A. TỔNG QUÁT 1. Hàm số f có cực trị y đổi dấu 2. Hàm số f không có cực trị y không đổi dấu 3. Hàm số f chỉ có một cực trị y đổi dấu 1 lần 4. Hàm số f có 2 cực trị (cực đại và cực tiểu) y đổi dấu 2 lần 5. Hàm số f có 3 cực trị y đổi dấu 3 lần 6. Hàm số f đạt cực đại tại x0 nếu: 7. Hàm số f đạt cực tiểu tại x0 nếu: 8. Hàm số f có đạo hàm và đạt cực trị tại x0 => f (x0) = 0 Chú ý: Đối với một hàm số bất kỳ, hàm số chỉ đạt cực trị tại những điểm mà tại đó đạo hàm triệt tiêu hoặc đạo hàm không xác định.
1 TUYỂN TẬP 99 BÀI TOÁN LIÊN QUAN Đ Ế N CỰC TRỊ VÀ TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ 1.Câu I: (2 điểm) Cho hàm số 4 2 2 ( ) 2( 2) 5 5 = + − + − + f x x m x m m ; (C m ) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số với m = 1 2) Tìm m để (C m ) có các điểm cực đại, cực tiểu tạo thành 1 tam giác vuông cân. 2.Câu I (2 điểm) Cho hàm số y = x 3 + (1 – 2m)x 2 + (2 – m)x + m + 2 (m là tham số) (1) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2. 2) Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại, điểm cực tiểu, đồng thời hoành độ của điểm cực tiểu nhỏ hơn 1. 3.Câu I (2 điểm). Cho hàm số 3 2 3 = + + y x x m (1) 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = −4. 2) Tìm m để đồ thị hàm số (1) có hai điểm cực trị A, B sao cho 0 120 . =AOB 4.Câu I: (2 điểm) Cho hàm số : 3 2 ( 1 2 ) (2 ) 2 = + − + − + + y x m x m x m (1) ( m là tham số). 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2. 2) Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại, điểm cực tiểu, đồng thời hoành độ của điểm cực tiểu nhỏ hơn 1. 5.Câu I .(2 điểm) Cho hàm số 4 2 2 2 y x mx m m = + + + (1). 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = –2. 2) Tìm m để đồ thị hàm số (1) có 3 điểm cực trị lập thành một tam giác có một góc bằng 0 120 . 6.Câu I. (2,0 điểm) Cho hàm số : 3 2 3 3 1 2 2 = − + y x mx m 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số với m = 1. 2) Xác định m để đồ thị hàm số có các điểm cực đại, cực tiểu đối xứng với nhau qua đường thẳng y = x. 7.Câu I: (2 điểm) Cho hàm số 4 3 2 2 3 1 (1) = + − − +y x mx x mx . 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 0. 2) Định m để hàm số (1) có hai cực tiểu. 8.Câu I (2 điểm): Cho hàm số y x m m x m 4 2 2 2( 1 ) 1 = − − + + − (1) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 1. 2) Tìm m để đồ thị của hàm số (1) có khoảng cách giữa hai điểm cực tiểu ngắn nhất. 9.Câu I (2 điểm): Cho hàm số y x mx m x 3 2 2 2 9 12 1 = + + + (m là tham số). 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = –1. 2) Tìm tất cả các giá trị của m để hàm số có cực đại tại x CĐ , cực tiểu tại x CT thỏa mãn: CÑ CT x x 2 = . 10.Câu 1: ( 2điểm) Cho hàm số y = 4x 3 + mx 2 – 3x 1. Khảo sát và vẽ đồ thị (C) hàm số khi m = 0. 2. Tìm m để hàm số có hai cực trị tại x 1 và x 2 thỏa x 1 = - 4x 2 11.Câu I (2 điểm ) C h o h à m s ố ( ) 3 2 ( ) 3 1 1 y f x mx mx m x = = + − − − , m là tham số 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên khi m = 1. 2. Xác định các giá trị của m để hàm số ( )y f x= không có cực trị. 12.Câu I: Cho hàm số 4 3 2 x 2x 3 x 1 ( 1 ) y x m m= + − − + . 2 1). Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 0. 