Warmack, R. J., Allison, D. P., Bottomley, L. A., Lourenco, A. J., and Ferrell, T. L. (1992). Atomic force microscopy of deoxyribonucleic acid strands adsorbed on mica: The effect of humidity on apparent width and image contrast. J. Vacuum Sci. Technol. A (Vacuum, Surfaces, and Films) 10(4, pt. 1), 630 – 635. 394 Zuccheri and Samor ` ı Thundat, T., Zheng, X. Y., Chen, G. Y., and Warmack, R. J. (1993). Role of relative humidity in atomic force microscopy imaging. Surf. Sci. 294(1,2), L939–L943. van Noort, S. J., van Der Werf, K. O., de Grooth, B. G., and Greve, J. (1999). High speed atomic force microscopy of biomolecules by image tracking. Biophys. J. 77(4), 2295–2303. van Noort, S. J., van der Werf, K. O., Eker, A. P., Wyman, C., de Grooth, B. G., van Hulst, N. F., and Greve, J. (1998). Direct visualization of dynamic protein-DNA interactions with a dedicated atomic force microscope [see comments]. Biophys. J. 74(6), 2840 –2849. Vesenka, J., Guthold, M., Tang, C. L., Keller, D., Delaine, E., and Bustamante, C. (1992). Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy 42(44, pt. B), 1243–1249. Vesenka, J., Manne, S., Yang, G., Bustamante, C. J., and Henderson, E. (1993). Humidity effects on atomic force microscopy of gold-labeled DNA on mica. Scan. Microsc. 7(3), 781–788. Vologodskii, A. V. (1992). “Topology and Physics of Circular DNA.” CRC Press, Boca Raton, FL. Vologodskii, A. V., and Cozzarelli, N. R. (1994). Conformational and thermodynamic properties of supercoiled DNA. Annu. Rev. Biophys. Biomol. Struct. 23, 609–643. Wagner, P., Nock, S., Spudich, J. A., Volkmuth, W. D., Chu, S., Cicero, R. L., Wade, C. P., Linford, M. R., and Chidsey, C. E. (1997). Bioreactive self-assembled monolayers on hydrogen-passivated Si(111) as a new class of atomically flat substrates for biological scanning probe microscopy. J. Struct. Biol. 119(2), 189–201. Weisenhorn, A. L., Egger, M., Ohnesorge, F., Gould, S. A. C., Heyn, S P., Hansma, H. G., Sinsheimer, R. L., Gaub, H. E., and Hansma, P. K. (1991). Molecular-resolution images of Langmuir-Blodgett and DNA by atomic force microscopy. Langmuir 7, 8–12. Weisenhorn, A. L., Gaub, H. E., Hansma, H. G., Sinsheimer, R. L., Kelderman, G. L., and Hansma, P. K. (1990). Imaging single-stranded DNA, antigen-antibody reaction and polymerized langmuir-blodgett films with an atomic force microscope. Scan. Microsc. 4(3), 511–516. White, J. H. (1989). An introduction to the geometry and topology of DNA structure. In “Mathematical Methods for DNA Sequences,” pp. 225–253. CRC Press, Boca Raton, FL. Wong, S. S., Harper, J. D., Lansbury, P. T., and Lieber, C. M. (1998). Carbon nanotube tips: High-resolution probes for imaging biological systems. J. Am. Chem. Soc. 120(3), 603–604. Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L., and Lieber, C. M. (1998). Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394(6688), 52–55. Wyman, C., Rombel, I., North, A. K., Bustamante, C., and Kustu, S. (1997). Unusual oligomerization re- quired for activity of NtrC, a bacterial enhancer-binding protein [see comments]. Science 275(5306), 1658– 1661. Xu, Y. C., and Bremer, H. (1997). Winding of the DNA helix by divalent metal ions. Nucl. Acids Res. 25(20), 4067– 4071. Xu, X. M., and Ikai, A. (1998). Retrieval and amplification of single-copy genomic DNA from a nanometer region of chromosomes: a new and potential application of atomic force microscopy in genomic research. Biochem. Biophys. Res. Commun. 