1. Trang chủ
  2. » Luận Văn - Báo Cáo

ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx

117 483 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 117
Dung lượng 2,67 MB

Nội dung

TRƯỜNG……………………… KHOA…………………… ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ĐỒ ÁN TỐT NGHIỆP SVTH: Nguyễn Ngọc Hùng Cường Đề tài : Hình học Fractal Trang 1 LỜI NÓI ĐẦU Trong những năm gần đây, toán học và khoa học tự nhiên đã bước lên một bậc thềm mới, sự mở rộng và sáng tạo trong khoa học trở thành một cuộc thử nghiệm liên ngành. Cho đến nay nó đã đưa khoa học tiến những bước rất dài. Hình học phân hình đã được đông đảo mọi người chú ý và thích thú nghiên cứu. Với một người quan sát tình cờ màu sắc của các cấu trúc phân hình cơ sở và vẽ đẹp của chúng tạo nên một sự lôi cuốn hình thức hơn nhiều lần so với các đối tượng toán học đã từng được biết đến. Hình học phân hình đã cung cấp cho các nhà khoa học một môi trường phong phú cho sự thám hiểm và mô hình hoá tính phức tạp của tự nhiên. Những nguyên nhân của sự lôi cuốn do hình học phân hình tạo ra là nó đã chỉnh sửa được khái niệm lỗi thời về thế giới thực thông qua tập hợp các bức tranh mạnh mẽ và duy nhất của nó. Những thành công to lớn trong các lĩnh vực của khoa học tự nhiên và kỹ thuật dẫn đến sự ảo tưởng về một thế giới hoạt động như một cơ chế đồng hồ vĩ đại, trong đó các quy luật của nó chỉ còn phải chờ đợi để giải mã từng bước một. Một khi các quy luật đã được biết, người ta tin rằng sự tiến hoá hoặc phát triển của các sự vật sẽ được dự đoán trước chính xác hơn nhiều, ít ra là về mặt nguyên tắc. Những bước phát triển ngoạn mục đầy lôi cuốn trong lĩnh vực kỹ thuật máy tính và sự hứa hẹn cho việc điều khiển thông tin nhiều hơn nữa của nó đã làm gia tăng hy vọng của nhiều người về máy móc hiện có và cả những máy móc ở tương lai. Nhưng ngày nay người ta đã biết chính xác dựa trên cốt lỗi của khoa học hiện đại là khả năng xem xét tính chính xác các phát triển ở tương lai như thế sẽ không bao giờ đạt được. Một kết luận có thể thu được từ các lý thuyết mới còn rất non trẻ đó là : giữa sự xác định có tính nghiêm túc với sự phát triển có tính ngẫu nhiên không những không có sự loại trừ lẫn nhau mà chúng còn cùng tồn tại như một quy luật trong tự nhiên. Hình học phân hình và lý thuyết hỗn độn xác định kết luận này. Khi xét đến sự phát triển của một tiến trình trong một khoảng thời gian, chúng ta sử dụng các thuật ngữ của lý thuyết hỗn độn, còn khi quan tâm nhiều hơn đến các dạng có cấu trúc mà một tiến trình hỗn độn để lại trên đường đi của nó, chúng ta dùng các thuật ngữ của hình học phân hình là bộ môn hình học cho phép “sắp xếp thứ tự” sự hỗn độn. Trong ngữ cảnh nào đó hình học phân hình là ngôn ngữ đầu tiên để mô tả, mô hình hoá và phân tích các dạng phức tạp đã tìm thấy trong tự nhiên. Nhưng trong khi các phần tử của ngôn ngữ truyền thống (Hình học Euclide) là các dạng hiển thị cơ bản như đoạn thẳng, đường tròn và hình cầu thì trong hình học phân hình đó là các thuật toán chỉ có thể biến đổi thành các dạng và cấu