1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Threading Technologies Part 3 docx

10 177 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Nội dung

removal rate may increase by up to 300% at each suc- cessive  infeed.  erefore,  in  order  to  minimise  these  induced stresses on the cutting edge and keep them as  uniform as possible, the D OC  must be reduced with each  pass along the workpiece.  Thread Finishing and Close Tolerancing In  order  to  obtain  a  good  surface  nish/texture,  or  a  close  tolerance  on  the  nished  thread  anks,  the  CNC  machine  tool  can  be  programmed  to  make  ei - ther one, or two additional nishing passes. ese ad - ditional passes are termed  ‘spring-cuts’ 18  and improve  both accuracy and precision in the nal thread form.  ‘Spring-cuts’ cannot be utilised on workpiece materi - als that have a tendency to work-harden, for example  when thread turning stainless steels and so on, as they  cause high tool wear. With work-hardening materials,  cuts of <0.03 mm should be avoided, as these materials  elastically-deform instead of being cut. e severity of  the problem  of  work-hardening is even greater when  thread turning  austenitic  steels  and  their  equivalents  and here, it is recommended that an infeed pass should  always be >0.08 mm. ese comments are conned to  steels  and  their  alloys  and  even  here,  an  appropriate  number  of  infeeds  by  trial-and-error  may  be  neces - sary. When a threading insert breaks, it is normally the  result of induced high stresses, so the remedy is usually  to increase the number of infeed threading passes. is  solution is also true for machining threads in most cast  iron grades, the exception here being for austempered  ductile irons (ADF). It seems somewhat obvious that  the greater the number of passes the threading opera - tion is divided into, the smaller the D OC  and the stresses  on the threading insert’s tip. Moreover, if this philoso - phy is pursued too far and very many infeed passes are  programmed,  the  tool  will  simply  not  be  able  to  cut  at all – owing to insucient D OC  and this in turn, will  result in  simply  elastic  deformation of the workpiece  material. Such a ‘timid approach’ to thread cutting will  lead to a higher wear-rate, so it becomes necessary to  further reduce the number of passes – thereby becom - ing a self-defeating machining objective! 18  ‘Spring-cuts’ , are cuts that create a very light tool pressure on  the threaded workpiece, to minimise the elastic deections in  the  ‘loop’  produced  by  the  tool-machine-workpiece  system,  thereby improving machined quality. Cutting Forces If  a  comparison  is  made  between  the  cutting  forces  for  a threading operation  with  that of  external  turn - ing, then the power requirements are higher for thread  formation,  especially  when  the  chip  thicknesses  are  small. If however, the chip thickness is increased, then  the  values  for  plain  turning  are  approached.  Hence,  one should  always attempt to utilise higher chip thick- nesses, as the benets are two-fold: a decrease in the  power consumption, combined with an increase in the  subsequent production rate.  General Comments on Cutting Inserts read  cutting  demands  an  insert  with  a:  sharp  cut- ting edge, good wear resistance and the ability to with - stand temperature uctuations. A sharp insert cutting  edge combined with a favourable geometry are neces - sary, so that a good nal thread surface nish occurs,  while simultaneously reducing vibrational tendencies.  High wear  resistance is crucial, as otherwise the  sur - face nish would be impaired and thread tolerance de - viations  would  occur.  Temperature  uctuations  must  be  withstood,  as  the  very  operation  of  threading  in - troduces uctuations in the insert’s edge temperature:  the fast machining pass along the thread causes heat - ing, then  the  tool is  rapidly  withdrawn  and returned  to the start-point – during which time the edge cools.  