1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Giáo trình -Kỹ thuật số và mạch logic-chương 3a pps

26 325 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 260,07 KB

Nội dung

Bài ging K THUT S Trang 26 Chng 3 CÁC PHN T LOGIC C BN 3.1. KHÁI NIM V MCH S 3.1.1. Mch tng t ch tng t (còn gi là mch Analog) là mch dùng  x lý các tín hiu tng t. Tín hiu ng t là tín hiu có biên  bin thiên liên tc theo thi gian. Vic x lý bao gm các vn : Chnh lu, khuch i, u ch, tách sóng… Nhc m ca mch tng t: - Kh nng chng nhiu thp (nhiu d xâm nhp). - Vic phân tích thit k mch phc tp.  khc phc nhng nhc m này ngi ta s dng mch s. 3.1.2. Mch s ch s (còn gi là mch Digital) là mch dùng  x lý tín hiu s. Tín hiu s là tín hiu có biên  bin thiên không liên tc theo thi gian hay còn gi là tín hiu gián n, c biu din i dng sóng xung vi 2 mc n th cao và thp mà tng ng vi hai mc n th này là hai c logic 1 và 0 ca mch s. Vic x lý trong mch s bao gm các vn  nh: - Lc s. - u ch s / Gii u ch s. - Mã hóa / Gii mã … u m ca mch s so vi mch tng t : -  chng nhiu cao (nhiu khó xâm nhp). - Phân tích thit k mch s tng i n gin. Vì vy, hin nay mch sc s dng khá ph bin trong tt c các lnh vc nh: o lng s, truyn hình s, u khin s. . . 3.1.3. H logic dng/âm Trng thái logic ca mch s có th biu din bng mch n n gin nh trên hình 3.1: Hot ng ca mch n này nh sau: - K M : èn Tt - K óng : èn Sáng Trng thái óng/M ca khóa K hoc trng thái Sáng/Tt ca èn  cng c c trng cho hai trng thái logic ca mch s.  K v i Hình 3.1 Chng 3. Các phn t logic c bn Trang 27 ng có th thay khóa K bng khóa n t dùng BJT nh sau (hình 3.2): Gii thích các s mch: Hình 3.2a : - Khi V i = 0 : BJT tt → V 0 = +Vcc - Khi V i > a : BJT dn bão hòa → V 0 = V ces = 0,2 (V) ≈ 0 (V). Hình 3.2b : - Khi V i = 0 : BJT tt → V 0 = -Vcc - Khi V i < -a: BJT dn bão hòa → V 0 = V ces = -V ecs = - 0,2 (V) ≈ 0 (V). y, trong c 2 s mc n th vào/ra ca khoá n t dùng BJT cng tng ng vi 2 trng thái logic ca mch s. Ngi ta phân bit ra hai h logic tùy thuc vào mc n áp: - Nu chn : V logic 1 > V logic 0 → h logic dng - Nu chn : V logic 1 < V logic 0 → h logic âm Logic dng và logic âm là nhng h logic t, ngoài ra còn có h logic m (Fuzzy Logic) hin ang c ng dng khá ph bin trong các thit bn t và các h thng u khin tng. 3.2. CNG LOGIC (LOGIC GATE) 3.2.1. Khái nim ng logic là mt trong các thành phn c bn  xây dng mch s. Cng logic c ch to trên c s các linh kin bán dn nh Diode, BJT, FET  hot ng theo bng trng thái cho trc. 3.2.2 Phân loi Có ba cách phân loi cng logic: - Phân loi cng theo chc nng. - Phân loi cng theo phng pháp ch to. - Phân loi cng theo ngõ ra. 1. Phân loi cng logic theo chc nng a) RB Rc Q +Vcc V i V 0 b) Rc Q R B - Vcc V i V 0 Hình 3.2. Biu din trng thái logic ca mch s bng