1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Luyện thi đại học - phương trình vô tỷ pot

11 260 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 295 KB

Nội dung

CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ BÀI 1: 2 2 1 5 3 x x x + − = − ĐK: 2 3 1 0 3 x x x  >   + >  −  ( ) 2 2 2 2 2 2 1 2 5 3 3 2 1 5 ; 1 3 3 x PT x x x x x x x ⇔ + = + + − − ⇔ + = − − Có 2 cách giải (1) Cách 1: ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 6 3 6 3 6 1 15 1 16 16 2 3 3 3 3 3 3 8 ; 2 6 16 2; 8 2; 21 3 x x x x x x x x x x x t t t t t x x x   ⇔ + = ⇔ + + = ⇔ + =  ÷ − − −   − − − = ⇔ + = ⇒ = = ⇒ ⇒ = = − − Cách 2: ( ) ( ) 2 2 2 2 4 2 4 2 1 2 3 5 16 4 3 25 160 256 8 21 148 256 0 2; 21 x x x x x x x x x x x ⇔ − = − ⇒ − = − + ⇔ − + = ⇒ ⇒ = = − BÀI 2: 3 2 3 2 3 4 7 3 5 3 x x x x x + + + = + + ĐK: 3 3 3 0; 5 x x+ ≥ ≠ − CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ ( ) ( ) ( ) 3 3 2 2 2 2 3 5 3 3 3 4 1 0 3 3 ; 0 : 2 5 3 3 4 1 0 1 5 201 1; 2; 3 1 8 2 PT x x x x x x t t PT t x t x x t x x x x x t ⇔ + − + + + + + = + = ≥ ⇒ − + + + + = = +  +  ⇒ ⇒ ⇒ = = = +  =  BÀI 3: 2 2 2 6 2 1 2 6 1x x x x+ + = + + ĐK: 2 2 6 1 0x x+ + > ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 6 2 1 ; 0 :2 2 6 1 2 6 2 1 2 6 1 4 4 5 31 1 2 1 2 x x t t PT t x x t t x x x x x x t x x + + = > ⇒ = + + − = + + − + + = − − ± ⇒ − = − ⇒ ⇒ = BÀI 4: 2 2 2 6 2 6x x x x+ − = + − ĐK : 2 2 2 6 0 2 6 0 x x x x  + − ≥   + − ≥   ( ) ( ) ( ) 2 2 2 2 2 6 ; 0 ; : 2 6 3 37 1 0 2; 2 x x t t PT t x x t t x x t x t x x x + − = ≥ = + − ⇒ − = − + ⇒ − + − = ⇒ ⇒ = = − BÀI 5: 2 2 3 3 8 4 3x x x− + = + ĐK: 2 3 3 8 0x x− + > ( ) ( ) ( ) 2 2 2 2 2 2 8 16 4 3 4 3 1 4 2 3 1 1 PT x x x x x x x ⇔ + + = + + + + ⇔ + = + + ⇔ ⇒ = CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ BÀI 6: ( ) ( ) 2 8 1 3 1 3 1 0x x x x− + + + − = ĐK: 1 3 1 x x  ≥   ≤ −  ( ) 2 2 2 2 2 2 3 2 1 3 3 2 1 4 6 0 3 2 1 ; 0 3 4 6 0 2 1; 7 39 3 2 PT x x x x x x x x t t t t x x t x x x t x ⇔ + − − + − − + = + − = ≥ ⇒ − − + = =  ⇒ ⇒ ⇒ = = −  = −  BÀI 7: 3 6 2 2 3x x x+ + + = + + ĐK: 2x ≥ − ( ) ( ) ( ) ( ) ( ) ( ) 3 1 6 2 2 2 2 2 2 2 3 1 6 2 2 1 1 2 ; 2 ; 1 3 1 6 