is  cyclical  process  is  continuously  repeated  up  to  20 times in quick succession, which could potentially  promote  fatigue  cracks  in  the  insert  –  termed  ‘comb  cracks’ (i.e oen previously present aer milling oper - ations – as they had nite ne lines at regular intervals  on the tool’s edge, giving them the physical appearance  of a ‘comb eect’). is was a real problem some years  ago  –  which  has  now  been  overcome  with  suitable  coating technology – and could in the past may poten - tially shorten the insert’s useful life.  NB  See Appendix 8 for a Trouble-shooting Guide to  conventional thread turning problems and remedies. Threading Technologies  Figure 107. Threadmilling cutters and typical thread generation operations. [Courtesy of Sandvik Coromant].  Chapter  5.6 Thread Milling Introduction read milling geometry in contrast to that of a basic  tap (i.e. having a single spiral shaped tooth Fig. 107ai),  has  a series  of teeth  which  do  not  form  a spiral,  but  are  congured  without  pitch  (Fig.  107aii).  is  fun - damental dierence in tool design is attributed to the  dierent  thread  production processes, explained ear - lier. Not only can a thread milling cutter have a similar  visual geometry to that of a machine tap (Fig. 107aii),  but it can occur with a single radially-mounted blade  for  milling  both  external  and  internal  threads  (Fig.  108b). Albeit for an internal thread production, there  must  be  sucient  working space for  the  cutter  to be  able to perform the thread milling task.  Tooth Profile and Dimensions e thread milling cutter  prole usually conforms  to  that of the thread to be milled. In certain cases, it may  be essential to correct the milled thread’s prole. is  being the case, when the diameter of the thread to be  milled  does  not  have a  denite  ratio  to  the  diameter  of the thread milling cutter. A major advantage of em - ploying  thread  milling  in  the  production  of  threads,  is that it can mill a range of threads of diering diam - eters. e one limitation here being that modications  of the thread’s pitch is not practicable. If one discounts the tool’s thread pitch, then the de - sign  of  a  thread  milling  cutter  is  remarkably  similar  to that of a machine tap (Fig. 107a). A typical thread  milling  cutter  (Fig.  107aii),  is  characterised  by  its  cutting  section’s  size  and  dimensions.  e  total  tool  length and its associated thread length are also part of  the cutter’s dimensions. read milling cutter designs  can  also  incorporate  either  a  collar,  or  not  –  as  the  milling situation dictates, together with either a coun - tersinking chamfer, or not. erefore, the thread mill - ing cutter’s cutting section (Fig. 107aii), consists of its:  ute length, ute prole, tooth form together with its  associated form relief. In a similar fashion to that of a  machine tap, the ute length usually incorporates run- out of the utes, although this ute run-out does not  have to be as great as that found on machine taps, due  to the smaller chips that are produced. read milled  chips  do  not  remain  in  the  cutter’s  utes  during  the  thread  milling  process,  and  as  such,  will  not  restrict  further  chip  development.  e  tooth  width  is  larger  than that found on machine taps, with relief grinding  creating  the  necessary  clearance  angles,  required  for  milling threads. Interference Ratio If  the  thread  milling  cutter  diameter  to  that  of  the  nominal  thread  diameter  ratio  of  70%  is  adhered  to,  then  no  milled  thread  prole  distortion  should  take  place  (i.e.  see  Fig.  109a),  irrespective  of  the  thread’s  depth – this fact has been consistently well proven by  industrial applications.  