khóa n t dùng BJT Bài ging K THUT S Trang 28 a. Cng M (BUFFER) ng m (BUFFER) hay còn gi là cng không o là cng có mt ngõ vào và mt ngõ ra vi ký hiu và bng trng thái hot ng nh hình v. Phng trình logic mô t hot ng ca cng m: y = x Trong ó: - x là ngõ vào có tr kháng vào Zv vô cùng ln → do ó dòng vào ca cng m rt nh. - y là ngõ ra có tr kháng ra Zra nh → cng m có kh nng cung cp dòng ngõ ra ln. Chính vì vy ngi ta s dng cng m theo 2 ý ngha sau: - Dùng  phi hp tr kháng. - Dùng  cách ly và nâng dòng cho ti.  phng din mch n có th xem cng m (cng không o) ging nh mch khuych i C chung (ng pha). b.Cng O (NOT) ng O (còn gi là cng NOT) là cng logic có 1 ngõ vào và 1 ngõ ra, vi ký hiu và bng trng thái hot ng nh hình v: Phng trình logic mô t hot ng ca cng O: y = x ng o gi chc nng nh mt cng m, nhng ngi ta gi là m o vì tín hiu ngõ ra ngc mc logic (ngc pha) vi tín hiu ngõ vào. Trong thc t ta có th ghép hai cng O ni tng vi nhau  thc hin chc nng ca cng M (cng không o) (hình 3.5): ng trng thái x y 0 0 1 1 x y Hình 3.3. Ký hiu và bng trng thái ca cng m ng trng thái: x y 0 1 1 0 x y Hình 3.4. Ký hiu và bng trng thái hot ng ca cng o x x x xx = Hình 3.5. S dng 2 cng O to ra cng M Chng 3. Các phn t logic c bn Trang 29  phng din mch n, cng O ging nh tng khuych i E chung. c. Cng VÀ (AND) ng AND là cng logic thc hin chc nng ca phép toán nhân logic các tín hiu vào. Cng AND 2 ngõ vào có 2 ngõ vào 1 ngõ ra ký hiu nh hình v: Phng trình logic mô t hot ng ca cng AND: y = x 1 .x 2 ng trng thái hot ng ca cng AND 2 ngõ vào: x 1 x 2 y 0 0 0 0 1 0 1 0 0 1 1 1  bng trng thái này có nhn xét: Ngõ ra y ch bng 1 (mc logic 1) khi c 2 ngõ vào u bng 1, ngõ ra y bng 0 (mc logic 0) khi có mt ngõ vào bt k (x 1 hoc x 2 ) bng 0. Xét trng hp tng quát cho cng AND có n ngõ vào x 1 , x 2 x n : y AND =    ==∀ =∃ )n1,(i1x1 0x0 i i y, c m ca cng AND là: ngõ ra y ch bng 1 khi tt c các ngõ vào u bng 1, ngõ ra y bng 0 khi có ít nht mt ngõ vào bng 0.  dng cng AND óng m tín hiu: Cho cng AND có hai ngõ vào x 1 và x 2 . Ta chn: - x 1 óng vai trò ngõ vào u khin (control). - x 2 óng vai trò ngõ vào d liu (data). Xét các trng hp c th sau ây: - Khi x 1 = 0: y = 0 bt chp trng thái ca x 2 , ta nói ng AND khóa li không cho d liu a vào ngõ vào x 2 qua cng AND n ngõ ra. - Khi x 1 = 1 2 xy 1y1 2 x 0y0 2 x =⇒ =⇒= = ⇒ =      Ta nói ng AND m cho d liu a vào ngõ vào x 2 qua cng AND n ngõ ra. y, có th s dng mt ngõ vào bt k ca cng AND óng vai trò tín hiu u khin cho phép hoc không cho phép lung d liu i qua cng AND.  dng cng AND  to ra cng logic khác : u s dng 2 t hp u và cui trong bng giá tr ca cng AND và ni cng AND theo s nh hình 3.8 thì có th s dng cng AND  to ra cng m. Trong thc t, có th tn dng ht các cng cha dùng trong IC  thc hin