trúc nhờ máy tính. Việc nghiên cứu ngôn ngữ hình học tự nhiên này mở ra nhiều hướng mới cho khoa học cơ bản và ứng dụng. Trong đề tài này chỉ mới thực hiện nghiên cứu một phần rất nhỏ về hình học phân hình và ứng dụng của nó. Nội dung của đề tài gồm có ba chương được trình bày như sau: ĐỒ ÁN TỐT NGHIỆP SVTH: Nguyễn Ngọc Hùng Cường Đề tài : Hình học Fractal Trang 2 Chương I: Trình bày các kiến thức tổng quan về lịch sử hình học phân hình, về các kết quả của cơ sở lý thuyết. Chương II: Trình bày các kỹ thuật hình học phân hình thông qua sự khảo sát các cấu trúc Fractal cơ sở và thuật toán chi tiết để tạo nên các cấu trúc này. Chương III: Kết quả cài đặt chương trình vẽ một số đường mặt fractal và các hiệu ứng. Nhân đây, em xin chân thành cảm ơn thầy T.S Huỳnh Quyết Thắng đã tận tình hướng dẫn, chỉ dạy giúp đỡ em trong suốt thời gian thực hiện đề tài nghiên cứu này. Em cũng xin chân thành cảm ơn quý thầy cô khoa công nghệ thông tin đã tận tình giảng dạy, trang bị cho chúng em những kiến thức cần thiết trong suốt quá trình học tập, và em cũng xin gởi lòng biết ơn đến gia đình, cha, mẹ, và bạn bè đã ủng hộ, giúp đỡ và động viên em trong những lúc khó khăn. Đề tài được thực hiện trong một thời gian tương đối ngắn, nên dù đã hết sức cố gắng hoàn thành đề tài nhưng chắc chắn sẽ không thể tránh khỏi những thiếu sót nhất định. Rất mong nhận được sự thông cảm và đóng góp những ý kiến vô cùng quý báu của các Thầy Cô, bạn bè, nhằm tạo tiền đề thuận lợi cho việc phát triển đề tài trong tương lai. Sinh viên thực hiện Nguyễn Ngọc Hùng Cường. ĐỒ ÁN TỐT NGHIỆP SVTH: Nguyễn Ngọc Hùng Cường Đề tài : Hình học Fractal Trang 3 MỤC LỤC Trang LỜI NÓI ĐẦU. 1 Chương I:SỰ RA ĐỜI VÀ CÁC KẾT QUẢ CỦA HÌNH HỌC PHÂN HÌNH. 5 I.1 Sự ra đời của lý thuyết hình học phân hình 5 Tính hỗn độn của các quá trình phát triển có quy luật trong tự nhiên 5 Sự mở rộng khái niệm số chiều và độ đo trong lý thuyết hình học Eulide cổ điển 8 I.2 Sự phát triển c ủa l ý thuyết hình học phân hình 9 I.3 Các ứng dụng tổng quát của hình học phân hình 10 Ứng dụng trong vấn đề tạo ảnh trên máy tính 11 Ứng dụng trong công nghệ nén ảnh 11 Ứng dụng trong khoa học cơ bản 13 I.4 Các kiến thức cơ sở của hình học phân hình 13 I.4.1 Độ đo Fractal 13 I.4.2 Các hệ hàm lặp IFS 17 Chương II : MỘT SỐ KỸ THUẬT CÀI ĐẶT HÌNH HỌC PHÂN HÌNH. 21 II.1 Họ đường Von Kock 21 Đường hoa tuyết Von Kock-Nowflake 21 Đường Von Kock-Gosper 26 Đường Von Kock bậc hai 3-đoạn 28 Đường Von Kock bậc hai 8-đoạn 30 Đường Von Kock bậc hai 18-đoạn 32 Đường Von Kock bậc hai 32-đoạn 33 Đường Von Kock bậc hai 50-đoạn 35 Generator phức tạp 38 II.2 Họ đường Peano 44 Đường Peano nguyên thuỷ 44 Đường Peano cải tiến 45 Tam giác Cesaro 49 Tam giác Cesaro cải tiến 51 Một dạng khác của đường Cesaro 54 Tam giác Polya 56 Đường Peano-Gosper 58 Đường hoa tuyết Peano 7-đoạn 62 Đường hoa tuyết Peano 13-đoạn 66 II.3 Đường Sierpinski 70 II.4 Cây Fractal 73 Các cây thực tế 73 Biểu diễn toán học của cây 73 II.5 Phong cảnh Fractal 77 II.6 Hệ thống hàm lặp (IFS) 84 Các phép biến đổi Affine