1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 6 doc

40 280 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 242,75 KB

Nội dung

12.8 Hints Hint 12.1 Use the Cauchy convergence criterion for series In particular, consider |SN +1 − SN | Hint 12.2 CONTINUE Hint 12.3 ∞ n ln(n) n=2 Use the integral test ∞ n=2 ln (nn ) Simplify the summand ∞ ln √ n ln n n=2 Simplify the summand Use the comparison test ∞ n(ln n)(ln(ln n)) n=10 Use the integral test 574 ∞ n=1 ln (2n ) ln (3n ) + Show that the terms in the sum not vanish as n → ∞ ∞ n=0 ln(n + 20) Shift the indices ∞ n=0 4n + 3n − Show that the terms in the sum not vanish as n → ∞ ∞ (Logπ 2)n n=0 This is a geometric series ∞ n=2 n2 − n4 − Simplify the integrand Use the comparison test 10 ∞ n=2 n2 (ln n)n Compare to a geometric series 575 11 ∞ (−1)n ln n=2 n Group pairs of consecutive terms to obtain a series of positive terms 12 ∞ n=2 (n!)2 (2n)! Use the comparison test 13 ∞ n=2 3n + 4n + 5n − 4n − Use the root test 14 ∞ n=2 n! (ln n)n Show that the terms not vanish as n → ∞ 15 ∞ n=2 en ln(n!) Show that the terms not vanish as n → ∞ 16 ∞ n=1 Apply the ratio test 576 (n!)2 (n2 )! 17 ∞ n8 + 4n4 + 3n9 − n5 + 9n n=1 Use the comparison test 18 ∞ 1 − n n+1 n=1 Use the comparison test 19 ∞ n=1 cos(nπ) n Simplify the integrand 20 ∞ n=2 ln n n11/10 Use the integral test Hint 12.4 Group the terms 1 = 2 1 − = 12 1 − = 30 ··· 1− 577 Hint 12.5 Show that |S2n − Sn | > Hint 12.6 The alternating harmonic series is conditionally convergent Let {an } and {bn } be the positive and negative terms in the sum, respectively, ordered in decreasing magnitude Note that both ∞ an and ∞ bn are divergent Devise a n=1 n=1 method for alternately taking terms from {an } and {bn } Hint 12.7 Use the ratio test Hint 12.8 Use the integral test Hint 12.9 Note that sin(nx) = (eınx ) This substitute will yield a finite geometric series Hint 12.10 Let Sn be the sum Consider Sn − zSn Use the finite geometric sum Hint 12.11 The summand is a rational function Find the first few partial sums This a geometric series Hint 12.12 CONTINUE 578 Hint 12.13 CONTINUE ∞ n=0 ∞ n=2 ∞ n=1 ∞ n=1 ∞ n=1 ∞ n=1 ∞ n=0 ∞ n=0 ∞ n=0 zn (z + 3)n Log z ln n z n (z + 2)2 n2 (z − e)n nn z 2n 2nz z n! (n!)2 z ln(n!) n! (z − π)2n+1 nπ n! 579 ∞ 10 n=0 ln n zn Hint 12.14 Hint 12.15 CONTINUE Hint 12.16 Differentiate the geometric series Integrate the geometric series Hint 12.17 The Taylor series is a geometric series Hint 12.18 Hint 12.19 Hint 12.20 1 = z + (z − 1) The right side is the sum of a geometric series Integrate the series for 1/z Differentiate the series for 1/z Integrate the series for Log z 580 Hint 12.21 Evaluate the derivatives of ez at z = Use Taylor’s Theorem Write the cosine and sine in terms of the exponential function Hint 12.22 cos z = − cos(z − π) sin z = − sin(z − π) Hint 12.23 CONTINUE Hint 12.24 CONTINUE Hint 12.25 Hint 12.26 Hint 12.27 Hint 12.28 Hint 12.29 Hint 12.30 CONTINUE 581 12.9 Solutions Solution 12.1 ∞ n=0 an converges only if the partial sums, Sn , are a Cauchy sequence ∀ > ∃N s.t m, n > N ⇒ |Sm − Sn | < , In particular, we can consider m = n + ∀ > ∃N s.t n > N ⇒ |Sn+1 − Sn | < Now we note that Sn+1 − sn = an ∀ > ∃N s.t n > N ⇒ |an | < This is exactly the Cauchy convergence criterion for the sequence {an } Thus we see that limn→∞ an = is a necessary condition for the convergence of the series ∞ an n=0 Solution 12.2 CONTINUE Solution 12.3 ∞ n=2 n ln(n) Since this is a series of positive, monotone decreasing terms, the sum converges or diverges with the integral, ∞ dx = x ln x ∞ ln dξ ξ Since the integral diverges, the series also diverges ∞ n=2 = ln (nn ) 582 ∞ n=2 n ln(n) Thus the series converges absolutely for |z| < 1/4 By the Cauchy-Hadamard formula, the radius of absolute convergence is R= lim sup |n + αn | n = lim sup |α| n |1 + n/αn | = |α| Thus the sum converges absolutely for |z| < 1/|α| Solution 12.15 ∞ kz k k=0 We determine the radius of convergence with the ratio formula k k→∞ k + 1 = lim k→∞ =1 R = lim The series converges absolutely for |z| < ∞ kk z k k=1 598 We determine the radius of convergence with the Cauchy-Hadamard formula R= lim sup k |k k | = lim sup k =0 The series converges only for z = ∞ k=1 k! k z kk We determine the radius of convergence with the ratio formula k!/k k k→∞ (k + 1)!/(k + 1)(k+1) (k + 1)k = lim k→∞ kk k+1 = exp lim k ln k→∞ k ln(k + 1) − ln(k) = exp lim k→∞ 1/k 1/(k + 1) − 1/k = exp lim k→∞ −1/k k = exp lim k→∞ k + = exp(1) =e R = lim 599 The series converges absolutely for |z| < e ∞ (z + ı5)2k (k + 1)2 k=0 We use the ratio formula to determine the domain of convergence (z + ı5)2(k+1) (k + 2)2

Ngày đăng: 06/08/2014, 01:21

TỪ KHÓA LIÊN QUAN