chc nng ca các ng logic khác. x 1 y x 2 Hình 3.6. Cng AND x 1 y x n Hình 3.7. Cng AND vi n ngõ vào Bài ging K THUT S Trang 30 d. Cng HOC (OR) ng OR là cng thc hin chc nng ca phép toán cng logic các tín hiu vào. Trên hình v là ký hiu ca cng OR 2 ngõ vào: Phng trình logic cng OR 2 ngõ vào: y = x 1 + x 2 ng trng thái mô t hot ng: x 1 x 2 y = x 1 +x 2 0 0 0 0 1 1 1 0 1 1 1 1 Xét trng hp tng quát i vi cng OR có n ngõ vào. Phng trình logic: y OR =    ==∀ =∃ )n1,(i0x0 1x1 i i c m ca cng OR là: Tín hiu ngõ ra ch bng 0 khi và ch khi tt c các ngõ vào u ng 0, ngc li tín hiu ngõ ra bng 1 khi ch cn có ít nht mt ngõ vào bng 1.  dng cng OR óng m tín hiu : Xét cng OR có 2 ngõ vào x 1 , x 2 . Nu chn x 1 là ngõ vào u khin (control), x 2 ngõ vào d liu (data), ta có các trng hp c th sau ây: - x 1 = 1: y = 1, y luôn bng 1 bt chp x 2 → Ta nói ng OR khóa không cho d liu i qua. x 1 x 2 y +x = 0  x 1 = x 2 = 0  y = 0 +x = 1  x 1 = x 2 = 1  y = 1  y = x Hình 3.8. S dng cng AND to ra cng m. Ký hiu Châu Âu Ký hiu theo M, Nht, Úc x 1 x 2 y x 1 x 2 y Hình 3.9a Cng OR 2 ngõ vào x 1 x n y Hình 3.9b Cng OR n ngõ vào Chng 3. Các phn t logic c bn Trang 31 - x 1 = 0: 2 xy 1y1 2 x 0y0 2 x =⇒ =⇒= = ⇒ =      → Ta nói ng OR m cho d liu t ngõ vào x 2 qua ng n ngõ ra y.  dng cng OR  thc hin chc nng cng logic khác :  dng hai t hp giá tru và cui ca bng trng thái ca cng OR và ni mch cng OR nh s hình 3.10: - x = 0, x 1 = x 2 = 0 ⇒ y = 0 - x = 1, x 1 = x 2 = 1 ⇒ y = 1 ⇒ y = x: cng OR óng vai trò nh cng m. e. Cng NAND ây là cng thc hin phép toán nhân o, v s logic cng NAND gm 1 cng AND mc i tng vi 1 cng NOT, ký hiu và bng trng thái cng NAND c cho nh hình 3.11: Phng trình logic mô t hot ng ca cng NAND 2 ngõ vào: 21 .xxy = Xét trng hp tng quát: Cng NAND có n ngõ vào. y NAND =    ==∀ =∃ )n1,(i1x0 0x1 i i y, c m ca cng NAND là: tín hiu ngõ ra ch bng 0 khi tt c các ngõ vào u bng 1, và tín hiu ngõ ra s bng 1 khi ch cn ít nht mt ngõ vào bng 0.  dng cng NAND óng m tín hiu : Xét cng NAND có hai ngõ vào. Chn x 1 là ngõ vào u khin (control), x 2 là ngõ vào d liu (data), ln lt xét các trng hp sau: - x 1 = 0: y = 1 (y luôn bng 1 bt chp giá tr ca x 2 ) ta nói ng NAND khóa. - x 1 = 1: 2 xy 0y1 2 x 1y0 2 x =⇒ =⇒= = ⇒ =      → ng NAND m cho d liu vào ngõ vào x 2 n ngõ ra ng thi o mc tín hiu ngõ vào x 2 , lúc này cng NAND óng vai trò là cng O. x 1 x 2 y x Hình 3.10. S dng cng OR làm cng m Hình 3.11. Cng NAND: Ký hiu, s logic tng ng và bng trng thái x 1 x 2 y 0 0 1 0 1 1 1 0 1 1 1 0 x 1 y x 2 x 1 x 2 y x 1 y x n Hình 3.12.Cng NAND n ngõ vào Bài ging K THUT S Trang 32 x 1 x 2 y 1 x 2 x y = 212121 . xxxxxx +=+= x 1 x 2 y Hình 3.13d. Dùng cng NAND to cng OR  dng cng NAND  to các cng logic khác: - dùng cng NAND to cng