... values. For instance, (1 2 ) 1/ 2 = 1 1/2 = 1 and 1 1/2 2 = ( 1) 2 = 1. Example 6. 6.2 Consider 2 1/ 5 , (1 + ı) 1/ 3 and (2 + ı) 5 /6 . 2 1/ 5 = 5 √ 2 e ı2πk/5 , for k = 0, 1, 2, 3, 4 19 9 Example 6. 5 .1 ... ellipse. 18 7 6. 8 Hints Complex Numbers Hint 6 .1 Hint 6. 2 Hint 6. 3 Hint 6. 4 Hint 6. 5 Hint 6. 6 Hint 6. 7 The Complex Plane Hint 6. 8...
Ngày tải lên: 06/08/2014, 01:21
... −2) 1/ 2 (z −3) 1/ 2 There are branch points at z = 1, 2, 3. Now we examine the point at infinity. f 1 ζ = 1 ζ − 1 1 ζ − 2 1 ζ − 3 1/ 2 = ζ −3/2 1 − 1 ζ 1 − 2 ζ 1 − 3 ζ 1/ 2 Since ... square root. z 2 − 1 1/ 2 = (z + 1) 1/ 2 (z 1) 1/ 2 We see that there are branch points at z = 1 and z = 1. In particular we want the Arccos to be...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 1 pps
... y 2 ((x − 1) 2 + y 2 ) 2 = −(x − 1) 2 + y 2 ((x − 1) 2 + y 2 ) 2 and 2( x − 1) y ((x − 1) 2 + y 2 ) 2 = 2( x − 1) y ((x − 1) 2 + y 2 ) 2 The Cauchy-Riemann equations are each identities. The first partial ... 8.4.3 1/ sin (z 2 ) has a second order pole at z = 0 and first order poles at z = (nπ) 1 /2 , n ∈ Z ± . lim z→0 z 2 sin (z 2 ) = lim z→...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 2 pptx
... = 1 2 Log x 2 + y 2 + ı Arctan(x, y). 4 52 2. We calculate the first partial derivatives of u and v. u x = 2 e x 2 −y 2 (x cos(2xy) − y sin(2xy)) u y = 2 e x 2 −y 2 (y cos(2xy) + x sin(2xy)) v x = ... x direction. f (z) = u x + ıv x f (z) = 2 e x 2 −y 2 (x cos(2xy) − y sin(2xy)) + 2 e x 2 −y 2 (y cos(2xy) + x sin(2xy)) f (z) = 2 e x 2 −y 2 ((x +...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 3 ppt
... are u x = 3x 2 − 3y 2 − 2y, u y = −6xy − 2x + 1. The derivative of f(z) is f (z) = u x − ıu y = 3x 2 − 2y 2 − 2y + ı(6xy − 2x + 1). On the real axis we have f (z = x) = 3x 2 − ı2x + ı. Using ... max a≤x≤b |f(x)|. 466 with a, b and c complex-valued constants and d a real constant. Substituting z = x + ıy and expanding products yields, a x 3 + ı3x 2 y − 3xy 2 − ıy...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 4 ppsx
... z z 3 z=−ı + 2 2! d 2 dz 2 (z 3 + z + ı) sin z z + ı z=0 = 2 (−ı sinh(1)) + ıπ 2 3z 2 + 1 z + ı − z 3 + z + ı (z + ı) 2 cos z + 6z z + ı − 2( 3z 2 + 1) (z + ı) 2 + 2( z 3 + z + ı) (z ... formula. C z z 2 + 1 dz = C 1 /2 z −ı dz + C 1 /2 z + ı dz = 1 2 2 + 1 2 2 = 2 3. C z 2 + 1 z dz = C z + 1 z dz = C z dz + C 1 z dz = 0 + 2 = 2...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 5 pps
... n) n 11. ∞ n =2 (−1) n ln 1 n 12. ∞ n =2 (n!) 2 (2n)! 13. ∞ n =2 3 n + 4 n + 5 5 n − 4 n − 3 5 62 Im(z) Re(z) R R 2 1 Im(z) Re(z) R R 2 1 C r 1 r 2 z C C C 1 2 z Figure 12. 5: Contours for a Laurent ... closed form. (See Exercise 12. 9.) N−1 n=1 sin(nx) = 0 for x = 2 k cos(x /2) −cos((N−1 /2) x) 2 sin(x /2) for x = 2 k The partial sums have infinit...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 6 doc
