1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ THI THỬ ĐẠI HỌC ĐỢT 2 MÔN TOÁN KHỐI B, D ppsx

4 277 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 214,34 KB

Nội dung

Trường THPT chuyên Lê Quý Đôn ĐỀ THI THỬ ĐẠI HỌC ĐỢT 2 NĂM HỌC 2010 MÔN TOÁN KHỐI B, D Thời gian làm bài: 180 phút Phần chung (7 điểm) Câu I (2 điểm) Cho hàm số y = 2 3 2 x x   có đồ thị là (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trên. 2) Tìm trên (C) những điểm M sao cho tiếp tuyến tại M của (C) cắt 2 tiệm cận của (C) tại A, B sao cho AB ngắn nhất. Câu II (2 điểm) 1) Giải phương trình: 2 3 4 2 3 4 sin sin sin sin cos cos cos cos x x x x x x x x        2) Giải phương trình:   2 2 2 1 5 2 4; x x x x R      Câu III (1 điểm) Tính tích phân: 2 1 ln ln 1 ln e x I x dx x x           Câu IV (1 điểm) Một hình nón đỉnh S , có tâm đường tròn đáy là . O , A B là hai điểm trên đường tròn đáy sao cho khoảng cách từ O đến đường thẳng AB bằng a , · · 0 60 ASO SAB   . Tính theo a chiều cao và diện tích xung quanh của hình nón Câu V (1 điểm) Cho hai số dương , x y thỏa mãn: 5 x y   . Tìm giá trị nhỏ nhất của biểu thức: 4 2 4 x y x y P xy     Phần riêng (3 điểm). Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) Phần A Câu VI (2 điểm) 1) Trong mặt phẳng tọa độ Oxy cho đường thẳng ( ) d có phương trình : 0 x y   và điểm (2;1) M . Tìm phương trình đường thẳng  cắt trục hoành tại A cắt đường thẳng ( ) d tại B sao cho tam giác AMB vuông cân tại M 2) Trong không gian tọa độ Oxyz , lập phương trình mặt phẳng    đi qua hai điểm   0; 1;2 , A    1;0;3 B và tiếp xúc với mặt cầu   S có phương trình: 2 2 2 ( 1) ( 2) ( 1) 2 x y z       Câu VII (1 điểm) Cho số phức z là một nghiệm của phương trình: 2 1 0 z z    . Rút gọn biểu thức 2 2 2 2 2 3 4 2 3 4 1 1 1 1 P z z z z z z z z                                 Phần B Câu VI (2 điểm) 1) Trong mặt phẳng tọa độ Oxy cho đường tròn   C có phương trình   2 2 : 4 25 x y    và điểm (1; 1) M  . Tìm phương trình đường thẳng  đi qua điểm M và cắt đường tròn   C tại 2 điểm , A B sao cho 3 MA MB  2) Trong không gian tọa độ Oxyz cho mặt phẳng   P có phương trình: 1 0 x y    . Lập phương trình mặt cầu   S đi qua ba điểm       2;1; 1 , 0;2; 2 , 1;3;0 A B C   và tiếp xúc với mặt phẳng   P Câu VII (1 điểm) Giải bất phương trình:     2 1 2 2 2 1 2 3 log 1 log 1 6 2 log 1 2 log ( 1) x x x x               Hết http://laisac.page.tl HƯỚNG DẪN CHẤM ĐỀ THI THỬ ĐẠI HỌC LẦN 2 NĂM 2010 Môn: Toán_ Khối B và DGiải: 1) y= 2 3 2 x x   (C) D= R\ {2} lim 2 : 2 x y TCN y     2 2 lim ; lim x x y y          TCĐ x = 2 y’ = 2 1 0; 2 ( 2) x x      BBT 2) Gọi M(x o ; 0 0 2 3 2 x x   ) (C) . Phương trình tiếp tuyến tại M: () y = 2 0 0 2 2 0 0 2 6 6 ( 2) ( 2) x x x x x       ( )  TCĐ = A (2; 0 0 2 2 2 x x   ) ( )  TCN = B (2x 0 –2; 2) 0 0 2 (2 4; ) 2 AB x x     uuur  AB = 2 0 2 0 4 4( 2) 2 2 ( 2) cauchy x x      AB min = 2 2  0 3 (3;3) 1 (1;1) o x M x M        II 1. 2 3 4 2 3 4 sin sin sin sin cos cos cos cos x x x x x x x x        1,0 TXĐ: D =R 2 3 4 2 3 4 sin sin sin sin cos cos cos cos x x x x x x x x          sin 0 (sin ). 2 2(sin ) sin . 0 2 2(sin ) sin . 