2 2 3 1 2 0 2; 6 2 2 0 2 2 1 1 1 2 PT x x x x x x x x x tm x x x x x x x x x x VT VP vn x ⇔ + − + + − = + + + ⇔ + = + + + + + = −  ⇔  + = > −  + + + + +  + + > + > ∀ > − + + > + > ∀ > − ⇒ < = ⇒ + BÀI 8: 2 2 2 2 1 4 2x x x x+ = + − ( ) ( ) 2 2 2 2 2 2 2 2 2 2 4 4 1 1 3 17 2 2 1 ; 2 8 PT x x x x x x x x x x x ⇔ + − + + = − + + ⇔ + − = − ⇔ ⇔ = − = BÀI 9: 3 3 2 1 1x x x x− + = + + CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ ĐK: 3 3 2 1 0 1 0 x x x x  − + ≥   + + ≥   ( ) ( ) ( ) 3 2 3 2 2 3 2 2 2 1 1 1 ; 0 1 0 1; 0; 2 PT x x x x x x x x t t t t x x t x t x x x x ⇔ + + − + + = + + + = ≥ ⇒ − = + ⇔ + − − = ⇒ ⇒ = − = = BÀI 10: 2 2 5 2 1 3 1 3 1 x x x x + + = + + ĐK: 1 3 x > − ( ) ( ) ( ) 2 2 2 2 2 2 3 1 3 1 3 1 2 2 0 3 1 1 ; : 3 1 2 2 0 2 0; 1 1 PT x x x x x x t t PT t x t x x t x x x t x ⇔ + − + + + + = + = ≥ − + + + = =  ⇒ ⇒ = =  = +  BÀI 11. 2 1 2 2 1 x x x x + + = + ĐK: 0x ≥ 2 2 2 2 1 2 1 0 1 1 1 1 x x x PT x x x x   ⇔ + = ⇔ − = ⇔ =  ÷  ÷ + + +   BÀI 12: 8 1 9 6 8x x x + + = + ĐK: 8 0x − ≤ ≠ ( ) 2 2 2 8 6 8 9 0 8 3 0 8 9 1 0 PT x x x x x x x x x x ⇔ + − + + = ⇔ + − =  + = ⇔ ⇔ =  >  CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ BÀI 13: 2 5 2 4 3x x x+ + = + + + ĐK: 2x ≥ − ( ) 2 3 2 4 5 1 1 2 3 2 4 5 1 1 1 0 2 3 2 4 5 PT x x x x x x x x x vn x x x ⇔ − + = + − + − − ⇔ = + + + + + =   ⇔  + =  + + + + +  BÀI 14: ( ) 2 2 2 1 3 1 1 x x x x + = − − ĐK: 0 1x < < ( ) ( ) ( ) ( ) ( ) ( ) 3 2 2 2 2 3 2 3 3 2 2 1 3 1 1 1 0 1 : 2 3 0 0 2 3 0 1 2 3 3 0 1 1 2 PT x x x x x x t t PT x xt t x a a a a a a a t a x ⇔ + − = − − − = < < ⇒ + − = = > ⇒ + − = ⇔ − + + = ⇒ = ⇒ = BÀI 15: 2 2 1 3 10 3 1 6 x x x x + + = + + ĐK: 1 6 x > − ( ) ( ) ( ) 2 2 2 2 2 2 3 6 1 3 9 3 2 0 3 0 6 1 9 3 2 0 3 1 7 3 1 ; 3 2 4 PT x x x x x x t t t x t x x t x x x t x ⇔ + − + + + + − = + = > ⇒ − + + + − = = −  − ⇒ ⇒ ⇒ = =  = +  CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ BÀI 16: 2 3 7 3 1 7x x x+ − = + − ĐK: 1 3 x ≥ − ( ) ( ) ( ) ( ) ( ) 2 3 1 3 7 7 0 2 1 7 1 1 0 3 1 3 1 2 1 7 1 0 3 3 1 3 PT x x x x x x x x x tm x vn do x x x ⇔ + − + + − = − ⇔ + − + = + + + =  ⇔    + + = ≥ −  ÷  + + +    BÀI 17: ( ) 2 2 2 3 5 2 1 2 3 4x x x x x+ + + − = + + ( ) ( ) ( ) 2 2 2 2 2 2 3 5 2 3 4 2 1 0 1 1 . 