2). Định m để hàm số (1) có hai cực tiểu. 13.Câu I (2,0 điểm ) C h o h à m s ố ( ) ( ) 3 2 1 y m 1 x mx 3m 2 x 3 = − + + − (1) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m 2= 2. Tìm tất cả các giá trị của tham số m để hàm số (1) đồng biến trên tập xác định của nó. 14.Câu I: (2 điểm) Cho hàm số: ( ) 3 2 3 1 9 2 y x m x x m = − + + + − (1) có đồ thị là (C m ) 1) Khảo sát và vẽ đồ thị hàm số (1) với m =1. 2) Xác định m để (C m ) có cực đại, cực tiểu và hai điểm cực đại cực tiểu đối xứng với nhau qua đường thẳng 1 2 y x = . 15.Câu I: Cho hàm số y = x 3 + mx + 2 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = -3. 2. Tìm m để đồ thị hàm số (1) cắt trục hòanh tại một điểm duy nhất. 16.Câu I C h o h à m s ố : 323 m 2 1 mx 2 3 xy +−= 1/ Khảo sát và vẽ đồ thị hàm số khi m=1. 2/ Xác định m để đồ thị hàm số có cực đại, cực tiểu đối xứng nhau qua đt y = x 17.Câu I Cho hàm số: 2 2 3 ( 1 ) 4 mx m x m m y x m + + + + = + ( ) m C 1.Khảo sát sự biến thiên và vẽ đồ thò của hàm số khi m= -1 2.Tìm các giá trò của tham số m để đồ thò ( ) m C có 1 điểm cực trò thuộc góc phần tư thứ (II) và 1 điểm cực trò thuộc góc phần tư thứ (IV) của mặt phẳng toạ độ 18.Câu I. (2.0 điểm) C h o h à m s ố y = x x-1 (C) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) 2. Viết phương trình tiếp tuyến với đồ thị (C), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. 19.Câu I. ( 2 ,0 điểm)Cho hàm số y = − x 3 − 3x 2 + mx + 4, trong đó m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho, với m = 0. 2. Tìm tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trên khoảng (0 ; + ∞). 20.Câu I. ( 2 điểm) C h o h à m số y = − x 3 − 3x 2 + mx + 4, trong đó m là tham số thực. 3. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho, với m = 0. 4. Tìm tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trên khoảng (0 ; + ∞). 21.Câu I. (2,0 điểm) Cho hàm số mxxmxy −++−= 9)( 13 23 , với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho ứng với 1 = m . 2. Xác định m để hàm số đã cho đạt cực trị tại 21 , xx sao cho 2 21 ≤− xx . 22.Câu I (2 điểm): Cho hàm số y = x 3 – 3(m+1)x 2 + 9x – m (1), m là tham số thực 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1. 2. Xác định các giá trị m để hàm số (1) nghịch biến trên một khoảng có độ dài bằng 2. 3 23.Câu I (2 điểm) Cho hàm số y = x 3 + (1 – 2m)x 2 + (2 – m)x + m + 2 (m là tham số) (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2 2. Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại, điểm cực tiểu, đồng thời hoành độ của điểm cực tiểu nhỏ hơn 1. 24.Câu I (2 điểm): Cho hàm số y = 1 3 x 3 – mx 2 +(m 2 – 1)x + 1 ( có đồ thị (C m ) ) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 2. 2. Tìm m, để hàm số (C m ) có cực đại, cực tiểu và y CĐ + y C T > 2 . 25.Câu I (2 điểm): Cho hàm số : y = (x – m) 3 – 3x (1) 1. Xác định m để hàm số (1) đạt cực tiểu tại điểm có hoành độ x = 0. 2. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 1. 26.Câu I. (2 điểm) Cho hàm số 4 2 2 1 y x mx m = − + − (1) , với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi 1 m = . 