In Fig. 109a, the illustration depicts the fact that the  diameter  of  the  thread  milling  cutter  and  its  associ - ated prole depth, determine the pressure angle of the  thread’s diameter. Helical Interpolation Helical  interpolation  (Fig.  108a),  is  the  amalgama- tion of two kinematic motions, these being: linear and  circular  interpolations.  erefore,  in  thread  milling,  dierent threads can be manufactured by the form of  overlaying  the pitch  direction  with  that  of the  direc - tion of rotation of the circular movement.  read  milling  cutters  are  normally  designed  for  right-hand cutting, with the direction of rotation be - ing generally clockwise. However, by altering a range  of  kinematic  motions,  such  as:  the  axial  direction  of  the  feed,  reverse  cutter  rotation,  or  by  synchronous  milling, all thread combinations can be manufactured  – some of which are depicted in Fig. 107c. Depending  upon the component features to be thread milled, such  as into blind, or through holes and whether horizon - tal, or vertical machining techniques are to be incor - porated,  together  with  the  lubrication  type  and  chip  removal  strategies,  these  will  determine  the  correct  choice of milling procedure to be adopted. Generally,  for  thread  milling  production,  synchronous milling methods 19  (i.e. Fig. 109b) should be applied whenever  possible,  as  they  achieve  the  following  intrinsic  ben - ets:  lower  cutting  forces,  improved  chip  formation,  longer tool life and improved surface quality. 19  Synchronous milling methods,  can  be  identied  when  the  thread milling cutting edge emerges with a chip thickness of  zero (i.e. h = 0). Threading Technologies  Speed Ratio When  thread  milling,  the  cutter  edge’s  speed  is  cal- culated by the cutting speed (i.e. revolutions) and the  feedrate per tooth. With linear movement, the cutting  edge’s feedrate is identical to that at the tool’s centre.  However, with helical interpolation, it follows a path  of a circle  in the plane (Fig. 108a). All machine  tool  CNC controllers will calculate speeds from the tool’s  centre, it is necessary to program a command for con - verting the cutting  speed  (i.e. a contour-related  pro - gram).  When  such  a program  does  not exist,  or  the  central point  is  programmed,  it  is  necessary  to  con - vert the feedrate accordingly. It should be mentioned,  that the interactive control at the CNC control panel  will  always  indicate  the  speed  at  the  centre  point  of  the  tool  and,  when  running  with  no  load  (i.e.  usu - ally termed a ‘dry-run’), this speed is simple to check.  Furthermore,  if this speed is  disregarded, the thread  milling cutter will run at a speed many times greater  than that of the feed, which shortly leads to the cut - ter’s breakage. Figure 108. Thread milling using a single-edged insert for either internal/external threading operations, can be achieved via a complex simultaneous circular interpolation of the ‘x’ and ‘y’ axes and a ‘z’ axis linear motion. [Courtesy of Stellram] .  Chapter  Figure 109. Threadmilling interference ratio, plus cutter positioning and feeding. [Courtesy of Guhring] . Threading Technologies  Internal Thread Milling: Radial Positioning to Nominal Diameter, Via Entry Cycles e  thread  milling  cutter’s  radial  positioning  to  the  nominal  diameter at the start of the  thread’s produc - tion, is achieved by so-called  ‘entry cycle’ 20  (Fig. 109c),  while the movement following the thread’s milling op - eration  is achieved by  cutter  motion from the nomi - nal diameter to the hole’s centre, via a corresponding  ‘exit cycle’. read milling cutter approaches to that of  the start of the thread, via suitable ‘entry cycles’ can be  achieved by several dierent ways, these are: • Linear plunging (Fig. 109ci) – of the thread milling  cutter  into  the  workpiece  material,  creates  a  very  large  contact  angle  at  the  cutter’s  periphery,  lead - ing to the undesirable situation of high tool loading  and  long  chips. is  problem  is  particularly  acute  when  the  dierences  between  the  thread  milling  cutter’s diameter to that  of the hole’s  size  is  small.  