... function. Hint 12. 22 cos z = −cos(z − π) sin z = −sin(z − π) Hint 12. 23 CONTINUE Hint 12. 24 CONTINUE Hint 12. 25 Hint 12. 26 Hint 12. 27 Hint 12. 28 Hint 12. 29 Hint 12. 30 CONTINUE 581 Solution 12. 22 cos z ... polynomial. 2 6 12 20 4 6 8 2 2 We s ee that the polynomial is second order. p(n) = an 2 + bn + c. We solve for the coefficients. a + b + c = 2 4a + 2b + c = 6 9...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 7 pdf
... 0. |z|=3 z 1 z − ı /2 − 1 z − 2 + c (z − 2) 2 + d dz = 0 |z|=3 (z − ı /2) + ı /2 z − ı /2 − (z − 2) + 2 z − 2 + c(z − 2) + 2c (z − 2) 2 dz = 0 2 ı 2 − 2 + c = 0 c = 2 − ı 2 Thus we see that ... − 2/ z = − 1 z ∞ n=0 2 z n , for |2/ z| < 1 = − ∞ n=0 2 n z −n−1 , for |z| > 2 = − −1 n=−∞ 2 −n−1 z n , for |z| > 2 620...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 8 pot
... integrals. 1. ∞ 0 ln 2 x 1 + x 2 dx = π 3 8 2. ∞ 0 ln x 1 + x 2 dx = 0 6 72 Hint 13.9 For the third part, does the integrand have a term that behaves like 1/x 2 ? Cauchy Principal Value for Contour ... − n−1 k=0 lim z→ e ıπ(1+2k)/n log z + (z − e ıπ(1+2k)/n )/z nz n−1 = − n−1 k=0 ıπ(1 + 2k)/n n e ıπ(1+2k)(n−1)/n = − ıπ n 2 e ıπ(n−1)/n n−1 k=0 (1 + 2k) e...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 9 ppt
... = 2 Res z 2 (z 2 + 1) 2 , z = ı Res z 2 (z 2 + 1) 2 , z = ı = lim z→ı d dz (z − ı) 2 z 2 (z 2 + 1) 2 = lim z→ı d dz z 2 (z + ı) 2 = lim z→ı (z + ı) 2 2z − z 2 2(z + ı) (z + ... be 696 2. − 1 −1 1 x 3 dx = lim →0 + − −1 1 x 3 dx + 1 1 x 3 dx = lim →0 + − 1 2x 2 − −1 + − 1 2x 2 1 = lim →0 + − 1 2( −) 2 +...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 10 ppt
... principal value exists. 766 π 2 lim z→0 (z −1) 2 (z −3 + 2 √ 2) (z −3 2 √ 2) + lim z→3 2 √ 2 (z −1) 2 z(z − 3 − 2 √ 2) . 1 0 x 2 (1 + x 2 ) √ 1 − x 2 dx = (2 − √ 2) π 4 Infinite Sums Solution ... z (z + 1) 2 , −1 . 2 ∞ 0 x 1 /2 log x (x + 1) 2 dx + 2 ∞ 0 x 1 /2 (x + 1) 2 dx = 2 lim z→−1 d dz (z 1 /2 log z) 2 ∞ 0 x 1 /2 log x (x +...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 3 Part 6 ppsx
... x = dx dy . dy dx = 1 y 3 − xy 2 dx dy = y 3 − xy 2 x + y 2 x = y 3 Now we have a first order equation for x. d dy e y 3 /3 x = y 3 e y 3 /3 x = e −y 3 /3 y 3 e y 3 /3 dy + c e −y 3 /3 Example 18 .3. 2 Consider ... equation of order n − 1 for u . Writing the derivatives of e u(x) , d dx e u = u e u d 2 dx 2 e u = (u + (u ) 2 ) e u d 3 dx 3 e...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 3 Part 9 doc
... the problem for u, (and hence the problem for y). As a check, then general solution for y is y = − 1 3 cos 2x + c 1 cos x + c 2 sin x. 1115 We guess a particular solution of the form y p = t e −t (a ... y 2 = e 3t . We compute the Wronskian of these solutions. W (t) = e 2t e 3t 2 e 2t 3 e 3t = e 5t We find a particular solution with variation of parameters. y p = −...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 1 docx
... second equation. c 1 r 2 1 + 1 r 2 (1 − c 1 r 1 )r 2 2 = 1 c 1 (r 2 1 − r 1 r 2 ) = 1 − r 2 11 81 0.2 0 .4 0.6 0.8 1 1.2 0.3 0 .4 0.5 0.6 0.7 0.8 0.9 Figure 23.2: Plot of the solution and approximations. Recall ... that a n = n/2 j=0 − 4j 2 −2j +1 (2j+2)(2j +1) for even n, 0 for odd n. 11 93 c 1 = 1 − r 2 r 2 1 − r 1 r 2 = 1 − 1 √ 5 2...
Ngày tải lên: 06/08/2014, 01:21