2. Xác định m để hàm số (1) có ba điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành một tam giác có bán kính đường tròn ngoại tiếp bằng 1 . 27.Câu I. (2 điểm) Cho hàm số y = –x 3 + 3x 2 + mx – 2 (1), m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 0. 2. Tìm các giá trị của m để hàm số (1) nghịch biến trên khoảng (0; 2). 28.Câu I (2 điểm ) C h o h à m s ố y = 2x 3 – 3(2m + 1)x 2 + 6m(m + 1)x +1 có đồ thị (C m ). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 0. 2. Tìm m để hàm số đồng biến trên khoảng ( ) ;+∞2 29.Câu I.(2đ) Cho hàm số ( ) 4 2 1 3 5 y m x mx = − − + 1.Khảo sát với m=2 2.Tìm m để hàm số có cực đại mà không có cực tiểu. 30.Câu I ( 2,0điểm) Cho hàm số ( ) ( ) 4 2 2 2 2 5 5 y f x x m x m m = = + − + − + 1/ Khảo sát sự biến thiên và vẽ đồ thị (C ) hàm số với m = 1 2/ Tìm các giá trị của m để đồ thị hàm số có các điểm cực đại, cực tiểu tạo thành 1 tam giác vuông cân. 31.Câu I: (2 điểm) Cho hàm số: ( ) 3 2 y x 3 m 1 x 9x m 2 = − + + + − (1) có đồ thị là (C m ) 1) Khảo sát và vẽ đồ thị hàm số (1) với m=1. 1) Xác định m để (C m ) có cực đại, cực tiểu và hai điểm cực đại cực tiểu đối xứng với nhau qua đường thẳng 1 2 y x = . 32.Câu I:(2 , 0 điểm) Cho hàm số 3 (3 1 ) y x x m = − − ( C ) với m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số ( C ) khi 1 m = . 2. Tìm các gíá trị của m để đồ thị của hàm số ( C ) có hai điểm cực trị và chứng tỏ rằng hai điểm cực trị này ở về hai phía của trục tung. 33.Câu 1: Cho hàm số 7)1(2)1( 24 −+++−= mxx my m 1) Định m để hàm số chỉ có cực đại mà không có cực tiểu 2) a) Khảo sát và vẽ đồ thị (C) hàm số khi m=0 b) Dùng (C), biện luận theo tham số a số nghiệm của phương trình: 0 44 12 8) 44 12 ( 2 2 2 2 2 =+ + − +− − + − +− a x x xx x x xx 4 34.Câu 1: Cho hàm số: m x mmxmmx y + ++++ = 24)2( 222 1) Tìm các giá trị của m để đồ thị hàm tương ứng có 1 điểm cực trị thuộc góc phần tư thứ (II) và 1 điểm cực trị thuộc góc phần tư thứ (IV) của mặt phẳng toạ độ. 2) Khảo sát và vẽ đồ thị (C) của hàm số khi m=-1. Dùng (C), biện luận theo a số nghiệm thuộc ]3;0[ π của phương trình: 04cos)1(cos 2 =−+−+ mxmx 35.Câu 1: Cho hàm số mxmxmy −++−+= 2)( 1) 31( 3 (C m ) 1) Chứng minh họ đồ thị (C m ) có 3 điểm cố định thẳng hàng 2) Khảo sát hàm số khi m=1 3) Tìm phương trình parabol (P) qua điểm c ực đại, cực tiểu của (C) và tiếp xúc với y=4x+9 36.Câu 1: Cho hàm số 323 43 aaxxy +−= (a là tham số) có đồ thị là (C a ) 1) Xác định a để (C a ) có các điểm cực đại và cực tiểu đối xứng nhau qua đừơng thẳng y=x 2) Gọi (C’ a ) là đừơng con đối xứng (C a ) qua đừơng thẳng: x=1. Tìm phương trình của (C’ a ). Xác định a để hệ số góc lớn nhất của tiếp tuyến của (C’ a ) là 12 37.Câu I: (2 điểm). Cho hàm số y = - x 3 + 3mx 2 -3m – 1. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1. 2. Tìm các giá trị của m để hàm số có cực đại, cực tiểu. Với giá trị nào của m thì đồ thị hàm số có điểm cực đại, điểm cực tiểu đối xứng với nhau qua đường thẳng d: x + 8y – 74 = 0. 38.Câu I (2 điểm ) C h o h à m s ố 3 2 2 3 ( 2 1 ) 6 ( 1 ) 1 y x m x m m x = − + + + + có đồ thị (C m ). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 0. 2. Tìm m để hàm số đồng biến trên khoảng ( ) ;+∞2 39.Câu I : ( 2 điểm ). Cho hàm số y = x 3 + ( 1 – 2m)x 2 + (2 – m )x + m + 2 . (C m ) 1.Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 2. 2. Tìm m để đồ thị hàm số (C m ) có cực trị đồng thời hoành độ cực tiểu nhỏ hơn 1. 40.Câu I. ( 2 ,0 điểm) Cho hàm số y = − x 3 − 3x 2 + mx + 4, trong đó m là tham số thực. 5. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho, với m = 0. 6. Tìm tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trên khoảng (0 ; + ∞). 41.Câu I (2 điểm ) Cho hàm số 4 2 2 1 y x mx m = + − − (1) , với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi 1 m = − . 2. Xác định m để hàm số (1) có ba điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành m ột tam giác có diện tích bằng 4 2 . 42.Câu I (2 điểm ) C h o h à m s ố 3 3 1 y x x = − + (1) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1). 2. Đường thẳng ( ): 1 y mx∆ = + cắt (C) tại ba điểm. Gọi A và B là hai điểm có hoành độ khác 0 trong ba điểm nói ở trên; gọi D là điểm cực tiểu của (C). Tìm m để ADB là góc vuông. 43.Câu I (2 , 0 điểm) Cho hàm số 4 2 2 y x 2m x 1 = − − (1), trong đó m là tham số thực. 7. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1. 8. Tìm giá trị của tham số m để hàm số (1) có ba điểm cực trị là ba đỉnh của một tam giác có diện tích bằng 32. 44.Câu I (2 điểm ) 5 Cho hm s 4 2 2 2 y x mx m m = + + + (1) , vi m l tham s thc. 1. Kho sỏt s bin thiờn v v th hm s (1) khi 2 m = . 2. Xỏc nh m hm s (1) cú ba im cc tr, ng thi cỏc im cc tr ca th to thnh mt tam giỏc cú gúc bng 120 0 . 45.Cõu I (2 im ) Cho hm s 4 2 2 y x mx = (1), vi m l tham s thc. 1. Kho sỏt s bin thiờn v v th ca hm s (1) khi 1 m = . 2. Tỡm m th hm s (1) cú hai im cc tiu v hỡnh phng gii hn bi th hm s vi ng thng i qua hai im cc tiu y cú din tớch bng 1. 46.Cõu I (2 im ) C h o h m s 3 2 1 2 3 3 y x x x = + (1) 1. Kho sỏt s bin thiờn v v th ca hm s (1) . 2. Gi A , B ln lt l cỏc im cc i, cc tiu ca th hm s (1). Tỡm im M thuc trc honh sao cho tam giỏc MAB cú din tớch bng 2. 47.Cõu I (2 im ) Cho hm s ( ) 3 2 2 2 3 3 1 3 1 y x x m x m = + + (1), vi m l tham s thc. 1. Kho sỏt s bin thiờn v v th ca hm s (1) khi 1 m = . 2. Tỡm m hm s (1) cú cc i v cc tiu, ng thi cỏc im cc tr ca th cựng vi gc to O to thnh mt tam giỏc vuụng ti O. 48.Cõu I (2 im) Cho hm s 23 23 += mxxxy (1) vi m l tham s thc. 1. Kho sỏt s bin thiờn v v th ca hm s (1) khi m = 0. 2. nh m hm s (1) cú cc tr, ng thi ng thng i qua hai im cc tr ca th hm s to vi hai trc ta mt tam giỏc cõn. 49.Cõu I (2 im) Cho hm s mmmxxy += 224 22 (1) vi m l tham s thc. 1. Kho sỏt s bin thiờn v v th ca hm s (1) khi m = 1. 2 nh m th ca hm s (1) cú ba im cc tr l ba nh ca mt tam giỏc vuụng. 50.Cõu 1. ( 2,0 im ) Cho hm s y = x 3 + 2(m 1)x 2 +(m 2 4m + 1)x 2(m 2 + 1) ( 1). 1. Kho sỏt s bin thiờn v v th (C) ca hm s khi m = 0. 2. Tỡm cỏc giỏ tr ca m hm s cú cc i, cc tiu v ng thng i qua cỏc im c c i, cc tiu ca th hm s (1) vuụng gúc vi ng thng 5 2 9 += xy . 51.Cõu 1: ( 2,0 im)Cho hm s 3 2 2( 1 ) 9 2 y x m x x m = + + (1) 1) Vi 4 m = . Kho sỏt s bin thiờn v v th hm s. 2) Tỡm m ( ) m hm s (1) t cc tr ti 1 2 ,x x tho món 1 2 2. x x = 52.Câu I: (2 im) Cho hm s ( ) mxmmxmxxf ++++= 2)2() 3( 13 23 (1) (m là tham số) 1. Kho sát s bin thiên v v đồ th hm s (1) khi 2 = m . 