Moreover,  this  radial  entry  linear  plunging  tech - nique can leave a small  ‘delay mark’ 21  on a portion  of the milled thread.  NB Linear plunging is not an advisable thread mill- ing  technique  for  the  production  of  accurate  and  precise  small threads. • 90° quarter circle entry cycle (Fig. 109cii) – allows  just a small dierence in the diameter between the  tool  and  the  thread  to  remove  a  large  part  of  the  chip volume, during the linear section of the entry  cycle.  is  particular  entry  cycle  strategy,  is  nor - mally  only  utilised  for  relatively  large  dierences  in  diameter  between the hole size  and the cutter’s  diameter. NB  e 90° quarter circle entry cycle has the advan- tage of a relatively  short entry path, together with a  simple CNC program. • 180° semi-circle entry cycle (Fig. 109ciii) – the cut- ting force loading of the tool is at its lowest when  20  Entry-cycles, allow the thread milling cutter to be moved in a  circular arc to the nominal thread’s diameter. 21  Delay marks, are the result of a slight dwell, prior to the next  command line activation in the thread milling program, caus- ing cutting forces to ‘slightly relax’ and then impinge into the  machined thread’s surface. the cutter is plunging, due to the contact angle be- ing  relatively  small  during  the  complete  cycle  en - try.  NB  e  180° semi-circle entry cycle necessitates  a  slightly  more  sophisticated  CNC  program,  al - though it has been found to be the most cost-e - cient thread milling technique overall. In Fig. 110,  is  depicted  a  step-by-step  visual  interpretation  of  this actual thread milling process, along with a typ - ical programming example. One  distinct  advantage  that  utilising  thread milling tooling gives  to  the  quality  and  tment  of  matching  threads, is that  minute variations in the pitch and to a  lesser degree its associated depth, can be  programmed- in by  the  operator  to  modify  ‘working clearances’.  is has the distinct benet of providing control over  the  ‘backlash’ between  the  two  mating  thread  milled  parts.  5.7 Thread Rolling – Introduction It is normal to specify thread rolling when substantial  quantities of threads need to be manufactured. In es - sence, the  production process is  one  of  ‘cold-forming’ ,  in  which  the  threaded  features  on  the  workpiece  are  formed  by  rolling  a  thread  blank  between  hardened  dies  (Fig.  111).  is  rolling  action,  causes  the  metal  to  ow  radially  into  the  required  V-form  prole  (i.e.  see  Fig.  111a  –  inset  schematic  diagrammatic  com - parison between a cut and rolled  thread – indicating  the  ‘directionality of the grain-ow’ 22 ). Due to the fact  that no workpiece material is removed in the form of  chips, there is no waste material – resulting in substan - 22  ‘Directionality of the grain-ow’ , this anisotropic behaviour  of the manipulated grain structure aer rolling is one of plas- tic deformation of the local material (i.e. Fig.111a – inset dia- gram, indicating the V-from rolled thread). is local plastic  deformation,  raises  the  material’s:  hardness,  tensile  and  fa- tigue strengths, together with its proof stress. However, there  is some ‘drop-o ’ in both the thread’s creep strength and its  ductility as a result of rolling, but this is tolerated – due to the  major benets described.  Chapter  Figure 110. A typical threadmilling cutter operational sequence, with an illustrated series of cutter motions and a ‘practical’ word-address CNC program. [Courtesy of Guhring] . Threading Technologies  Figure 111. Thread rolling techniques – produce a strong thread form.  