248(3), 744 –748. Yang, J., and Shao, Z. (1993). Effect of probe force on the resolution of atomic force microscopy of DNA. Ultramicroscopy 50(2), 157–170. Yang, J., Takeyasu, K., and Shao, Z. (1992). Atomic force microscopy of DNA molecules. FEBS Lett. 301(2), 173–176. Yang, G., Vesenka, J. P., and Bustamante, C. J. (1996). Effects of tip-sample forces and humidity on the imaging of DNA with a scanning force microscope. Scanning 18(5), 344–350. Yoshimura, S. H., Ohniwa, R. L., Sato, M. H., Matsunaga, F., Kobayashi, G., Uga, H., Wada, C., and Takeyasu, K. (2000). DNA phase transition promoted by replication initiator. Biochemistry 39 (31), 9139–9145. Zenhausern, F., Adrian, M., Ten Heggeler-Bordier, B., Emch, R., Jobin, M., Taborelli, M., and Descouts, P. (1992). Imaging of DNA by scanning force microscopy. J. Struct. Biol. 108(1), 69–73. Zenhausern, F., Adrian, M., Ten Heggeler-Bordier, B., Eng, L. M., and Descouts, P. (1992). DNA and RNA polymerase/DNA complex imaged by scanning force microscopy: influence of molecular-scale friction. Scanning 14(4), 212–217. 17. SFM of Single DNA Molecules 395 Zenhausern, F., Eng, L. M., Adrian, M., Kasas, S., Weisenhorn, A. L., and Descouts, P. (1992). A scanning force microscopy investigation of DNA adsorbed on mica. Helv. Phys. Acta 65(6), 820 –821. Zuccheri, G., Bergia, A., Gallinella, G., Musiani, M., and Samor`ı, B. (2000). Scanning force microscopy study on a single-stranded DNA: the genome of Parvovirus B19. Chem. Bio. Chem. 2(3), 199–204. Zuccheri, G., Dame, R. T., Aquila, M., Muzzalupo, I., and Samor`ı, B. (1998). Conformational fluctua- tions of supercoiled DNA molecules observed in real time with a scanning force microscope. Appl. Phys. A 66(suppl., pt. 1–2), S585–S589. Zuccheri, G., Scipioni, A., Cavaliere, V., Gargiulo, G., De Santis, P., and Samor`ı, B. (2001). Mapping the instrinsic curvature and flexibility along the DNA chain. Proc. Natl. Acad. Sci U.S.A. 98(6), 3074–3079. [...]... recognition AFM tips cleaning, 117 118 crosslinker binding, 119 esterification, 118 ligand binding, 119 ligand density and functionality, 119 – 120 probe surfaces, 120 – 121 applications, 116 dynamic force microscopy bond lifetime, 124 kinetic rates, energies, binding pocket, 125 unbinding force vs loading rate, 124 – 125 unbinding force distribution, 123 force distance cycle, 121 – 123 Ligands, DNA interactions, SFM... changes, 27 2 27 4 native membrane proteins HPI layer changes, 28 0 28 2 OmpF porin, 28 2 28 5 surface structure changes, 27 8 28 0 vascular endothelial cadherin, 126 Contact mode atomic force microscopy cell imaging, 57–58 operation, 35 overview, 26 0 26 1 Contact mode photonic force microscopy, 20 8 20 9 Coverslips, HEC/RL cell culture, 109 Crosslinker binding, AFM tips, 119 Cryo -atomic force microscopy deep etching,... technique, 22 3 22 4 modifications, 22 4 pulling, 22 4 sample preparation, 22 5 typical experiment, 22 5 PFM studies material and size, 20 4 20 5 surface modifications, 20 5 20 6 SFM, DNA, 367–368 Protein adsorption, force spectroscopy, 14–15 Protein engineering, AFM studies, 314–316 Protein folding, force spectroscopy, 15–19 Protein–protein interactions, force spectroscopy, 29 2 Proteins cellular, see Cellular proteins... trough, 23 4 23 5 Langmuir trough and small Teflon wells, 23 5 23 6 small vesicle fusion, 23 2 23 4 surfaces, 21 5 tapping, see Tapping mode atomic force microscopy technique