2. Tìm m để đồ th hm s (1) có cực trị đồng thời khoảng cách từ điểm cực đại của th hm s (1) tới trục Ox bằng khoảng cách từ điểm cực tiểu của th hm s (1) tới trục Oy . 53.Cõu I (2 i m ) C h o h m s y = x 3 3 x 2 3 m(m + 2) x 1 (1) , vi m l tham s thc. 1. Kho sỏt s bin thiờn v v th ca hm s (1) khi m=0. 2. Tỡm cỏc giỏ tr ca m hm s (1) cú hai giỏ tr cc tr cựng du. 54.Cõu I (2 im ) C h o h m s ( ) 3 3 2 m y x m x C = + 6 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số ( ) 1 C 2. Tìm m để đường thẳng đi qua điểm cực đại, cực tiểu của ( ) m C cắt đường tròn tâm ( ) 1 ; 1 , I bán kính bằng 1 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB đạt giá trị lớn nhất 55.Câu I: ( 2,0 điểm ) Cho hàm số 1mx2xy 24 +++−−−=== (1). 1/.Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi 1m −−−=== . 2/.Tìm các giá trị của tham số m để đồ thị hàm số (1) có ba điểm cực trị và đường tròn đi qua ba điểm này có bán kính bằng 1. 56.Câu I:(2 . 0 điểm). Cho hàm số 4 2 2 2(1 ) 1 y x m x m = − − + + (1) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) với m = 0. 2. Tìm m để hàm số có đại cực, cực tiểu và các điểm cực trị của đồ thị hàm số lập thành tam giác có diện tích lớn nhất. 57.Câu I (2,0 điểm) Cho hàm số y = x 4 − 2x 2 + 2 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1). 2. Tìm tọa độ hai điểm A, B thuộc (C) sao cho đường thẳng AB song song với trục hoành và khoảng cách từ điểm cực đại của (C) đến AB bằng 8. 58.Câu I (2 điểm ) Cho hàm số 4 2 2 1 y x mx m = + − − (1) , với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi 1 m = − . 2. Xác định m để hàm số (1) có ba điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành m ột tam giác có diện tích bằng 4 2 . 59.Câu I (2 điểm ) C h o h à m s ố 3 3 1 y x x = − + (1) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1). 2. Đường thẳng ( ): 1 y mx∆ = + cắt (C) tại ba điểm. Gọi A và B là hai điểm có hoành độ khác 0 trong ba điểm nói ở trên; gọi D là điểm cực tiểu của (C). Tìm m để ADB là góc vuông. 60.Câu I (2 điểm ) C h o h à m s ố 4 2 2 y x mx = − (1), với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi 1 m = − . 2. Tìm m để đồ thị hàm số (1) có hai điểm cực tiểu và hình phẳng giới hạn bởi đồ thị hàm số với đường thẳng đi qua hai điểm cực tiểu ấy có diện tích bằng 1. 61.Câu I (2 điểm ) C h o h à m s ố 3 2 1 2 3 3 y x x x = − + (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) . 2. Gọi A , B lần lượt là các điểm cực đại, cực tiểu của đồ thị hàm số (1). Tìm điểm M thuộc trục hoành sao cho tam giác MAB có diện tích bằng 2. 62.Câu I (2 điểm ) C h o h à m s ố ( ) 3 2 2 2 3 3 1 3 1 y x x m x m = − + + − − − (1), với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi 1 m = . 2. Tìm m để hàm số (1) có cực đại và cực tiểu, đồng thời các điểm cực trị của đồ thị cùng với gốc toạ độ O tạo thành một tam giác vuông tại O. 63.Câu I (2 điểm) Cho hàm số 23 23 +−−= mxxxy (1) với m là tham số thực. 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 0. 2.