1. Trang chủ
  2. » Khoa Học Tự Nhiên

ĐỀ THI HỌC SINH GIỎI MÔN TOÁN 12 THPT CAO LÃNH 2 2009-2010 ĐỀ SỐ 3 potx

3 324 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 59,13 KB

Nội dung

Giáo viên dạy: Phan Hữu Thanh 1 SỞ GD VÀ ĐT ĐỒNG THÁP Trường THPT Cao lãnh 2 KỲ THI CHỌN HỌC SINH GIỎI LỚP 12 THPT CẤP TỈNH NĂM HỌC 2009 - 2010 ĐỀ THI MÔN: TOÁN Thời gian làm bài: 180 phút (không kể thời gian phát đề) SÁNG Ngày thi: 20 tháng 9 năm 2009 (Đề thi gồm có: 01 trang) Câu 1: (3.0 điểm) 1. Cho hàm số   2 1 x y f x x    có đồ thị là (C). Tìm trên đồ thị (C) một điểm có hoành độ lớn hơn 1 sao cho tại điểm này tiếp tuyến của (C) tạo với hai đường tiệm cận của (C) tạo thành một tam giác có chu vi nhỏ nhất. 2. Cho hàm số 1)1()1( 23  xmxmxy . Chứng tỏ rằng với mọi giá trị khác 0 của m, đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt A, B, C trong đó B, C có hoành độ phụ thuộc tham số m. Tìm giá trị của m để các tiếp tuyến tại B, C song song với nhau. Câu 2: (5.0 điểm) 2.1. Giải phương trình: 8 1 3 . 6 3cos.cos3sin.sin 33                  xtgxtg xxxx . 2.2. Giải hệ phương trình: 2 2 4 ( 1) ( 1) 2 x y x y x x y y y             2.3. Giải phương trình nghiệm nguyên sau: yx – x 2 + y – x – 1 = 0 Câu 3: (3.0 điểm) 3.1. Cho tam giác ABC có ba góc A, B, C thoả mãn:        1coscos 3 32 22 A BA B tgtg . CMR ABC đều. 3.2. Tam giác ABC có các góc A, B, C thoả mãn:          CB BA C B B A sin41sin4 2 2 sin41sin4 2 2 sin sin sin sin . CM ABC đều Câu 4: (2.0 điểm) Cho dãy số 1 2 1 2010 ( ): 1 n n n n u u u u u         . Tính giới hạn: 1 1 lim n n i i L u     . Câu 5: (2.0 điểm) 5.1. Có bao nhiêu số tự nhiên gồm 5 chữ số mà trong đó có đúng hai chữ số 1 và 3 chữ số còn lại khác nhau? 5.2. Cho n là số nguyên dương với 2n . Chứng minh rằng: 22322212 2).1( 3.2.1   nn nnnn nnCnCCC Câu 6: (2.0 điểm) Chứng minh rằng: 7212721 22  yxyx . Trong đó x, y là các số thực thoả mãn: 3 22  yxyx . Câu 7: (3.0 điểm) 7.1. Trong mặt phẳng tọa độ Oxy cho tam giác ABC với A(10;5), B(3;2), C(6;-5). Viết phương trình đường tròn ngoại tiếp tam giác ABC và tìm giao điểm của đường tròn này với đường thẳng y = 5. 7.2. Cho tứ diện OABC với OA = a, OB = b, OC = c và OA, OB, OC đôi một vuông góc với nhau. Tính diện tích tam giác ABC theo a, b, c. Gọi  ,, là góc giữa OA, OB, OC với mặt phẳng ( ABC). Chứng minh rằng: 1sinsinsin 222   ./.Hết. Giáo viên dạy: Phan Hữu Thanh 2 SỞ GD VÀ ĐT ĐỒNG THÁP Trường THPT Cao lãnh 2 KỲ THI CHỌN HỌC SINH GIỎI LỚP 12 THPT CẤP TỈNH NĂM HỌC 2009 - 2010 HƯỚNG DẪN CHẤM ĐỀ THI CHÍNH THỨC MÔN: TOÁN (Hướng dẫn chấm và biểu điểm gồm có 05 trang) Điểm Đáp án 3.0 Câu 1 1.5 1.1. Tìm điểm M trên đồ thị (C) sao cho chu vi nhỏ nhất. 0.25 Giả sử         1 ; 0 2 0 0 x x xM với x 0 > 1 là một điểm thoả mãn đề bài. A và B là giao điểm của tiếp tuyến với đồ thị với các tiệm cận đứng, tiệm cận xiên tương ứng, I( 1; 2) là giao điểm của hai tiệm cận. 0.25 Khi đó   00 0 0 2;12, 1 2 ;1 xxB x x A           . 