1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 2 pptx

40 349 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 446,89 KB

Nội dung

Now we compute the derivative. d dz log z = e −ıθ ∂ ∂r (Log r + ıθ) = e −ıθ 1 r = 1 z Solution 8.14 The complex derivative in the coordinate directions is d dz = e −ıθ ∂ ∂r = − ı r e −ıθ ∂ ∂θ . We substitute f = u + ıv into this identity to obtain the Cauchy-Riemann equation in polar co ordinates. e −ıθ ∂f ∂r = − ı r e −ıθ ∂f ∂θ ∂f ∂r = − ı r ∂f ∂θ u r + ıv r = − ı r (u θ + ıv θ ) We equate the real and imaginary parts. u r = 1 r v θ , v r = − 1 r u θ u r = 1 r v θ , u θ = −rv r Solution 8.15 Since w is analytic, u and v satisfy the Cauchy-Riemann equations, u x = v y and u y = −v x . 414 Using the chain rule we can write the derivatives with respect to x and y in terms of u and v. ∂ ∂x = u x ∂ ∂u + v x ∂ ∂v ∂ ∂y = u y ∂ ∂u + v y ∂ ∂v Now we examine φ x − ıφ y . φ x − ıφ y = u x Φ u + v x Φ v − ı (u y Φ u + v y Φ v ) φ x − ıφ y = (u x − ıu y ) Φ u + (v x − ıv y ) Φ v φ x − ıφ y = (u x − ıu y ) Φ u − ı (v y + ıv x ) Φ v We use the Cauchy-Riemann equations to write u y and v y in terms of u x and v x . φ x − ıφ y = (u x + ıv x ) Φ u − ı (u x + ıv x ) Φ v Recall that w  = u x + ıv x = v y − ıu y . φ x − ıφ y = dw dz (Φ u − ıΦ v ) Thus we see that, ∂Φ ∂u − ı ∂Φ ∂v =  dw dz  −1  ∂φ ∂x − ı ∂φ ∂y  . We write this in operator notation. ∂ ∂u − ı ∂ ∂v =  dw dz  −1  ∂ ∂x − ı ∂ ∂y  415 The complex conjugate of this relation is ∂ ∂u + ı ∂ ∂v =  dw dz  −1  ∂ ∂x + ı ∂ ∂y  Now we apply both these operators to Φ = φ.  ∂ ∂u + ı ∂ ∂v  ∂ ∂u − ı ∂ ∂v  Φ =  dw dz  −1  ∂ ∂x + ı ∂ ∂y  dw dz  −1  ∂ ∂x − ı ∂ ∂y  φ  ∂ 2 ∂u 2 + ı ∂ 2 ∂u∂v − ı ∂ 2 ∂v∂u + ∂ 2 ∂v 2  Φ =  dw dz  −1   ∂ ∂x + ı ∂ ∂y  dw dz  −1   ∂ ∂x − ı ∂ ∂y  +  dw dz  −1  ∂ ∂x + ı ∂ ∂y  ∂ ∂x − ı ∂ ∂y   φ (w  ) −1 is an analytic function. Recall that for analytic functions f, f  = f x = −ıf y . So that f x + ıf y = 0. ∂ 2 Φ ∂u 2 + ∂ 2 Φ ∂v 2 =  dw dz  −1   dw dz  −1  ∂ 2 ∂x 2 + ∂ 2 ∂y 2   φ ∂ 2 Φ ∂u 2 + ∂ 2 Φ ∂v 2 =     dw dz     −2  ∂ 2 φ ∂x 2 + ∂ 2 φ ∂y 2  Solution 8.16 1. We consider f(z) = log |z| + ı arg(z) = log r + ıθ. The Cauchy-Riemann equations in polar coordinates are u r = 1 r v θ , u θ = −rv r . 416 We calculate the derivatives. u r = 1 r , 1 r v θ = 1 r u θ = 0, −rv r = 0 Since the Cauchy-Ri emann equations are satisfied and the partial derivatives are continuous, f(z) is analytic in |z| > 0, |arg(z)| < π. The complex derivative in terms of polar coordinates is d dz = e −ıθ ∂ ∂r = − ı r e −ıθ ∂ ∂θ . We use this to differentiate f(z). df dz = e −ıθ ∂ ∂r [log r + ıθ] = e −ıθ 1 r = 1 z 2. Next we consider f(z) =  |z| e ı arg(z)/2 = √ r e ıθ/2 . The Cauchy-Riemann equations for polar coordinates and the polar form f(z) = R(r, θ) e ıΘ(r,θ) are R r = R r Θ θ , 1 r R θ = −RΘ r . We calculate the derivatives for R = √ r, Θ = θ/2. R r = 1 2 √ r , R r Θ θ = 1 2 √ r 1 r R θ = 0, −RΘ r = 0 Since the Cauchy-Ri emann equations are satisfied and the partial derivatives are continuous, f(z) is analytic in |z| > 0, |arg(z)| < π. The complex derivative in terms of polar coordinates is d dz = e −ıθ ∂ ∂r = − ı r e −ıθ ∂ ∂θ . 