Định m để hàm số (1) có cực trị, đồng thời đường thẳng đi qua hai điểm cực trị của đồ thị hàm số tạo với hai trục tọa độ một tam giác cân. 64.Câu I (2 , 0 điểm) Cho hàm số ( ) 4 2 4 1 2 1 y x m x m = − − + − có đồ thị ( ) m C 7 1. Khảo sát sự biến thiên và vẽ đồ thị ( ) C của hàm số khi 3 2 m = . 2 . X á c định tham số m để hàm số có 3 cực trị tạo thành 3 đỉnh của một tam giác đều 65.Câu I: (2,0 điểm) Cho hàm số y = x 4 – 2(m 2 – m + 1)x 2 + m – 1 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 1 2. Tìm m để đồ thị của hàm số (1) có khoảng cách giữa hai điểm cực tiểu ngắn nhất. 66.Câu I (2.0 điểm ) . Cho hàm số: y = f(x) = x 3 – 3mx 2 + 3(m 2 – 1)x – m 3 (C m ) 1. Khảo sát sự biến thiên và vẽ đồ thò của hàm số khi m = –2. 2. Chứng minh rằng (C m ) ln có điểm c ực đại và điểm cực tiểu lần lượt chạy t r ê n m ỗi đường thẳng cố định 67.Câu I. (2 điểm) Cho hàm số 3 2 3 2 y x x = − + ( ) C 1.Khảo sát sự biến thiên và vẽ đồ thị ( ) C của hàm số 2.Tìm m để đường thẳng đi qua hai điểm cực trị của ( ) C tiếp xúc với đường tròn có phương trình ( ) ( ) 2 2 1 5 x m y m − + − − = 68.Câu I.(2 điểm) Cho hàm số y = 3 2 1 ( 3 ) 2 ( 1 ) 1 ( 1 ) 3 2 x m x m x− + − + + ( m là tham số thực) 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = 1 . 2) Tìm tất cả các giá trị của m để đồ thị hàm số (1) có hai điểm cực trị với hồnh độ lớn hơn 1. 69.Câu I (2 điểm ) C h o h à m s ố ( ) 3 2 ( ) 3 1 1 y f x mx mx m x = = + − − − , m là tham số 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên khi m = 1. 2. Xác định các giá trị của m để hàm số ( )y f x= khơng có cực trị. 70.Câu I (2 điểm ) : C h o h à m s ố 3 2 2 3 3 3 ( 1 ) y x mx m x m m = − + − − + (1) 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) ứng với m=1 2.Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến góc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến góc tọa độ O. 71.Câu I : ( 2 điểm ). Cho hàm số y = x 3 + ( 1 – 2m)x 2 + (2 – m )x + m + 2 . (C m ) 1.Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 2. 2. Tìm m để đồ thị hàm số (C m ) có cực trị đồng thời hồnh độ cực tiểu nhỏ hơn 1. 72.Câu I ( 2 , 0 điểm) Cho hàm số mxmxxy 296 23 +++= (1), với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1. 2. Tìm m để đồ thị hàm số (1) có hai điểm cực trị thoả mãn khoảng cách từ gốc toạ độ O đến 4 . đường thẳng đi qua hai điểm cực trị bằng 5 73.Câu I ( 2,0 điểm ) Cho hàm số 3 2 2 y x 3x m m 1 = − + − + (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1. 2. Tìm m để đồ thị hàm số (1) có hai điểm cực đại , cực tiểu là A và B sao cho diện tích tam giác ABC bằng 7, với điểm C ( – 2 ; 4 ) . 74.Câu I (2 điểm ) C h o h à m s ố 3 2 2 3 ( 2 1 ) 6 ( 1 ) 1 y x m x m m x = − + + + + có đồ thị (C m ). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 0. 2. Tìm m để hàm số đồng biến trên khoảng ( ) ;+∞2 8 75.Câu I (2 , 0 điểm) Cho hàm số 2 m y x m x = + + − 1.Khảo sát sự biến thiên và vẽ đồ thị hàm số đã cho với m = 1. 2.Tìm m để hàm số có cực đại và cực tiểu sao cho hai điểm cực trị của đồ thị hàm số cách đường thẳng d: x – y + 2 = 0 những khoảng bằng nhau. 76.Câu I (2 điểm ) C h o h à m s ố y = x 3 – 3x 2 +2 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). 2. Tìm điểm M thuộc đường thẳng y=3x-2 sao tổng khoảng cách từ M tới hai điểm cực trị nhỏ nhất. 77.Câu I: (2,0 điểm). Cho hàm số y = x 3 – 3mx 2 + (m-1)x + 2. 