Chapter  tial  economic  savings as a result 23 . e main benets  of  thread  rolling  on  CNC  machine  tools,  is  that  due  to this cold-working process, rolled threads have high  strength,  are smoother  and more  wear  resistant then  there machined counterparts. e thread rolling pro - duction rates are fast, typically a complete thread can  be formed in a second, with the thread quality being  consistently high.  A  principal  characteristic  of  a  thread  rolling  op - eration  is  that  the  rolled  thread’s  diameter  is  always  greater  than  the  original  blank  diameter.  If  the  pro- spective thread must have an accurate ‘class of t’ , then  its blank diameter is marginally increased by 0.05 mm  with respect to the thread pitch diameter. When  it is  desired to have say, the body of a bolt larger than the  outside diameter of the rolled thread, then the thread’s  blank diameter is produced smaller than the body.  .. Thread Rolling Techniques In  Fig.  111,  can  be  seen  the  three  basic  techniques  used to thread roll employed on CNC machine tools,  these are:  • Two-roll tangential rolling (Fig. 111a), is a similar  process to that of  ‘knurling’ 24 . As the spindle turns,  the workpiece’s pre-rolled diameter is progressively  raised to  its  nal shape,  normally over  the course  of  between  20  to  30  revolutions.  e  tangential  thread  rolls  are  fed  from  the  X-axis,  at  a  tangent  to the workpiece. When the centreline of the rolls  line-up with that of the centreline of the workpiece,  the process is  complete. Usually  rolling  a  φ20 mm  thread  at  1200 rpm,  takes  about  1  second,  con - versely, a single-point turned thread would require  23  read rolling, is known as a ‘chipless operation’ and as a re- sult of the ‘cold rolling’ production process , the operation is  cleaner  and  material savings in  blank stock weight are of the  order of between 15% to 20% – depending upon the size and  length of the threaded feature manufactured.  24  Knurling (i.e  not  illustrated),  utilises  either  two,  or  three  hardened  rotating  knurls  which  are  pressed  into  the  previ- ously turned outside diameter, thereby giving a ‘gripping’ sur- face pattern – and hence aids in purchase for one’s grip, with  normally either a straight-, or diamond-shaped knurl. NB  It is possible to utilise tangential sliding knurls to impart  the desired ‘imprinted patterned surface’ onto the workpiece’s  periphery. 10 times longer to manufacture the same threaded  feature, • ree-roll radial rolling (Fig.  111b),  is  similar  in  operation to tangential heads, in so far as the work - piece  is  normally  approached  from  the  side,  per - pendicular  to  the  major  thread’s  axis.  e  radial  rolls are sprung-loaded and when they are brought  over the workpiece, the tension is released, causing  the  rolls  to  rotate  and  produce  a  thread.  Flats  on  the rolls allow for work to be inserted and removed.  In both the tangential and radial rolling techniques,  they are limited to thread lengths that are no greater  than the thread roll widths. e principal dierence  between these two heads, is that with  radial heads the form is completed in just  one revolution, as op- posed  to  the  20  to  30  revolutions  necessary  with  tangential rolling methods. is fact, makes the  ra- dial rolling the fastest of all rolling techniques. For  example, if the workpiece spindle is rotating at 1200  rpm, and a  φ10 mm thread is to be rolled, it would  take just 0.5 seconds to complete, • Two-roll axial rolling (Fig. 111c), these rolls engage  the workpiece from its front, along the workpiece’s  centreline (i.e. Z-axis). is rolling action is analo - gous to a threading die, or thread-chaser, traversing  from one end of the workpiece to the other. Hence,  this  rolling  arrangement  is  capable  of  producing  very  long  threads,  or  threaded  portions  on  the  workpiece,  moreover,  the  axial  heads  support  