NOT: - dùng cng NAND to cng BUFFER (cng m): - dùng cng NAND to cng AND: - dùng cng NAND to cng OR: x 1 y x 2 x y = xxxxx =+= 2121 x y Hình 3.13a.Dùng cng NAND to cng NOT xxy == y x x 1 x 2 x x y Hình 3.13b.Dùng cng NAND to cng M (BUFFER) y x 1 x 2 2 1 .xx y = 2 1 2 1 .xxxx = x 1 x 2 y Hình 3.13c. S dng cng NAND to cng AND Chng 3. Các phn t logic c bn Trang 33 f. Cng NOR ng NOR, còn gi là cng Hoc-Không, là cng thc hin chc nng ca phép toán cng o logic, là cng có hai ngõ vào và mt ngõ ra có ký hiu nh hình v: Phng trình logic mô t hot ng ca cng : y = 21 xx + ng trng thái mô t hot ng ca cng NOR : x 1 x 2 y 0 0 1 0 1 0 1 0 0 1 1 0 Xét trng hp tng quát cho cng NOR có n ngõ vào. y NOR =    ==∀ =∃ )n1,(i0x1 1x0 i i y c m ca cng NOR là: Tín hiu ngõ ra ch ng 1 khi tt c các ngõ vào u bng 0, tín hiu ngõ ra s bng 0 khi có ít nht mt ngõ vào bng 1.  dng cng NOR óng m tín hiu : Xét cng NOR có 2 ngõ vào, chn x 1 là ngõ vào u khin, x 2 là ngõ vào d liu. Ta có: - x 1 = 1: y = 0 (y luôn bng 0 bt chp x 2 ), ta nói ng NOR khóa không cho d liu i qua. - x 1 = 0: 2 xy 0y1 2 x 1y0 2 x =⇒ =⇒= = ⇒ =      → ta nói ng NOR m cho d liu t ngõ vào x 2 qua ng NOR n ngõ ra ng thi o mc tín hiu ngõ vào x 2 , lúc này cng NOR óng vai trò là cng O.  dng cng NOR  thc hin chc nng cng logic khác : - Dùng cng NOR làm cng NOT: x 1 x 2 y Ký hiu theo Châu Âu Ký hiu theo M, Nht x 1 x 2 y Hình 3.14. Ký hiu cng NOR x 1 x n y Hình 3.15. Cng NOR n ngõ vào x 1 y x 2 x y = xxxxx ==+ 2121 . y x Hình 3.16a. S dng cng NOR to cng NOT Bài ging K THUT S Trang 34 - Dùng cng NOR làm cng OR : - Dùng cng NOR làm cng BUFFER : - Dùng cng NOR làm cng AND : - Dùng cng NOR làm cng NAND: y = 2121 xxxx +=+ y x 1 x 2 2 1 xx + Hình 3.16b. S dng cng NOR to cng OR x 1 x 2 y y x x 1 x 2 x y = xx = x y Hình 3.16c. S dng cng NOR to cng BUFFER y = 212121 xxxxxx ==+ x 1 x 2 y 1 x 2 x x 1 x 2 y Hình 3.16d. S dng cng NOR làm cng AND Hình 3.16e. S dng cng NOR làm cng NAND y = 212121 .1 xxxxxxy =+=+= x 1 x 2 y 1 1 x 2 x x 1 x 2 y y Chng 3. Các phn t logic c bn Trang 35 g. Cng XOR (EX - OR) ây là cng logic thc hin chc nng ca mch cng modulo 2 (cng không nh), là cng có hai ngõ vào và mt ngõ ra có ký hiu và bng trng thái nh hình v. Phng trình logic mô t hot ng ca cng XOR : y XOR = x 1 2 x + 1 x .x 2 = x 1 ⊕ x 2 ng XOR c dùng  so sánh hai tín hiu vào: - Nu hai tín hiu vào là bng nhau thì tín hiu ngõ ra bng 0 - Nu hai tín hiu vào là khác nhau thì tín hiu ngõ ra bng 1. Các tính cht ca phép toán XOR: 1. x 1 ⊕ x 2 = x 2 ⊕ x 1 2. x 1 ⊕ x 2 ⊕ x 3 = (x 1 ⊕ x 2 ) ⊕ x 3 = x 1 ⊕ (x 2 ⊕ x 3 ) 3. x 1 .