2 0 3 5 2 3 4 1 PT x x x x x x x x x x x ⇔ + + − + + + − =   ⇔ − + =  ÷ + + + + +   ⇒ ⇒ = BÀI 18: 2 6 8 16 3x x x+ = + − ĐK: 8x ≥ − ( ) ( ) 2 2 2 2 1 8 6 8 9 1 8 3 1 PT x x x x x x x ⇔ − + = + − + + ⇔ − = + − ⇔ ⇔ = BÀI 19: ( ) 3 2 2 8 3 2 3 1 3 1x x x x x x+ + = + + + ĐK: ( ) ( ) ( ) 2 8 3 1 0 0 1 2 1 3 1 0 x x x x x x x  + +  ≥ ⇔ ≥ + +   + ≥  CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 8 3 1 2 3 1 3 1 3 1 1 : 8 2 2 4 0 1 PT x x x x x x x t t PT x x t x t t t x t xt x t x x ⇔ + + = + + + + = ≥ ⇒ + = + ⇔ − + + = ⇒ = ⇒ ⇒ = BÀI 20: 1 6 2 7 3x x x   + + = +  ÷   ĐK: 0x > ( ) ( ) ( ) 2 2 2 6 2 6 7 3 3 0 :6 2 7 2 2 3 0 2 4 7 1; 9 PT x x x x x t t PT x t xt t x t x x x ⇔ + + = + + = > ⇒ + = ⇔ − − = + ⇒ ⇒ = = BÀI 21: 2 2 3 4 4 7 4 7x x x x+ − + = + ĐK: 2 4 7 3 0x x+ − > ( ) ( ) 2 2 2 2 2 2 4 7 4 4 7 4 4 8 4 4 7 2 2 2 1 PT x x x x x x x x x x ⇔ − + − − + + = − + ⇔ − + − = − ⇔ ⇔ = BÀI 22: ( ) ( ) 3 2 1 1 2 2 1 2 1 0x x x− + + − + − = ĐK: 1 2 x ≥ ( ) ( ) ( ) ( ) 3 3 2 3 2 2 1 1 2 1 2 2 1 1 2 2 1 1 2 1 1 2 0 1 2 1 1 1 : 2 0 1 2 PT x x x x x x t t PT t t t x ⇔ − + + − + − + = ⇔ − + + − + − = − + = ≥ ⇒ + − = ⇒ = ⇒ = CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ BÀI 23: ( ) ( ) 2 3 2 1 2 2 4x x x x− − + + + = ĐK: 1 2 3 x− < < ( ) ( ) 2 2 2 2 2 2 2 2 3 5 2 2 2 0 4 4 1 2 2 2 1 9 57 2 1 2 1 1 ; 6 PT x x x x x x x x x x x x x x x ⇔ − − + + + = ⇔ − + = + + − + + + − ⇔ − = + + − ⇔ ⇒ = = BÀI 24: 1 3 10 4 6 3x x x + = + + ĐK: 1 0 2 x− ≤ ≠ ( ) ( ) 2 2 2 2 2 3 10 1 4 6 3 6 3 4 6 3 4 4 4 2 2 6 3 2 2 1; 1 3 PT x x x x x x x x x x x x x x x ⇔ + = + + ⇔ + − + + = − + ⇔ + − = − ⇔ ⇔ = = + BÀI 25: 2 4 3 4 7 3x x x+ = + − ĐK: 2 3 4 7 3 0 x x x ≥ −   + − ≥  ( ) ( ) 2 2 2 3 4 3 4 4 8 4 15 17 3 2 2 2 1; 8 PT x x x x x x x x ⇔ + + + + = + + + ⇔ + + = + ⇔ ⇒ = = − BÀI 26: 2 5 2 8x x x+ = + ĐK: 0 8 5 x x ≥   − ≤ ≤ −  CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ ( ) ( ) 2 2 2 6 9 8 2 8 1 3 8 1 7 17 1; 2 PT x x x x x x x x ⇔ + + = + + + + ⇔ + = + + + ⇔ ⇒ = = − BÀI 27: ( ) ( ) 2 2 2 2 3 4 1x x x x+ + = + − ĐK: 4 1 3 x− < ≤ ( ) ( ) ( ) 2 2 1 3 4 1 2 5 3 0 1 0 : 2 3 4 2 5 3 0 1 41 13 0 ; 2 3 8 PT x x x x x x t t PT t x t x x t x x x t x ⇔ − − + − + + + = − = ≥ ⇒ − + + + + = = +  − ⇒ ⇒ ⇒ = =  = +  BÀI 28: 3 12 1 2 3 1x x x+ + − = + ĐK: 1x ≥ ( ) ( ) ( ) 2 2 3 12 1 3 2 3 2 2 3 1 4 1 12 1 9 3 1 2 3 1 1 2 1 3 3 1 1 2 1 3 3 1 1 2 1 3 3 1 1 1 PT x x x x x x x x x x x x x x x x ⇔ + + − + + = + + + ⇔ − + − + = + + + + ⇔ − + = + + ⇔ − + = + + ⇔ + + = + + ⇒ ⇒ = BÀI 29: 16 9 16 10 1x x x + = + − ĐK: 1x ≥ Cách 1: ( ) ( ) ( ) ( ) ( ) 2 2 2 9 10 1 16 1 0 1 0 : 9 10 16 0 2 9 8 0 2 1, 0 2 PT x x x x x t t PT x xt t x t x t x t Do x t x ⇔ − − − − = − = ≥ ⇒ − − = ⇔ − + = ⇒ = ≥ ≥ ⇒ ⇒ = CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ Cách 2: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 3 2 9 16 16 10 1 9 26 16 10 1 1 10 2 2 9 8 1 1 2 9 8 1 1 10 ; 1 1 0 ; 1 1 9 1 10 1 9 9 0 1 2 PT x x x x x x x x x x x x x x tm x x x x t t t t t t t t t x ⇔ − + = − ⇔ − + = − − − ⇔ − − = − + =   ⇔ − − + =   − = ≥ ⇔ + + = + ⇔ − + − = ⇒ = ⇒ ⇒ = Cách 3: ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 5 10 1 4 16 16 0 5 1 2 1 1 4 4 4 0 5 1 1 4 2 0 5 1 1 0 1 4 2 0 2 PT x x x x x x x x x x x x x x x Do x x x ⇔ − − + − + = ⇔ − − − + + − + = ⇔ − − + − =  − − =  ⇔ ≥   − =  ⇒ = BÀI 30: 2 6 2 2 4 1x x x− + + = ĐK: 1 6 2 0 2 x x x + − ≥   ≥ −  ( ) ( ) 2 2 2 2 4 2 2 4 1 4 4 2 4 1 2 2 7 ; 4 11 PT x x x x x x x x ⇔ + − + + = − + ⇔ + − = − ⇒ ⇒ = + = − CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ [...]...CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ HẾT PHẦN 3 CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ . CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ HẾT PHẦN 3 CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ . x ⇔ + + = + + + + ⇔ + = + + ⇔ ⇒ = CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ BÀI 6: ( ) ( ) 2 8 1 3 1 3 1 0x x x x− + +. = BÀI 9: 3 3 2 1 1x x x x− + = + + CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ CHUYÊN ĐỀ ĐẠI SỐ LUYỆN THI ĐẠI HỌC PHƯƠNG TRÌNH VÔ TỶ ĐK: 3 3 2 1 0 1 0 x x x x  − + ≥   + +

Ngày đăng: 02/08/2014, 04:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w