trong không gian R 2 84 ĐỒ ÁN TỐT NGHIỆP SVTH: Nguyễn Ngọc Hùng Cường Đề tài : Hình học Fractal Trang 4 IFS của các pháp biến đổi Affine trong không gian R 2 85 Giải thuật lặp ngẫu nhiên 86 II.7 Tập Mandelbrot 88 Đặt vấn đề 98 Công thức toán học 88 Thuật toán thể hiện tập Mandelbrot 89 II.8 Tập Julia 94 Đặt vấn đề 94 Công thức toán học 94 Thuật toán thể hiện tập Julia 95 II.9 Họ các đường cong Phoenix 97 Chương III : GIỚI THIỆU VỀ NGÔN NGỮ CÀI ĐẶT VÀ KẾT QUẢ CHƯƠNG TRÌNH. 100 III.1 Giới thiệu về ngôn ngữ cài đặt 100 III.2 Kết quả chương trình 111 TÀI LIỆU THAM KHẢO 116 ĐỒ ÁN TỐT NGHIỆP SVTH: Nguyễn Ngọc Hùng Cường Đề tài : Hình học Fractal Trang 5 CHƯƠNG I: SỰ RA ĐỜI VÀ CÁC KẾT QUẢ CỦA HÌNH HỌC PHÂN HÌNH. I.1 SỰ RA ĐỜI CỦA LÝ THUYẾT HÌNH HỌC PHÂN HÌNH: Sự ra đời của lý thuyết hình học phân hình là kết quả của nhiều thập kỷ nổ lực giải quyết các vấn đề nan giải trong nhiều ngành khoa học chính xác, đặc biệt là vật lý và toán học. Một cách cụ thể, lý thuyết hình học phân hình được xây dựng dựa trên 2 vấn đề lớn được quan tâm ở những thập niên đầu thế kỷ 20. Các vấn đề đó bao gồm:  Tính hỗn độn của các quá trình phát triển có quy lực trong tự nhiên.  Sự mở rộng khái niệm số chiều và độ đo trong lý thuyết hình học Euclide cổ điển. □ TÍNH HỖN ĐỘN CỦA CÁC QUÁ TRÌNH PHÁT TRIỂN CÓ QUY LUẬT TRONG TỰ NHIÊN: Các công thức lặp có dạng: X n+1 =f(X n ) thường được sử dụng trong các ngành khoa học chính xác để mô tả các quá trình lặp đi lặp lại có tính xác định. Các quá trình được xác định bởi công thức trên, trong đó f thể hiện mối liên hệ phi tuyến giữa hai trạng thái nối tiếp nhau X n và X n+1 , được quan tâm đặc biệt. Các khảo sát trong những thập niên gần đây đã phát hiện ra các cư xử kỳ dị của các tiến trình lặp như vậy. Khảo sát chi tiết đầu tiên được nhà khí tượng học Edward N. Lorenz tiến hành vào năm 1961 khi nghiên cứu hệ toán học mô phỏng dự báo thời tiết. Về mặt lý thuyết, hệ này cho ra các kết quả dự đoán chính xác về thời tiết trong một khoảng thời gian dài. Tuy nhiên, theo Lorenz quan sát, khi bắt đầu tính toán lại dựa vào dữ liệu cho bởi hệ tại một thời điểm tiếp sau đó không giống với các kết quả dự đoán ban đầu. Hơn nữa sai số tính toán sẽ tăng lên nhanh chóng theo thời gian. Điều này dẫn đến kết luận là nếu tiến trình dự đoán lại từ một thời điểm nào đó trong tiến trình dự báo, khoảng thời gian để các kết quả dự báo tiếp theo vẫn còn chính xác sẽ bị thu hẹp lại tức là không thể dự báo chính xác về thời tiết trong một khoảng thời gian khá lớn. Vấn đề được Lorenz tìm thấy ở đây ngày nay được gọi là sự hiện diện của tính chất hỗn độn trong các tiến trình lặp xác định. Tiếp theo sau phát hiện của Lorenz, vào năm 1976 Robert May trong bài viết với tựa đề “Các mô hình toán học đơn giản với các hệ động lực phức tạp” đã đề cập đến một vấn đề tương tự. Đó là sự hỗn độn của quá trình phát triển dân số trong tự nhiên, vốn được xem là đã được xác định rất rõ ràng và chi tiết nhờ mô hình dân số Verhulst xây dựng dưới đây. Nếu ký hiệu: ĐỒ ÁN TỐT NGHIỆP SVTH: Nguyễn Ngọc