(x 2 ⊕ x 3 ) = (x 1 .x 2 ) ⊕ (x 3 .x 1 ) Chng minh:  trái = x 1. (x 2 ⊕ x 3 ) = x 1 (x 2 . x 3 + x 2 .x 3 ) = x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 1 .x 3 + x 1 x 1 .x 2 = x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 1 .x 3 + x 1 x 1 .x 2 = x 1 x 2 ( x 3 +x 1 ) + x 1 x 3 ( x 2 + x 1 ) = x 1 x 2 31 xx + 21 xx x 1 x 3 = (x 1 x 2 )⊕(x 1 x 3 ) = V phi (pcm). 4. x 1 ⊕ (x 2 . x 3 ) = (x 1 ⊕x 3 ).(x 1 ⊕x 2 ) 5. x ⊕ 0 = x x ⊕ 1 = x x ⊕ x = 0 x ⊕ x = 1 h. Cng XNOR (EX – NOR) ây là cng logic thc hin chc nng ca mch cng o modulo 2 (cng không nh), là cng có hai ngõ vào và mt ngõ ra có ký hiu và bng trng thái nh trên hình 3.19. Phng trình logic mô t hot ng ca cng: y = 212121 xxxxxx ⊕=+ x 1 x 2 y 0 0 0 0 1 1 1 0 1 1 1 0 y x 1 x 2 Hình 3.17. Cng XOR M rng tính cht 5: Nu x 1 ⊕ x 2 = x 3 thì x 1 ⊕ x 3 =x 2 x 1 x 2 y 0 0 1 0 1 0 1 0 0 1 1 1 y x 1 x 2 Hình 3.19. Cng XNOR [...]... dòng vào và dòng t ngoài qua t i vào ngõ ra c a c ng i qua Q3, ng i ta nói Q3 là n i nh n dòng và dòng vào Q3 g i là dòng ngõ ra m c th p, ký hi u IOL m t thi t k m ch: ta th y r ng dòng t i It c ng chính là dòng ngõ ra m c th p IOL và là dòng t ngoài vào qua Q3, dòng này ph i n m trong gi i h n ch u ng dòng c a Q3 Q3 không b ánh th ng thì m ch s làm vi c bình th ng Dòng IOL thay i tùy thu c vào công... DS(ON)/Q3 )] ⇒ Vy VDD ⇒ y = 1 - Khi x1 = 0, x2 = 1: Q2 và Q3 d n, Q1 và Q4 t t, ta có : (R DS(OFF)/Q1 )//(R DS(ON)/Q2 ) 107 K + 1K VDD VDD = 7 Vy = 10 K + 1K + (107 K//1K) R DS(OFF)/Q1 + R DS(OFF)/Q2 + [(R DS(ON)/Q3 )//(R DS(OF)/Q4 )] ⇒ Vy ≈ VDD ⇒ y = 1 - Khi x1= 1, x2 = 0: Q3 và Q2 d n, Q1 và Q4 t t: Vy ≈ VDD ⇒ y = 1 - Khi x1 = x2 = 1: Q2 và Q1 d n, Q3 và Q4 t t, ta có: (R DS(ON)/Q1 )//(R DS(ON)/Q2 ) 1K... linh ki n: u ch có m t diode D3, gi s x1 = x2 = 0, ngõ ra y=1, lúc này D1 và D2 d n, ta có VA = Vγ/D3 = 0,7(V) N u có m t tín hi u nhi u bên ngoài ch kho ng 0,6V tác ng vào m ch s làm n áp i A t ng lên thành 1,3(V), và s làm cho diode D3 và Q d n Nh ng n u m c n i ti p thêm D4 ch có th ng n tín hi u nhi u lên n 2Vγ= 1,2(V) V y, D3 và D4 có tác d ng nâng cao kh n ng ch ng nhi u c a m ch Ngoài ra, R2 làm... thông s r t quan tr ng c n chú ý trong quá trình thi t k m ch s h TTL m o an toàn và n nh c a m ch - Các tr ng h p còn l i (x1=0,x2=1; x1=1,x2=0; x1=x2=0): Lúc này Q2 và Q3 t t còn Q4 d n → y = 1 Ta nói c ng c p dòng ra, dòng này t ngu n qua Q4 và diode D xu ng cung c p cho t i, ng i ta g i là dòng ngõ ra m c cao, ký hi u IOH n áp ngõ ra VY c tính ph thu c vào dòng t i IOH: VY = Vlogic1 = Vcc- IOHR5... thái y = 0 ho c y = 1 tùy thu c vào các tr ng thái logic c a 2 ngõ vào x1, x2 Ch ng 3 Các ph n t logic c b n Trang 49 - E=0: diode ti p giáp BE3 m , ghim áp trên c c n n c a Q1 làm cho ti p giáp BC/Q1 t t và Q2, Q3 c ng t t Lúc này diode D1 d n ghim n th c c C c a Q2: VC / Q2 = VB/ Q4 = Vγ/D1 = 0,7V ⇒ Q4 t t VCC