417 We use this to differentiate f(z). df dz = e −ıθ ∂ ∂r [ √ r e ıθ/2 ] = 1 2 e ıθ/2 √ r = 1 2 √ z Solution 8.17 1. We consider the function u = x Log r −y arctan(x, y) = r cos θ Log r − rθ sin θ We compute the Laplacian. ∆u = 1 r ∂ ∂r  r ∂u ∂r  + 1 r 2 ∂ 2 u ∂θ 2 = 1 r ∂ ∂r (cos θ(r + r Log r) − θ sin θ) + 1 r 2 (r(θ sin θ − 2 cos θ) − r cos θ Log r) = 1 r (2 cos θ + cos θ Log r − θ sin θ) + 1 r (θ sin θ − 2 cos θ − cos θ Log r) = 0 The function u is harmonic. We find the harmonic conjugate v by solving the Cauchy-Riemann equations. v r = − 1 r u θ , v θ = ru r v r = sin θ(1 + Log r) + θ cos θ, v θ = r (cos θ(1 + Log r) −θ sin θ) We integrate the first equation with respect to r to determine v to within the constant of integration g(θ). v = r(sin θ Log r + θ cos θ) + g(θ) We differentiate this expression with respect to θ. v θ = r (cos θ(1 + Log r) −θ sin θ) + g  (θ) 418 We compare this to the second Cauchy-Riemann equation to see that g  (θ) = 0. Thus g(θ) = c. We have determined the harmonic conjugate. v = r(sin θ Log r + θ cos θ) + c The corresponding analytic function is f(z) = r cos θ Log r − rθ sin θ + ı(r sin θ Log r + rθ cos θ + c). On the positive real axis, (θ = 0), the function has the value f(z = r) = r Log r + ıc. We use analytic continuation to determine the function in the complex plane. f(z) = z log z + ıc 2. We consider the function u = Arg(z) = θ. We compute the Laplacian. ∆u = 1 r ∂ ∂r  r ∂u ∂r  + 1 r 2 ∂ 2 u ∂θ 2 = 0 The function u is harmonic. We find the harmonic conjugate v by solving the Cauchy-Riemann equations. v r = − 1 r u θ , v θ = ru r v r = − 1 r , v θ = 0 We integrate the first equation with respect to r to determine v to within the constant of integration g(θ). v = −Log r + g(θ) 419 We differentiate this expression with respect to θ. v θ = g  (θ) We compare this to the second Cauchy-Riemann equation to see that g  (θ) = 0. Thus g(θ) = c. We have determined the harmonic conjugate. v = −Log r + c The corresponding analytic function is f(z) = θ − ı Log r + ıc On the positive real axis, (θ = 0), the function has the value f(z = r) = −ı Log r + ıc We use analytic continuation to determine the function in the complex plane. f(z) = −ı log z + ıc 3. We consider the function u = r n cos(nθ) We compute the Laplacian. ∆u = 1 r ∂ ∂r  r ∂u ∂r  + 1 r 2 ∂ 2 u ∂θ 2 = 1 r ∂ ∂r (nr n cos(nθ)) − n 2 r n−2 cos(nθ) = n 2 r n−2 cos(nθ) − n 2 r n−2 cos(nθ) = 0 420 The function u is harmonic. We find the harmonic conjugate v by solving the Cauchy-Riemann equations. v r = − 1 r u θ , v θ = ru r v r = nr n−1 sin(nθ), v θ = nr n cos(nθ) We integrate the first equation with respect to r to determine v to within the constant of integration g(θ). v = r n sin(nθ) + g(θ) We differentiate this expression with respect to θ. v θ = nr n cos(nθ) + g  (θ) We compare