the  part  during  the  thread’s  manufacture,  eliminating  the need of a supporting tailstock. In all these thread rolling processes, the operation of  thread rolling remains  primarily  identical  in  its  nal  rolled threaded feature on the workpiece and the pro - cess  of  imparting  threads  on  ductile  and  to  a  lesser  extent some work-hardening materials, should be en - couraged. ere are other techniques for the produc - tion of rolled threads that have not been shown here,  including: reciprocating and at die designs, planetary  rolling, etc., they have not been incorporated into this  review,  because  of  the  diculty  of  utilising  them  on  CNC machine tools. References Journals and Conference Papers Bolden,  A.  Tapping Troubles: the Hidden Causes.  Cutting  Tool Eng’g., 20–25, April 1990. Threading Technologies  Burns, S. Keep the Tool Cool during Tapping. Cutting Tool  Eng’g., 33–37, April 1990. Hanson, K.  Roll your Own [read Rolling]. Cutting Tool  Eng’g., 54–58, May 2002. Hazelton, J.L.  Tapping the Hard Stu. Cutting Tool Eng’g.,  62–68, Mar. 2007. Henderer,  T.  Solid Synchronicity [Solid  Tapping].Cutting  Tool Eng’g., 58–63, Feb. 2006. Jonah,  A.K.  Standard Taps for Exotic Materials.  Cutting  Tool Eng’g., 26–30, April 1990. Kennedy, B.  What’s on Tap?  [Tapping  Advances]. Cutting  Tool Eng’g., 26–35, May 2002. Lewis,  B.  Challenge on Tap  [Tapping  Problems].  Cutting  Tool Eng’g., 44–48, April 2003. Nelson.  D.  Swiss reads [Swiss-type,  segmented  thread- ing]. Cutting Tool Eng’g., 56–62, April 2007. Pontius,  K.  Low-silicon Lowdown [Tapping  Si-Al  Parts].  Cutting Tool Eng’g., 58–64, May 2001. Restall, M.  e Ins and Outs of read Milling. Cutting Tool  Eng’g., 28–33, Aug. 2001. Richter, A.  Know your Limits [read Limits and Classes].  Cutting Tool Eng’g., 36–41, Jan. 2005. Rowe,  J.  e Lowdown on Laydown Inserts [Laydown  threading  systems].  Cutting  Tool  Eng’g.,  45–48,  Oct.  2002. Books, Booklets and Guides Altan, T. Oh, S-I. and Gegel, H.L.  Metal Forming: Funda- mentals and Applications.  ASM Int.  Pub.  (Matls.  Park,  Ohio), 1983. Burrows, L. and Hancox, D.  Cra Engineering Data Book.  Stanley ornes Pub., 1978. Cottrell, A.  An Introduction to Metallurgy. Edward Arnold  Pub., 1975. Degamo, E.P., Black, J.T., Kosher, R.A.  Materials and Pro- cesses in Manufacturing.  John  Wiley  and  Sons  Inc.,  2003. Precision Cutting Tools. Guhring Pub. 8 th  Ed., 2004.  Inuence of Metallurgy on Hole Making Operations.  ASM  Pub. (Ohio), 1978. Kalpakjian, S.  Manufacturing Processes for Engineering Ma- terials. Addison Wesley Pub., 1984. Modern Metal Cutting – Part 11: Other Tools. AB Sandvik  Coromant Pub., 1981. Modern Metal Cutting. AB Sandvik Coromant Pub., 1994. Reed-Hill,  R.E.  Physical Metallurgy Principles.  Van  Nos- trand Reinhold 2 nd  Ed., 1973.  Rollason,  E.C.  Metallurgy for Engineers.  Edward  Arnold  Pub. 4 th  Ed., 1973. Schey,  J.A.  Introduction to Manufacturing Processes.  Mc- Graw-Hill Book Co. 3 rd  Ed., 1999. Wick,  C.  et  al.  Tool and Manufacturing Engineers Hand- book – Vol. II: Forming. 4 th  Ed., Society of Manuf. Engrs.  (Dearborn Mich.), 1984.  Chapter  . Causes.  Cutting  Tool Eng’g., 20–25, April 1990. Threading Technologies  Burns, S. Keep the Tool Cool during Tapping. Cutting Tool  Eng’g., 33 37 , April 1990. Hanson, K.  Roll your Own [read Rolling]. Cutting Tool  Eng’g., 54–58, May 2002. Hazelton, J.L.  Tapping. Milling. Cutting Tool  Eng’g., 28 33 , Aug. 2001. Richter, A.  Know your Limits [read Limits and Classes].  Cutting Tool Eng’g., 36 –41, Jan. 2005. Rowe,  J.  e Lowdown on Laydown Inserts [Laydown  threading systems]. . Tapping].Cutting  Tool Eng’g., 58– 63,  Feb. 2006. Jonah,  A.K.  Standard Taps for Exotic Materials.  Cutting  Tool Eng’g., 26 30 , April 1990. Kennedy, B.  What’s on Tap?  [Tapping  Advances]. Cutting  Tool Eng’g., 26 35 , May 2002. Lewis, 

Ngày đăng: 05/08/2014, 21:20

TỪ KHÓA LIÊN QUAN