Hùng Cường Đề tài : Hình học Fractal Trang 6 - R là tốc độ gia tăng dân số mỗi năm. - P o là lượng dân số khởi điểm (của một quốc gia, một thành phố,…). - P n là lượng dân số có được sau n năm phát triển. Ta có quan hệ sau: Để ý là nếu dân số phát triển đều, tức là R không đổi từ năm này sang năm khác, từ (1) ta sẽ có: P n+1 = f(P n ) = (1+R)P n Do đó sau n năm, lượng dân số khảo sát sẽ là: P n = (1+R) n .P o Công thức này chỉ ra sự gia tăng dân số theo hàm mũ là một điều không thực tế. Vì vậy Verhulst đề nghị R thay đổi cùng với lượng dân số được khảo sát. Một cách cụ thể, Verhust cho R tỉ lệ với tốc độ phát triển dân số theo môi trường (P-P n ) / N. Trong đó N là lượng dân số tối đa có thể có ứng với điều kiện môi trường cho trước. Như vậy có thể biểu diễn R dưới dạng: Với r là hệ số tỷ lệ gọi là tham số phát triển theo môi trường. Từ (1) và (2) suy ra: Do đó: Đặt: Pn+1 - Pn R = , n > 0 (1) P n N - P n R = r (2) N P n+1 - P n N - P n = r P n N P n+1 - P n N P n = r P n N N P k P k = ta có: N P n+1 - P n = r(1 - P n ) P n ĐỒ ÁN TỐT NGHIỆP SVTH: Nguyễn Ngọc Hùng Cường Đề tài : Hình học Fractal Trang 7 Suy ra: P n+1 = P n + rP n (1 – P n ) Phương trình này được gọi là phương trình dân số Verhust. Rõ ràng phương trình được xác định rất đơn giản. Do đó, kể từ khi được đưa ra người ta áp dụng mà không nghi ngờ gì về tính ổn định của nó. Tuy nhiên khi May khảo sát phương trình này thì với r thay đổi trong phạm vi khá lớn, ông đã khám phá ra sự bất ổn định về tỉ lệ phát triển dân số theo môi trường P k . Các kết quả quan sát chi tiết cho thấy khi số lần lặp n trở nên khá lớn ta có các trường hợp sau: - Với 0 < r < 2: Dãy (P n ) tiến đến 1, tức là sự phát triển dân số đạt mức tối đa. - Với 2 < r < 2,449: Dãy (P n ) dao động tuần hoàn giữa hai giá trị, tức là sự phát triển dân số biến động giữa hai mức xác định. Hình vẽ (I.1) minh hoạ cho trường hợp r = 2.3 và P o Dân số: Thời gian Hình vẽ I.1 với r = 2.3 và P 0 = 0.01 - Với 2,449 < r < 2,570: Dãy (P n ) dao động ổn định với các giá trị được lặp lại theo chu kỳ lần lượt được nhân đôi khi giá trị r chạy từ 2,449 đến 2,570. Hình vẽ (I.2) minh hoạ trường hợp r = 2,5 và sự dao động ở đây có chu kỳ 4. Dân số: Thời gian Hình vẽ I.2 với r = 2.5 - Với r > 2.570: Dãy (P n ) không còn tuần hoàn nữa mà trở nên hỗn độn, theo nghĩa các giá trị của dãy được chọn một cách hoàn toàn xác định nhưng không có thể dự đoán chính xác. Hình vẽ (I.3) minh hoạ trường hợp r = 3.0 và P o = 0.1 ĐỒ ÁN TỐT NGHIỆP SVTH: Nguyễn Ngọc Hùng Cường Đề tài : Hình học Fractal Trang 8 Dân số Thời gian Hình vẽ I.3 với r = 3.0 và P o = 0.1 Một kết quả lý thuyết cũng đã được chứng minh bởi Jame York và Tiên Yien Li trong bài viết ”Các chu kỳ 3 chứa đựng sự hỗn độn” vào tháng 12/1975. York và Li đã chỉ ra rằng mọi hàm số được xác định tương tự như phương trình dân số có một chu kỳ tuần hoàn 3 thì cũng có chu kỳ tuần hoàn n, với n là số tự nhiên khác 0 và 1. Điều này dẫn đến sự kiện là vô số các tập giá trị tuần hoàn khác nhau được sản sinh bởi loại phương trình