this to the second Cauchy-Riemann equation to see that g  (θ) = 0. Thus g(θ) = c. We have determined the harmonic conjugate. v = r n sin(nθ) + c The corresponding analytic function is f(z) = r n cos(nθ) + ır n sin(nθ) + ıc On the positive real axis, (θ = 0), the function has the value f(z = r) = r n + ıc We use analytic continuation to determine the function in the complex plane. f(z) = z n 4. We consider the function u = y r 2 = sin θ r 421 We compute the Laplacian. ∆u = 1 r ∂ ∂r  r ∂u ∂r  + 1 r 2 ∂ 2 u ∂θ 2 = 1 r ∂ ∂r  − sin θ r  − sin θ r 3 = sin θ r 3 − sin θ r 3 = 0 The function u is harmonic. We find the harmonic conjugate v by solving the Cauchy-Riemann equations. v r = − 1 r u θ , v θ = ru r v r = − cos θ r 2 , v θ = − sin θ r We integrate the first equation with respect to r to determine v to within the constant of integration g(θ). v = cos θ r + g(θ) We differentiate this expression with respect to θ. v θ = − sin θ r + g  (θ) We compare this to the second Cauchy-Riemann equation to see that g  (θ) = 0. Thus g(θ) = c. We have determined the harmonic conjugate. v = cos θ r + c The corresponding analytic function is f(z) = sin θ r + ı cos θ r + ıc 422 [...]... ıvx f (z) = 2 e x2 −y 2 (x cos(2xy) − y sin(2xy)) + 2 ex f (z) = 2 e x2 −y 2 2 −y 2 (y cos(2xy) + x sin(2xy)) ((x + ıy) cos(2xy) + (−y + ıx) sin(2xy)) Finding the derivative is easier if we first write f (z) in terms of the complex variable z and use complex differentiation 2 −y 2 f (z) = ex (cos(2x, y) + ı sin(2xy)) f (z) = ex 2 −y 2 eı2xy f (z) = e(x+ıy) f (z) = ez 2 f (z) = 2z ez 424 2 2 Solution... neighborhood of any point, it is nowhere analytic 423 2 We calculate the first partial derivatives of u and v u x = 2 ex 2 −y 2 uy = 2 e (x cos(2xy) − y sin(2xy)) x2 −y 2 (y cos(2xy) + x sin(2xy)) vx = 2 e x2 −y 2 (y cos(2xy) + x sin(2xy)) vy = 2 e x2 −y 2 (x cos(2xy) − y sin(2xy)) Since the Cauchy-Riemann equations, ux = vy and uy = −vx , are satisfied everywhere and the partial derivatives are continuous, f (z)... dimensions and let {ξi } be an orthogonal coordinate system The distance metric coefficients hi are defined 2 ∂x1 ∂ξi hi = ∂x2 ∂ξi + 2 The Laplacian is 2 u= ∂ ∂ξ1 1 h1 h2 h2 ∂u h1 ∂ξ1 + ∂ ∂ 2 h1 ∂u h2 ∂ 2 First we calculate the distance metric coefficients in polar coordinates hr = hθ = 2 ∂x ∂r + 2 ∂x ∂θ + ∂y ∂r ∂y ∂θ 2 = cos2 θ + sin2 θ = 1 2 = r2 sin2 θ + r2 cos2 θ = r Then we find the Laplacian 2 φ= 1... arg(z + 1) The velocity potential and a branch of the stream function are plotted in Figure 8.10 The stream lines, arg(z − 1) + arg(z + 1) = c, are plotted in Figure 8.11 Next we find the velocity field v= 2 v= 2 φ 2x(x + y − 1) 2y(x2 + y 2 + 1) ˆ ˆ x+ 4 y x4 + 2x2 (y 2 − 1) + (y 2 + 1 )2 x + 2x2 (y 2 − 1) + (y 2 + 1 )2 431 Figure 8.9: Velocity field and velocity direction field for φ = ln r − θ The velocity... domains D1 and D2 , respectively Suppose that D1 ∩ D2 is a region or an arc and that f1 (z) = f2 (z) for all z ∈ D1 ∩ D2 (See Figure 9.4.) Then the function f (z) = f1 (z) for z ∈ D1 , f2 (z) for z ∈ D2 , is analytic in D1 ∪ D2 D1 D2 D1 D2 Figure 9.4: Domains that Intersect in a Region or an Arc Result 9.1 .2 follows directly from Result 9.1.1 9 .2 Analytic Continuation of Sums Example 9 .2. 