1. Chứng minh rằng hàm số có cực trị với mọi giá trị của m. 2. Xác định m để hàm số có cực tiểu tại x = 2. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trong trường hợp đó. 78.Câu I (2 điểm): Cho hàm số 3 2 2 3 3 3 ( 1 ) y x mx m x m m = − + − − + (1) 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) ứng với m=1 2.Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến góc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến góc tọa độ O. 79.Câu I (2 điểm ) C h o h à m s ố y = x 3 – 3x 2 +2 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). 2. Tìm điểm M thuộc đường thẳng y=3x-2 sao tổng khoảng cách từ M tới hai điểm cực trị nhỏ nhất. 80.Câu I (2 , 0 điểm) Cho hàm số 4 2 (3 1 ) 3 y x m x = + + − (với m là tham số) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m 1= − . 2. Tìm tất cả các giá trị của m để đồ thị hàm số có ba điểm c ực trị tạo thành một tam giác cân sao cho độ dài cạnh đáy bằng 3 2 lần độ dài cạnh bên. 81.Câu I: (2,0 điểm) Cho hàm số y = x 4 – 2(m 2 – m + 1)x 2 + m – 1 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 1 2. Tìm m để đồ thị của hàm số (1) có khoảng cách giữa hai điểm cực tiểu ngắn nhất. 82.Câu I. (2,0 điểm) Cho hàm số mxxmxy −++−= 9)( 13 23 , với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho ứng với 1 = m . 2. Xác định m để hàm số đã cho đạt cực trị tại 21 , xx sao cho 2 21 ≤− xx . 83.Câu I (2 điểm)Cho hàm số y = 2)1(2 24 −+−− mxmx (1). 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi 2 = m . 2. Tìm m để hàm số (1) đồng biến trên khoảng ;1( )3 . 84.Câu I (2 điểm)Cho hàm số y = 2)1(2 24 −+−− mxmx (1). 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi 2 = m . 2. Tìm m để hàm số (1) đồng biến trên khoảng ;1( )3 . 85.Câu I :( 2, 0 điểm) Cho hàm số 3 2 y (m 2)x 3x m x 5 = + + + − , m là tham số 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số khi m = 0 9 2. Tìm các giá trị của m để các điểm cực đại, cực tiểu của đồ thị hàm số đã cho có hoành độ là các số dương. 86.Câu 1: ( 2 điểm) Cho hàm số ( ) m Cmmxmxy 55)2(2 224 +−++ −= 1, Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 1. 2, Với những giá trị nào của m thì đồ thị ( C m ) có điểm cực đại và điểm c ực tiểu, đồng thời các điểm cực đại và điểm cực tiểu lập thành một tam giác đều. 87.Câu I (2 điểm ) C h o h à m s ố ( ) 3 3 2 m y x m x C = − + 3. Khảo sát sự biến thiên và vẽ đồ thị của hàm số ( ) 1 C Tìm m để đường thẳng đi qua điểm cực đại, cực tiểu của ( ) m C cắt đường tròn tâm ( ) 1 ; 1 , I bán kính bằng 1 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB đạt giá trị lớn nhất 88.Câu I: ( 2,0 điểm ) Cho hàm số 1mx2xy 24 +++−−−=== (1). 1/.Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi 1m −−−=== . 2/.Tìm các giá trị của tham số m để đồ thị hàm số (1) có ba điểm cực trị và đường tròn đi qua ba điểm này có bán kính bằng 1. 89.Câu I:(2 . 0 điểm). Cho hàm số 4 2 2 2(1 ) 1 y x m x m = − − + + (1) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) với m = 0. 