Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 27 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
27
Dung lượng
1,73 MB
Nội dung
bộ giáo dục và đào tạo Kỳ thi tuyển sinh đại học, cao ĐẳnG năm 2002 Môn thi : toán Đề chính thức (Thời gian làm bài: 180 phút) _____________________________________________ Câu I (ĐH : 2,5 điểm; CĐ : 3,0 điểm) Cho hàm số : (1) ( là tham số). 23223 )1(33 mmxmmxxy +++= m 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi .1 = m 2. Tìm k để phơng trình: có ba nghiệm phân biệt. 033 2323 =++ kkxx 3. Viết phơng trình đờng thẳng đi qua hai điểm cực trị của đồ thị hàm số (1). Câu II.(ĐH : 1,5 điểm; CĐ: 2,0 điểm) Cho phơng trình : 0121loglog 2 3 2 3 =++ mxx (2) ( là tham số). m 1 Giải phơng trình (2) khi .2 = m 2. Tìm để phơng trình (2) có ít nhất một nghiệm thuộc đoạn [m 3 3;1 ]. Câu III. (ĐH : 2,0 điểm; CĐ : 2,0 điểm ) 1. Tìm nghiệm thuộc khoảng )2;0( của phơng trình: .32cos 2sin21 3sin3cos sin += + + + x x xx x 5 2. Tính diện tích hình phẳng giới hạn bởi các đờng: .3,|34| 2 +=+= xyxxy Câu IV.( ĐH : 2,0 điểm; CĐ : 3,0 điểm) 1. Cho hình chóp tam giác đều đỉnh có độ dài cạnh đáy bằng a. Gọi ABCS . ,S M và lần lợt N là các trung điểm của các cạnh và Tính theo diện tích tam giác , biết rằng SB .SC a AMN mặt phẳng ( vuông góc với mặt phẳng . )AMN )(SBC 2. Trong không gian với hệ toạ độ Đêcac vuông góc Oxyz cho hai đờng thẳng: và . =++ =+ 0422 042 : 1 zyx zyx += += += tz ty tx 21 2 1 : 2 a) Viết phơng trình mặt phẳng chứa đờng thẳng )(P 1 và song song với đờng thẳng . 2 b) Cho điểm . Tìm toạ độ điểm )4;1;2(M H thuộc đờng thẳng 2 sao cho đoạn thẳng MH có độ dài nhỏ nhất. Câu V. ( ĐH : 2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ Đêcac vuông góc Oxy , xét tam giác vuông tại , ABC A phơng trình đờng thẳng là BC ,033 = yx các đỉnh và A B thuộc trục hoành và bán kính đờng tròn nội tiếp bằng 2. Tìm tọa độ trọng tâm của tam giác . G ABC 2. Cho khai triển nhị thức: n x n n n x x n n x n x n n x n n x x CCCC + ++ + = + 3 1 3 2 1 1 3 1 2 1 1 2 1 0 3 2 1 22222222 L ( n là số nguyên dơng). Biết rằng trong khai triển đó C và số hạng thứ t 13 5 nn C= bằng , tìm và n20 n x . Hết Ghi chú: 1) Thí sinh chỉ thi cao đẳng không làm Câu V. 2) Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: Số báo danh: bộ giáo dục và đào tạo kỳ thi tuyển sinh đại học, cao Đẳng năm 2002 đề chính thức Môn thi : toán, Khối B. (Thời gian làm bài : 180 phút) _____________________________________________ Câu I. (ĐH : 2,0 điểm; CĐ : 2,5 điểm) Cho hàm số : ( ) 109 224 ++= xmmxy (1) ( m là tham số). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi 1 = m . 2. Tìm m để hàm số (1) có ba điểm cực trị. Câu II. (ĐH : 3,0 điểm; CĐ : 3,0 điểm) 1. Giải phơng trình: xxxx 6cos5sin4cos3sin 2222 = . 2. Giải bất phơng trình: ( ) 1)729(loglog 3 x x . 3. Giải hệ phơng trình: ++=+ = .2 3 yxyx yxyx Câu III. ( ĐH : 1,0 điểm; CĐ : 1,5 điểm) Tính diện tích của hình phẳng giới hạn bởi các đờng : 4 4 2 x y = và 24 2 x y = . Câu IV.(ĐH : 3,0 điểm ; CĐ : 3,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Đêcac vuông góc Oxy cho hình chữ nhật ABCD có tâm 0; 2 1 I , phơng trình đờng thẳng AB là 022 =+ yx và ADAB 2 = . Tìm tọa độ các đỉnh DCBA ,,, biết rằng đỉnh A có hoành độ âm. 2. Cho hình lập phơng 1111 DCBABCDA có cạnh bằng a . a) Tính theo a khoảng cách giữa hai đờng thẳng BA 1 và DB 1 . b) Gọi PNM ,, lần lợt là các trung điểm của các cạnh CDBB , 1 , 11 DA . Tính góc giữa hai đờng thẳng MP và NC 1 . Câu V. (ĐH : 1,0 điểm) Cho đa giác đều n AAA 221 L ,2( n n nguyên ) nội tiếp đờng tròn () O . Biết rằng số tam giác có các đỉnh là 3 trong n2 điểm n AAA 221 ,,, L nhiều gấp 20 lần số hình chữ nhật có các đỉnh là 4 trong n2 điểm n AAA 221 ,,, L , tìm n . Hết Ghi chú : 1) Thí sinh chỉ thi cao đẳng không làm Câu IV 2. b) và Câu V. 2) Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: Số báo danh: Bộ giáo dục và đào tạo Kỳ thi Tuyển sinh đại học ,cao đẳng năm 2002 Đề chính thức Môn thi : Toán, Khối D ( Thời gian làm bài : 180 phút ) _________________________________________ CâuI ( ĐH : 3 điểm ; CĐ : 4 điểm ). Cho hàm số : () 1x mx1m2 y 2 = (1) ( m là tham số ). 