0 x cosx x cosx x cosx x cosx x cosx x cosx                 0,25 + Với sin 0 ( ) 4 x cosx x k k Z         0,25 + Với 2 2(sin ) sin . 0 x cosx x cosx     , đặt t = sin (t 2; 2 ) x cosx        được pt : t 2 + 4t +3 = 0 1 3( ) t t loai         0.25 t = -1 2 ( ) 2 2 x m m Z x m                Vậy : ( ) 4 2 ( ) 2 2 x k k Z x m m Z x m                       0,25 Câu II.2 (1,0 đ)   2 2 2 1 5 2 4; x x x x R      -2 -1 1 2 3 4 5 -3 -2 -1 1 2 3 4 5 x y Đặt 2 2 4 2 2 4 2( 2 ) t x x t x x      ta được phương trình 2 2 1 5 2 8 0 2 t t t t        4 2 t t        + Với t =  4 Ta có 2 4 2 4 2 0 0 2 4 4 2( 2 ) 16 2 8 0 x x x x x x x x                   2 0 2 2 x x x          + Với t = 2 ta có 2 4 2 4 2 0 0 2 4 2 2( 2 ) 4 2 2 0 x x x x x x x x                  2 0 3 1 3 1 x x x             ĐS: phương trình có 2 nghiệm 2, 3 1 x x     0,25 0,25 0,25 0,25 III 2 1 ln ln 1 ln e x I x dx x x           I 1 = 1 ln 1 ln e x dx x x   , Đặt t = 1 ln x  ,… Tính được I 1 = 4 2 2 3 3  0.5   2 2 1 ln e I x dx   , lấy tích phân từng phần 2 lần được I 2 = e – 2 I = I 1 + I 2 = 2 2 2 3 3 e  0.25 0.25 Câu IV (1,0 đ) Gọi I là trung điểm của AB , nên OI a  Đặt OA R  · 0 60 SAB SAB    đều · 1 1 1 2 2 2 3 sin OA R IA AB SA ASO     Tam giác OIA vuông tại I nên 2 2 2 OA IA IO   2 2 2 6 3 2 R a R a R     2 SA a   Chiếu cao: 2 2 a SO  0,25 0,25 0,25 S O A B I Diện tích xung quanh: 2 6 2 3 2 xq a S Rl a a       0,25 Câu V (1,0 đ) Cho hai số dương , x y thỏa mãn: 5 x y   . 4 2 4 1 4 1 4 2 4 4 2 2 x y x y x y y x y P xy y x y x              Thay 5 y x   được: 4 1 5 4 1 5 4 1 5 3 2 . 2 . 4 2 2 4 2 4 2 2 y x x y y P x x y x y x y x                P bằng 3 2 khi 1; 4 x y   Vậy Min P = 3 2 Lưu ý: Có thể thay 5 y x   sau đó tìm giá trị bé nhất của hàm số 3 5 3 5 ( ) (5 ) 4 x x g x x x      0,25 0,50 0,25 Câu AVI.1 (1,0 đ) A nằm trên Ox nên   ;0 A a , B nằm trên đường thẳng 0 x y   nên ( ; ) B b b , (2;1) M ( 2; 1), ( 2; 1) MA a MB b b        uuur uuur Tam giác ABM vuông cân tại M nên: 2 2 2 ( 2)( 2) ( 1) 0 . 0 ( 2) 1 ( 2) ( 1) a b b MA MB MA MB a b b                         uuur uuur , do 2 b  không thỏa mãn vậy 2 2 2 2 2 2 1 2 , 2 1 2 , 2 2 2 1 ( 2) 1 ( 2) ( 1) 1 ( 2) ( 1) 2 b a b b a b b b b a b b b b b                                           2 2 2 2 1 2 , 2 1 2 1 4 ( 2) ( 1) . 1 0 ( 2) 3 a b a b b b a b b b b                                                Với: 2 1 a b      đường thẳng  qua AB có phương trình 2 0 x y    Với 4 3 a b      đường thẳng  qua AB có phương trình 3 12 0 x y    0,25 0,25 0,25 0,25 . http://laisac.page.tl HƯỚNG D N CHẤM ĐỀ THI THỬ ĐẠI HỌC LẦN 2 NĂM 20 10 Môn: Toán_ Khối B và DGiải: 1) y= 2 3 2 x x   (C) D= R {2} lim 2 : 2 x y TCN y     2 2 lim ; lim x x y y   . 0 ,25 Câu II .2 (1,0 đ)   2 2 2 1 5 2 4; x x x x R      -2 -1 1 2 3 4 5 -3 -2 -1 1 2 3 4 5 x y Đặt 2 2 4 2 2 4 2( 2 ) t x x t x x      ta được phương trình 2 2 1 5 2. ( )  TCĐ = A (2; 0 0 2 2 2 x x   ) ( )  TCN = B (2x 0 2; 2) 0 0 2 (2 4; ) 2 AB x x     uuur  AB = 2 0 2 0 4 4( 2) 2 2 ( 2) cauchy x x      AB min = 2 2  0 3 (3;3) 1

Ngày đăng: 28/07/2014, 18:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w