1 Consider... + ıc z Solution 8.18 1 We calculate the first partial derivatives of u = (x − y )2 and v = 2( x + y) ux uy vx vy = 2( x − y) = 2( y − x) =2 =2 We substitute these expressions into the Cauchy-Riemann equations ux = vy , uy = −vx 2( x − y) = 2, 2( y − x) = 2 x − y = 1, y − x = −1 y =x−1 Since the Cauchy-Riemann equation are satisfied along the line y = x−1 and the partial derivatives are continuous, the function... (z) and f2 (z) be analytic functions defined in D If f1 (z) = f2 (z) for the points in a region or on an arc in D, then f1 (z) = f2 (z) for all points in D To prove Result 9.1.1, we define the analytic function g(z) = f1 (z) − f2 (z) Since g(z) vanishes in the region or on the arc, then g(z) = 0 and hence f1 (z) = f2 (z) for all points in D 439 Result 9.1 .2 Consider analytic functions f1 (z) and f2 (z)... into the complex plane An obvious choice for f (z) is f (z) = cos z sin z Using trig identities we can write this as f (z) = sin(2z) 2 Example 9.3.7 Find f (z) given only that u(x, y) = cos x cosh2 y sin x + cos x sin x sinh2 y 445 Recall that f (z) = ux + ıvx = ux − ıuy Differentiating u(x, y), ux = cos2 x cosh2 y − cosh2 y sin2 x + cos2 x sinh2 y − sin2 x sinh2 y uy = 4 cos x cosh y sin x sinh y f... = 1 ∂ r ∂r r ∂φ ∂r + 1 2 r2 ∂ 2 We calculate the partial derivatives of u ∂u ∂r ∂u r ∂r ∂ ∂u r ∂r ∂r 1 ∂ ∂u r r ∂r ∂r ∂u ∂θ ∂2u ∂ 2 1 ∂2u r2 ∂ 2 = cos θ + log r cos θ − θ sin θ = r cos θ + r log r cos θ − rθ sin θ = 2 cos θ + log r cos θ − θ sin θ = 1 (2 cos θ + log r cos θ − θ sin θ) r = −r (θ cos θ + sin θ + log r sin θ) = r ( 2 cos θ − log r cos θ + θ sin θ) = 1 ( 2 cos θ − log r cos θ + θ sin... the two forms 2 We verify that log z is analytic for r > 0 and −π < θ < π using the polar form of the Cauchy-Riemann equations Log z = ln r + ıθ 1 1 ur = v θ , uθ = −vr r r 1 1 1 = 1, 0 = −0 r r r 426 Since the Cauchy-Riemann equations are satisfied and the partial derivatives are continuous for r > 0, log z is analytic there We calculate the value of the derivative using the polar differentiation formulas . analytic. 423 2. We calculate the first partial derivatives of u and v. u x = 2 e x 2 −y 2 (x cos(2xy) − y sin(2xy)) u y = 2 e x 2 −y 2 (y cos(2xy) + x sin(2xy)) v x = 2 e x 2 −y 2 (y cos(2xy) + x sin(2xy)) v y =. ∇φ v = 2x(x 2 + y 2 − 1) x 4 + 2x 2 (y 2 − 1) + (y 2 + 1) 2 ˆ x + 2y(x 2 + y 2 + 1) x 4 + 2x 2 (y 2 − 1) + (y 2 + 1) 2 ˆ y 431 Figure 8.9: Velocity field and velocity direction field for φ = ln r −θ. The. x direction. f  (z) = u x + ıv x f  (z) = 2 e x 2 −y 2 (x cos(2xy) − y sin(2xy)) + 2 e x 2 −y 2 (y cos(2xy) + x sin(2xy)) f  (z) = 2 e x 2 −y 2 ((x + ıy) cos(2xy) + (−y + ıx) sin(2xy)) Finding the derivative

Ngày đăng: 06/08/2014, 01:21

TỪ KHÓA LIÊN QUAN