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) ứng với m = -1. 2. Tính diện tích hình phẳng giới hạn bởi đờng cong (C) và hai trục tọa độ. 3. Tìm m để đồ thị của hàm số (1) tiếp xúc với đờng thẳng x y = . Câu II ( ĐH : 2 điểm ; CĐ : 3 điểm ). 1. Giải bất phơng trình : ( ) x3x 2 . 02x3x2 2 . 2. Giải hệ phơng trình : = + + = + .y 22 24 y4y52 x 1xx 2x3 Câu III ( ĐH : 1 điểm ; CĐ : 1 điểm ). Tìm x thuộc đoạn [ 0 ; 14 ] nghiệm đúng phơng trình : 04xcos3x2cos4x3cos =+ . Câu IV ( ĐH : 2 điểm ; CĐ : 2 điểm ). 1. Cho hình tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABC); AC = AD = 4 cm ; AB = 3 cm ; BC = 5 cm . Tính khoảng cách từ điểm A tới mặt phẳng (BCD). 2. Trong không gian với hệ tọa độ Đêcac vuông góc Oxyz, cho mặt phẳng (P) : 02yx2 =+ và đờng thẳng m d: ()() () =++++ =+++ 02m4z1m2mx 01mym1x1m2 ( m là tham số ). Xác định m để đờng thẳng m d song song với mặt phẳng (P). Câu V (ĐH : 2 điểm ). 1. Tìm số nguyên dơng n sao cho 243C2 C4C2C n n n2 n 1 n 0 n =++++ . 2. Trong mặt phẳng với hệ tọa độ Đêcac vuông góc Oxy , cho elip (E) có phơng trình 1 9 y 16 x 22 =+ . Xét điểm M chuyển động trên tia Ox và điểm N chuyển động trên tia Oy sao cho đờng thẳng MN luôn tiếp xúc với (E). Xác định tọa độ của M , N để đoạn MN có độ dài nhỏ nhất . Tính giá trị nhỏ nhất đó . Hết Chú ý : 1. Thí sinh chỉ thi cao đẳng không làm câu V 2. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh : Số báo danh Bộ giáo dục và đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2003 Môn thi : toán khối A đề chính thức Thời gian làm bài : 180 phút ___________________________________ Câu 1 (2 điểm). Cho hàm số m x mxmx y ( (1) 1 2 ++ = là tham số). 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = 1. 2) Tìm m để đồ thị hàm số (1) cắt trục hoành tại hai điểm phân biệt và hai điểm đó có hoành độ dơng. Câu 2 (2 điểm). 1) Giải phơng trình .2sin 2 1 sin tg1 2cos 1cotg 2 xx x x x + + = 2) Giải hệ phơng trình += = .12 11 3 xy y y x x Câu 3 (3 điểm). 1) Cho hình lập phơng . Tính số đo của góc phẳng nhị diện [] . .' ' ' 'ABCD A B C D DCAB ,' , 2) Trong không gian với hệ tọa độ Đêcac vuông góc Ox cho hình hộp chữ nhật có trùng với gốc của hệ tọa độ, yz ; 0; 0.' ' ' 'ABCD A B C D A ( ), (0; ; 0), '(0; 0; ) B aDaAb . Gọi (0, 0)ab>> M là trung điểm cạnh CC . ' a) Tính thể tích khối tứ diện ' B DA M theo a và b . b) Xác định tỷ số a b để hai mặt phẳng và (' )ABD () M BD vuông góc với nhau. Câu 4 ( 2 điểm). 1) Tìm hệ số của số hạng chứa x 8 trong khai triển nhị thức Niutơn của n x x + 5 3 1 , biết rằng )3(7 3 1 4 += + + + nCC n n n n ( n là số nguyên dơng, x > 0, là số tổ hợp chập k của n phần tử). k n C 2) Tính tích phân + = 32 5 2 4xx dx I . Câu 5 (1 điểm). Cho x, y, z là ba số dơng và x + y + z 1. Chứng minh rằng .82 1 1 1 2 2 2 2 2 2 +++++ z z y y x x HếT Ghi chú : Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: . Số báo danh: . [...]