Nên c ng không c p dòng ra và c ng không hút R4 R5 dòng vào Lúc này, ngõ ra y ch n i v... chính là “s ngõ vào logic c c i c a m t ph n t logic” i v i các ph n t logic th c hi n ch c n ng c ng logic, thì s l ng M l n nh t là 4 ngõ vào i v i các ph n t logic th c hi n ch c n ng nhân logic, thì s l ng M l n nh t là 6 ngõ vào i v i h logic CMOS thì có M nhi u h n nh ng c ng không quá 8 ngõ vào 4 ch ng nhi u n nh nhi u là tiêu chu n ánh giá nh y c a m ch logic i v i t p âm xung trên u vào n nh nhi... thu n làm cho Q nhanh chóng d n, và khi Q t thì l ng n tích s xã qua R2 nên BJT nhanh chóng t t TTL (Transistor - Transistor -Logic) VCC R1 R3 Q1 x1 D Q1 Q2 x1 x2 R2 a) a S x2 x1 b) Hình 3.23 C ng NAND h TTL m ch, b.Transistor 2 ti p giáp và s t ng x2 c ng Transistor Q1 c s d ng g m 2 ti p giáp BE1, BE2 và m t ti p giáp BC Ti p giáp BE1, BE2 a Q1 thay th cho D1, D2 và ti p giáp BC thay th cho D3 trong... cho ti p giáp BC, diode D và Q2 d n thì n th c c n n c a Q1 ph i b ng: VB = Vγ/BC + Vγ/BE1 +Vγ/BE2 = 0,6 + 0,7 + 0,6 = 1,9V Ch ng t khi các ti p giáp BE1, BE2 m thì ti p giáp BC, diode D và BJT Q2 t t → y = 1 - x1 = 0, x2 = 1 các ti p giáp BE1 m , BE2 t t thì ti p giáp BC, diode D và BJT Q2 t t → y = 1 - x1 = 1, x2 = 0 các ti p giáp BE1 t t, BE2 m thì ti p giáp BC, diode D và BJT Q2 t t → y = 1 Ch... Hình 3.26 C ng logic h ECL (Emitter Coupled Logic) Logic ghép emitter chung (ECL) là h logic có t c ho t ng r t cao và th ng c dùng trong các ng d ng òi h i t c cao T c cao t c là nh vào các transistor c thi t k ho t ng trong ch khuy ch i, vì v y chúng không bao gi r i vào tr ng thái bão hoà và do ó th i gian tích lu hoàn toàn b lo i b H ECL t c th i gian tr lan truy n nh h n 1ns trên m i c ng Nh c m... này ? 1 A C 2 3 B D 4 E Hình 3.40 ng d ng c a ngõ ra 3 tr ng thái Bài gi ng K THU T S Trang 50 - E=1: C ng m 1 và 3 m , 2 và 4 treo lên t ng tr cao: d li u i t A→C, B→D V y d li u c xu t ra - E=0: C ng m 2 và 4 m , 1 và 3 treo lên t ng tr cao: d li u i t C→A, D→B V y d li u c nh p vào 3.2.3 Các thông s k thu t c a c ng logic 1 Công su t tiêu tán Ptt t ph n t logic khi làm vi c ph i tr i qua các giai . cng có mt ngõ vào và mt ngõ ra vi ký hiu và bng trng thái hot ng nh hình v. Phng trình logic mô t hot ng ca cng m: y = x Trong ó: - x là ngõ vào có tr kháng vào Zv vô cùng. chung. c. Cng VÀ (AND) ng AND là cng logic thc hin chc nng ca phép toán nhân logic các tín hiu vào. Cng AND 2 ngõ vào có 2 ngõ vào 1 ngõ ra ký hiu nh hình v: Phng trình logic mô. c các ngõ vào u bng 1, và tín hiu ngõ ra s bng 1 khi ch cn ít nht mt ngõ vào bng 0.  dng cng NAND óng m tín hiu : Xét cng NAND có hai ngõ vào. Chn x 1 là ngõ vào u khin

Ngày đăng: 28/07/2014, 21:21

TỪ KHÓA LIÊN QUAN