improvements, 28 9 29 0 technology overview, 147–148 tips cleaning, 117 118 crosslinker binding, 119 esterification, 118 ligand binding, 119 ligand density and funtionality, 119 – 120 modifications, 177–178 probe surfaces, 120 – 121 shape, 82 topographs... applications, 188–190 Photonic force microscopy contact recording mode, 20 8 20 9 design principles, 20 0 20 3 experimental considerations, 199 20 0 fast 3D single-particle tracking, 21 0 feedback control, 20 2 20 3 force sensor, calibration, 20 7 instrumentation, 20 24 kinesins basic structure, 24 25 mechanical behavior, 26 mechanical properties, 25 27 local viscosity, 28 29 molecular interactions, 196–199 plasma... see Atomic force microscopy Air bubbles, AFM cantilever, 21 6 Antibody–antigen recognition, force microscopy, 134–137 Antibody labeling, membrane protein AFM imaging, 26 4 26 5 Aqueous fluids, AFM imaging bubble removal from cantilever, 21 6 cantilevers, 21 8 different solutions, 21 8 21 9 modes, 21 7 without O ring, 21 5 21 6 with O ring, 21 6 parameters, 21 7 21 8 when to image, 22 1 when not to image, 22 1 22 3 Atomic. .. imaging, 63 membrane proteins antibody labeling, 26 4 26 5 assembly, 28 5, 29 1 29 2 force- induced conformational changes, 27 2 27 4 oligomerization, 27 0 27 2 polypeptide end removal, 26 7 27 0 polypeptide loop removal, 26 7 polypeptide loop replacement, 26 5 26 7 methodological strategies, 1 42 microscope–AFM interface, 174–176 modes, 338 native membrane protein HPI layer changes, 28 0 28 2 OmpF porin conformation, 28 2 28 5... 21 5 21 6 with O ring, 21 6 parameters, 21 7 21 8 when to image, 22 1 when not to image, 22 1 22 3 bacterial pore, 28 7 28 9 basic setup, 151–153 basic technique, 1 42 bilayers charged lipids, 23 8 24 0 ligand-linked lipids, 23 7 23 8 binding force measurement on intact cells, 178–179 binding map analysis, 179–180 biomechanics, 184 cantilever AFM studies, 21 8 bubble removal, 21 6 JAR cell culture, 109 110 materials,... recognition, 124 Bovine serum albumin, supported bilayer substrate, 23 3 23 4 Brush border membrane vesicles, dynamic force microscopy, 131 BSA, see Bovine serum albumin Buffers, SFM of DNA, 370–371 C Cadherin, VE cells, dynamic force microscopy binding strengh, 128 – 129 Ca2+ dependence, 127 – 128 conformation, 126 overview, 125 – 126 400 Index Cadherin, VE cells, dynamic force microscopy (continued ) thermodynamics... kidney cells, AFM studies, 37–38 Mapping AFM analysis, 179–180 human serum albumin, 133–134 Na+/D-glucose cotransporter, 131–133 recognition imaging, 133–134 MDCK cells, see Madin–Darby kidney cells 404 Index Membrane proteins, AFM studies antibody labeling, 26 4 26 5 assembly, 28 5, 29 1 29 2 force- induced conformational changes, 27 2 27 4 native HPI layer changes, 28 0 28 2 OmpF porin conformation, 28 2 28 5 surface . studies, 20 2 20 3 Finite element modeling, AFM interfacing, 1 82 Fluids advanced handling, AFM studies DNA digestion by DNase, 22 7 future outlook, 22 7 operation principles, 22 6 22 7 overview, 22 5 22 6 aqueous,. 370–371 C Cadherin, VE cells, dynamic force microscopy binding strengh, 128 – 129 Ca 2+ dependence, 127 – 128 conformation, 126 overview, 125 – 126 400 Index Cadherin, VE cells, dynamic force microscopy (continued. functionality, 119 – 120 probe surfaces, 120 – 121 applications, 116 dynamic force microscopy bond lifetime, 124 kinetic rates, energies, binding pocket, 125 unbinding force vs. loading rate, 124 – 125 unbinding