... ra? -Hết -Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh Số báo danh BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2006 ĐỀ CHÍNH THỨC Môn thi: TOÁN, khối A Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm) 1 Khảo sát sự biến thi n và vẽ đồ thị của hàm số y = 2x 3 − 9x 2 + 12x... tích của khối tứ diện ANIB - Hết Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh số báo danh BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2006 ĐỀ CHÍNH THỨC Môn: TOÁN, khối D Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm) Cho hàm số y = x 3 − 3x + 2 1 Khảo sát sự biến thi n... vuông góc của A trên các đường thẳng SB và SC Tính thể tích của khối chóp A.BCNM - Hết Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh số báo danh BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2007 Môn thi: TOÁN, khối A Thời gian làm bài: 180 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm)... bộ coi thi không giải thích gì thêm Họ và tên thí sinh: …………… ……………………………số báo danh: ……………………………… BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2007 Môn thi: TOÁN, khối B Thời gian làm bài: 180 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm) Cho hàm số: y = − x 3 + 3x 2 + 3(m 2 − 1)x − 3m 2 − 1 (1), m là tham số 1 Khảo sát sự biến thi n... bộ coi thi không giải thích gì thêm Họ và tên thí sinh: …………… ……………………………Số báo danh: ……………………………… BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Môn thi: TOÁN, khối A Thời gian làm bài 180 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm) mx 2 + (3m 2 − 2)x − 2 Cho hàm số y = (1), với m là tham số thực x + 3m 1 Khảo sát sự biến thi n... giác vuông, AB = BC = a, cạnh bên AA' = a 2 Gọi M là trung điểm của cạnh BC Tính theo a thể tích của khối lăng trụ ABC.A'B'C' và khoảng cách giữa hai đường thẳng AM, B'C .Hết Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh: Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Môn thi: TOÁN; Khối: A ĐỀ CHÍNH THỨC Thời... -Hết Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh: số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2006 ĐỀ CHÍNH THỨC Môn: TOÁN, khối B Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm) x2 + x −1 Cho hàm số y = x+2 1 Khảo sát sự biến thi n và vẽ đồ thị ( C ) của hàm số... thích gì thêm Họ và tên thí sinh: Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Môn thi: TOÁN, khối B Thời gian làm bài 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm) Cho hàm số y = 4x 3 − 6x 2 + 1 (1) 1 Khảo sát sự biến thi n và vẽ đồ thị của hàm số (1) 2 Viết phương trình tiếp tuyến của đồ thị hàm số... HỌC, CAO ĐẲNG NĂM 2008 Môn thi: TOÁN, khối D Thời gian làm bài 180 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm) Cho hàm số y = x 3 − 3x 2 + 4 (1) 1 Khảo sát sự biến thi n và vẽ đồ thị của hàm số (1) 2 Chứng minh rằng mọi đường thẳng đi qua điểm I(1; 2) với hệ số góc k ( k > − 3 ) đều cắt đồ thị của hàm số (1) tại ba điểm phân biệt I, A, B đồng thời I là... trung điểm của SA, M là trung điểm của AE, N là trung điểm của BC Chứng minh MN vuông góc với BD và tính (theo a) khoảng cách giữa hai đường thẳng MN và AC -Hết Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh: …………… ……………………………Số báo danh: ……………………………… BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2007 Môn thi: TOÁN, khối D Thời gian . và đào tạo Kỳ thi tuyển sinh đại học, cao ĐẳnG năm 2002 Môn thi : toán Đề chính thức (Thời gian làm bài: 180 phút) _____________________________________________ Câu I (ĐH : 2,5 điểm;. sinh đại học ,cao đẳng năm 2002 Đề chính thức Môn thi : Toán, Khối D ( Thời gian làm bài : 180 phút ) _________________________________________ CâuI ( ĐH : 3 điểm ; CĐ : 4 điểm ). Cho. chỉ thi cao đẳng không làm câu V 2. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh : Số báo danh Bộ giáo dục và đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2003 Môn thi : toán