này. Vào năm 1976, Mitchell Feigenbaum đã nghiên cứu phương trình này một cách độc lập với May và York. Feigenbaum xét phương trình dân số ở dạng đơn giản: y = x(1- x) và thể hiện nó trên sơ đồ phân nhánh. Nếu gọi r n là giá trị tham số phát triển theo môi trường của mô hình Verhulst tại lần rẻ nhánh thứ n (là lúc ứng với r n đó, chu kỳ 2 n trở nên không ổn định nữa và chu kỳ 2 n+1 đạt được sự ổn định), thì tỷ số của các khoảng liên tiếp  n xác định bởi: Sẽ tiến về giá trị  = 4.669 khi n. Tính chất này cũng được tìm thấy trong các tiến trình có chu kỳ lần lượt được nhân đôi và khác với tiến trình Verhulst. Do đó giá trị này ngày nay được gọi là hằng số phổ dụng Feigenbaum (trong lý thuyết hỗn độn). □ SỰ MỞ RỘNG KHÁI NIỆM SỐ CHIỀU VÀ ĐỘ ĐO TRONG LÝ THUYẾT HÌNH HỌC EULIDE CỔ ĐIỂN: Vào các năm 1890 & 1891, trong khi tìm kiếm các đặc trưng bất biến của các đối tượng hình học qua các phép biến đổi đồng phôi trong lý thuyết topo, các nhà toán học Peano & Hilbert đã phát minh ra các đường cong có tính chất rất đặc biệt. Đó là các đường cong không tự cắt theo một quy luật được chỉ ra bởi Peano và Hilbert, chúng lấp đầy mọi miền hữu hạn của mặt phẳng. Hình học Euclide cổ điển quan niệm các đường cong như vậy vẫn chỉ là r n - r n-1  n = r n+1 - r n ĐỒ ÁN TỐT NGHIỆP SVTH: Nguyễn Ngọc Hùng Cường Đề tài : Hình học Fractal Trang 9 các đối tượng một chiều như các đường thẳng. Tuy nhiên trực quan cho thấy cách nhìn như vậy về số chiều là rất gò bó. Do đó người ta bắt đầu nghĩ đến một sự phân lớp mới, trong đó các đường có số chiều bằng 1 được đại diện bởi đường thẳng, các đối tượng hai chiều được đại diện bởi mặt phẳng, còn các đường cong lấp đầy mặt phẳng đại diện cho các đối tượng có số chiều giữa 1 và 2. Ý tưởng cách mạng này đã dẫn đến việc hình thành và giải quyết bài toán số chiều hữu tỷ gây ra nhiều tranh luận toán học trong các thập kỷ gần đây. Tiếp sau đó, vào năm 1904 nhà toán học Thụy Điển Helge Koch đã đưa ra một loại đường cong khác với những đường cong của Peano và Hilbert. Các đường cong Von Koch không lấp đầy mặt phẳng nhưng lại có độ dài thay đổi một cách vô hạn mặc dù chúng được chứa trong một miền hữu hạn. Những đường cong như vậy có rất nhiều trong tự nhiên, ví dụ như các đường bờ biển, đường biên của một bông hoa tuyết, các đám mây, vv… Tất vả các đường cong này đều một tính chất đặc trưng là đồng dạng. Nó được biểu hiện bởi sự giống nhau giữa một phần rất nhỏ của đường cong được phóng lớn với một phần khác lớn hơn của cùng một đường cong đó. Tính chất này giữ một vị trí quan trọng trong việc hình thành nên các dạng cấu trúc vô cùng phức tạp của tự nhiên, nhưng vào thời Von Koch lại được hiểu biết rất sơ lược. Chỉ với sự giúp đỡ của máy tính điện tử, bản chất của tính đồng dạng mới được nghiên cứu đầy đủ và chi tiết trong tác phẩm “Hình học phân hình trong tự nhiên” của Benoit B. Mandelbrot xuất bản năm 1982. Trong tác phẩm của mình, Mandelbrot đã phân rã các dạng cấu trúc phức tạp của tự nhiên thành các thành phần cơ bản gọi là fractal. Các fractal này chứa