2. Tìm m để hàm số có đại cực, cực tiểu và các điểm cực trị của đồ thị hàm số lập thành tam giác có diện tích lớn nhất. 90.Câu I (2 điểm ) C h o h à m s ố 3 3 1 y x x = − + (1) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1). 2. Đường thẳng ( ): 1 y mx∆ = + cắt (C) tại ba điểm. Gọi A và B là hai điểm có hoành độ khác 0 trong ba điểm nói ở trên; gọi D là điểm cực tiểu của (C). Tìm m để ADB là góc vuông. 91.Câu I (2 , 0 điểm) Cho hàm số 4 2 2 y x 2m x 1 = − − (1), trong đó m là tham số thực. 9. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1. 10.Tìm giá trị của tham số m để hàm số (1) có ba điểm cực trị là ba đỉnh của một tam giác có diện tích bằng 32. 92.Câu I (2 điểm ) Cho hàm số 4 2 2 2 y x mx m m = + + + (1) , với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi 2 m = − . 2. Xác định m để hàm số (1) có ba điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành một tam giác có góc bằng 120 0 . 93.Câu I (2 điểm ) C h o h à m s ố 4 2 2 y x mx = − (1), với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi 1 m = − . 2. Tìm m để đồ thị hàm số (1) có hai điểm cực tiểu và hình phẳng giới hạn bởi đồ thị hàm số với đường thẳng đi qua hai điểm cực tiểu ấy có diện tích bằng 1. 94.Câu I (2 điểm ) C h o h à m s ố 3 2 1 2 3 3 y x x x = − + (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) . 2. Gọi A , B lần lượt là các điểm cực đại, cực tiểu của đồ thị hàm số (1). Tìm điểm M thuộc trục hoành sao cho tam giác MAB có diện tích bằng 2. 95.Câu I (2 điểm) 10 Cho hm s ( ) 3 2 2 2 3 3 1 3 1 y x x m x m = + + (1), vi m l tham s thc. 1. Kho sỏt s bin thiờn v v th ca hm s (1) khi 1 m = . 2. Tỡm m hm s (1) cú cc i v cc tiu, ng thi cỏc im cc tr ca th cựng vi gc to O to thnh mt tam giỏc vuụng ti O. 96.Cõu I (2 im) Cho hm s 23 23 += mxxxy (1) vi m l tham s thc. 3. Kho sỏt s bin thiờn v v th ca hm s (1) khi m = 0. 4. nh m hm s (1) cú cc tr, ng thi ng thng i qua hai im cc tr ca th hm s to vi hai trc ta mt tam giỏc cõn. 97.Cõu I (2 , 0 im) Cho hm s ( ) 4 2 4 1 2 1 y x m x m = + cú th ( ) m C 1. Kho sỏt s bin thiờn v v th ( ) C ca hm s khi 3 2 m = . 2. Xỏc nh tham s m hm s cú 3 cc tr to thnh 3 nh ca mt tam giỏc u 98.Cõu I (2,0 im ) C h o hm s 4 2 2 1 y x ( m )x m = + + (1), m l tham s. 1. Kho sỏt s bin thiờn v v th hm s (1) khi m = 1. 2. Tỡm m th hm s (1) cú ba im cc tr A, B, C sao cho OA = BC, O l gc ta , A l cc tr thuc trc tung, B v C l hai im c c tr cũn li. 99. Câu I.(2 điểm). Cho hàm số y = x 3 +( 1-2m)x 2 +(2-m)x + m +2. ( m là tham số ) (1) 1. Khảo sát Sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2. 2.Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại ,điểm cực tiểu ,đồng thời hoành độ của điểm cực tiểu nhỏ hơn 1. HOC24H . 1 TUYỂN TẬP 99 BÀI TOÁN LIÊN QUAN Đ Ế N CỰC TRỊ VÀ TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ 1.Câu I: (2 điểm) Cho hàm số 4 2 2 ( ) 2( 2) 5 5 = + − + − + f x x m. đồ thị hàm số (1) với m = 0. 2. Tìm m để hàm số có đại cực, cực tiểu và các điểm cực trị của đồ thị hàm số lập thành tam giác có diện tích lớn nhất. 57.Câu I (2,0 điểm) Cho hàm số y = x 4 . là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số ( C ) khi 1 m = . 2. Tìm các gíá trị của m để đồ thị của hàm số ( C ) có hai điểm cực trị và chứng tỏ rằng hai điểm cực trị này