0.25 Dựng AIBH  . Ta có 2. 2 1  BHAIS ABI (đvdt). 0.25 Mặt khác 24.sin. 2 1  IBIAAIBIBIAS ABI . 0.25 Từ đó 4 24 IBIA . Từ định lí cosin cho tam giác AIB có   1288.245cos 2 0222  IBIAIBIAIBIAAB . 0.25 Kết luận: Chu vi tam giác AIB đạt giá trị nhỏ nhất ứng với          4 4 4 2 1 22; 2 1 1M . 1.5 1.2. Tìm giá trị của m để các tiếp tuyến tại B, C song song với nhau. ĐS Vậy m = 2 thỏa yêu cầu bài toán. 5.0 Câu 2 2.0 2.1. Giải phương trình lượng giác. ĐS Nghiệm   Zkkx    6 thoả mãn các điều kiện bài toán. 2.0 2.2. Giải hệ phương trình. ĐS Tóm lại hệ Pt (I) có 4 nghiệm x 2 y 2         V x 2 y 2         V x 1 y 2       V       x 2 y 1 2.0 CÁCH KHÁC (I)                2 2 2 2 x y x y 4 x y x y xy 2             2 2 x y x y 4 xy 2             2 (x y) x y 0 xy 2             x y 0 hay x y 1 xy 2              x y 0 hay x y 1 xy 2          2 x y x 2 hay           2 x y 1 x x 2 0  x 2 y 2         V x 2 y 2         V x 1 y 2       V       x 2 y 1 1.0 2.3. Giải phương trình nghiệm nguyên sau: yx – x 2 + y – x – 1 = 0 (3). ĐS Thử lại ta được các nghiệm của (3) là: (x; y) = (- 2; - 3), (0; 1). 3.0 Câu 3 1.5 3.1. Chứng minh tam giác ABC đều. ĐS 3 A B ABC       đều 1.5 3.2. Chứng minh tam giác ABC đều. Giáo viên dạy: Phan Hữu Thanh 3 0.25 sin sinA B  0.25 Lập phương trình tương tự đối với điều kiện thứ hai của hệ, ta có sinB = sinC. 0.25 Suy ra điều cần chứng minh. 2.0 Câu 4 ĐS 1 1 1 lim 2009 n n i i u      2.0 Câu 5 1.0 5.1. Số tạo thành có 5 vị trí. Xét hai trường hợp ĐS Theo quy tắc cộng, số các số phải tìm là: 470433601344  . 1.0 5.2. Chứng minh rằng: 22322212 2).1( 3.2.1   nn nnnn nnCnCCC 0.5 Suy ra           212 111 2 212.211 nnn n k k n n k k n n k k n nnnnnkCCkkCk ( đpcm) 2.0 Câu 6: Chứng minh rằng: 7212721 22  yxyx . ĐS Theo giả thiết 1 3 0 22    yxyx nên 7212721 22  yxyx . 3.0 Câu 7 2.0 7.1. Phương trình đường tròn và giao điểm. ĐS Vậy có hai giao điểm là )5;10( 1 M và )5;6( 2 M . 1.0 7.2. Chứng minh rằng: 1sinsinsin 222   0.25 Vậy 1 111 sinsinsin 222222 222 222 222                  accbba cba cba  Chú ý: Nếu học sinh có hướng giải quyết khác mà đúng và hợp lôgích thì vẫn chấm điểm tối đa như hướng dẫn này. Sai phần trên thì không chấm phần dưới. . các số phải tìm là: 470 433 60 134 4  . 1.0 5 .2. Chứng minh rằng: 22 32 2 21 2 2) .1( 3 .2. 1   nn nnnn nnCnCCC 0.5 Suy ra           21 2 111 2 21 2. 21 1 nnn n k k n n k k n n k k n nnnnnkCCkkCk (. và )5;6( 2 M . 1.0 7 .2. Chứng minh rằng: 1sinsinsin 22 2   0 .25 Vậy 1 111 sinsinsin 22 222 2 22 2 22 2 22 2                  accbba cba cba  Chú ý: Nếu học sinh có hướng. THÁP Trường THPT Cao lãnh 2 KỲ THI CHỌN HỌC SINH GIỎI LỚP 12 THPT CẤP TỈNH NĂM HỌC 20 09 - 20 10 ĐỀ THI MÔN: TOÁN Thời gian làm bài: 180 phút (không kể thời gian phát đề) SÁNG Ngày thi: 20 tháng 9 năm 20 09 (Đề

Ngày đăng: 30/07/2014, 18:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w