đựng các hình dáng tự đồng dạng với nhiều kích thước khác nhau. Mandelbrot đã tạo nên những bức tranh fractal trừu tượng đầu tiên và nhận thấy rằng đằng sau các đối tượng tự nhiên như các đám mây, các dãy núi, các khu rừng, vv… là các cấu trúc toán học tương tự nhau. Chúng có khuynh hướng hài hoà về màu sắc và cân đối về hình thể. Ngoài ra Mandelbrot cũng thiết lập cách xác định số chiều và độ dài của các dạng fractal cơ sở. Chính với định nghĩa về số chiều này, bài toán số chiều không nguyên mới được giải quyết một cách hoàn chỉnh. Có thể nói công trình của Benoit B.Mandelbrot đã chính thức khai sinh lý thuyết hình học phân hình sau hơn nửa thế kỷ nghiên cứu liên tục. I.2 SỰ PHÁT TRIỂN CỦA LÝ THUYỂT HÌNH HỌC PHÂN HÌNH: Kể từ khi ra đời một cách chính thức vào năm 1982 cho đến nay, lý thuyết hình học phân hình học phân hình đã phát triển một cách nhanh chóng. Sau khi đặt nền móng cho lý thuyết phân hình, Mandelbrot cùng với các nhà toán học khác như A. Douady và J.Hubbard đã phát triển lý thuyết về các mặt fractal. Các kết quả đạt được chủ yếu tập trung ở các tính chất của các cấu trúc fractal cơ sở như tập Mandelbrot và tập Julia. Ngoài ra các nghiên cứu cũng cố gắng tìm kiếm mối liên hệ giữa các cấu trúc này, ví dụ như mối liên hệ giữa tập Mandelbrot và Julia. [...]... sự mơ tả các hình ảnh của máy PC với sự phong phú về chi tiết và màu sắc với sự tốn kém rất lớn về thời gian và cơng sức Gánh nặng đó hiện nay đã được giảm nhẹ đáng kể nhờ các mơ tả đơn giản nhưng đầy đủ của lý thuyết fractal về các đối tượng tự nhiên Với hình học phân hình khoa học máy tính có trong tay một cơng cụ mơ tả tự nhiên vơ cùng mạnh mẽ Đề tài : Hình học Fractal Trang 10 ĐỒ ÁN TỐT NGHIỆP SVTH:... KHOA HỌC CƠ BẢN: Có thể nói cùng với lý thuyết topo, hình học phân hình đã cung cấp cho khoa học một cơng cụ khảo sát tự nhiên vơ cùng mạnh mẽ như đã trình bày trong phần I.1, vật lý học và tốn học thế kỷ XX đối đầu với sự xuất hiện của tính hỗn độn trong nhiều q trình có tính quy luật của tự nhiên Từ sự đối đầu đó, trong những thập niên tiếp theo đã hình thành một lý thuyết mới chun nghiên cứu về các... Hình : Đường Gosper ở mức 3 □ ĐƯỜNG VON KOCK BẬC HAI 3-ĐOẠN: Một vài đường cong kế tiếp được gọi là bậc hai (quadric) vì initiator là một hình vng (Tuy nhiên điều này khơng có gì bí mật về initiator là hình vng, nó có thể là một đa giác) Hơn nữa chúng ta sẽ tạo ra các generator trên lưới các hình vng Đối với đường cong đầu tiên này, một generator của 3đoạn sẽ được sử dụng Hình sau sẽ cho chúng ta một. .. tính tốn và thể hiện các quan sát một cách trực quan, do đó sự phát triển của lý thuyết này bị hạn chế Đề tài : Hình học Fractal Trang 12 ĐỒ ÁN TỐT NGHIỆP SVTH: Nguyễn Ngọc Hùng Cường rất nhiều Chỉ gần đây với sự ra đời của lý thuyết fractal và sự hỗ trợ đắt lực của máy tình, các nghiên cứu chi tiết về sự hỗn độn mới được đẩy mạnh Vai trò của hình học phân hình trong lĩnh vực này thể hiện một cách... tài : Hình học Fractal Trang 15 ĐỒ ÁN TỐT NGHIỆP SVTH: Nguyễn Ngọc Hùng Cường □ SỐ CHIỀU BOX-COUNTING: Số chiều xác định theo định nghĩa này được áp dụng cho các đường cong fractal khơng thể xác định số chiều theo 2 cách vừa trình bày Cách tính số chiều này có thể áp dụng cho mọi cấu trúc trong mặt phẳng và mở rộng cho cấu trúc trong khơng gian Định nghĩa: Xét một cấu trúc fractal bất kỳ Lần lượt đặt. .. yNn = f (xNn ) ] là một dãy con của [ yn ] hội tụ về y’  w(S) Vậy w(S) compact Bổ đề được chứng minh Bổ đề 3 sau đây chỉ ra cách tạo một ánh xạ co trên khơng gian metric (H(X), h) dựa trên một ánh xạ co trên (X,d) Bổ đề 3: Giả sử w: X  X là một ánh xạ có khơng gian metric (X,d) với hệ số co s Khi đó ánh xạ w: H(X)  H(X) được xác định bởi: Đề tài : Hình học Fractal Trang 18 ĐỒ ÁN TỐT NGHIỆP SVTH: Nguyễn... H(X) với : N A  W(A)   w n (A) n1 n (B) với bất kỳ B  H(X) và được cho trước bởi A  lim W n Định nghĩa 2: Điểm bất động A  H(X) mơ tả trong định lý IFS được gọi là hấp tử của IFS đó Đề tài : Hình học Fractal Trang 20 ĐỒ ÁN TỐT NGHIỆP SVTH: Nguyễn Ngọc Hùng Cường CHƯƠNG II: MỘT SỐ KỸ THUẬT CÀI ĐẶT HÌNH HỌC PHÂN HÌNH II.1 HỌ ĐƯỜNG VONKOCK: Trong phần này chúng ta sẽ cùng nhau thảo luận các... kết quả là các hình tự đồng dạng hồn tồn Các hình này có số chiều tự đồng dạng, số chiều fractal và số chiều Hausdorff-Besicovitch bằng nhau Số chiều được tính theo cơng thức sau: log( N ) D 1 log  R Trong đó: N: Là số đoạn thẳng R: Là số chiều dài của mỗi đoạn Chúng ta bắt đầu bằng một initiator, nó có thể là một đoạn thẳng hay một đa giác Mỗi cạnh của initiator được thay thế bởi một generator,... nên số chiều fractal của đường Gosper là: D log 3  1.1291 log 7 Hình sau là mức đầu tiên của đường Gosper Đoạn mã đối với đường Gosper giống như đoạn mã của đường hoa tuyết, trong đó: NumLines = 3 Mảng Angle có giá trị sau: {19.1, -60.0 } Ngồi ra, đường Gosper có các mức khác nhau thì tương ứng với các hình dạng khác nhau Hình sau là mức 3 của đường Gosper Đề tài : Hình học Fractal Trang 27 ĐỒ ÁN TỐT... thuyết IFS mở rộng hình học cổ điển với các yếu tố cơ sở mới là vơ số thuật tốn để vẽ nên các fractal của tự nhiên Ngồi ra các cơng trình có tính chất lý thuyết, hình học phân hình còn được bổ sung bởi nhiều nghiên cứu ứng dụng lý thuyết vào khoa học máy tính và các khoa học chính xác khác, ví dụ dựa trên lý thuyết IFS, Barnsley đã phát triển lý thuyết biến đổi phân hình áp dụng vào cơng nghệ nén ảnh . KHOA…………………… ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ĐỒ ÁN TỐT NGHIỆP SVTH: Nguyễn. thức cơ sở của hình học phân hình 13 I.4.1 Độ đo Fractal 13 I.4.2 Các hệ hàm lặp IFS 17 Chương II : MỘT SỐ KỸ THUẬT CÀI ĐẶT HÌNH HỌC PHÂN HÌNH. 21 II.1 Họ đường Von Kock 21 Đường hoa tuyết. ĐỒ ÁN TỐT NGHIỆP SVTH: Nguyễn Ngọc Hùng Cường Đề tài : Hình học Fractal Trang 5 CHƯƠNG I: SỰ RA ĐỜI VÀ CÁC KẾT QUẢ CỦA HÌNH HỌC PHÂN HÌNH. I.1 SỰ RA ĐỜI CỦA LÝ THUYẾT HÌNH HỌC PHÂN HÌNH:

Ngày đăng: 28/07/2014, 00:21

HÌNH ẢNH LIÊN QUAN

Hình sau là mức đầu tiên của đường Gosper. - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau là mức đầu tiên của đường Gosper (Trang 28)
Hình sau sẽ cho chúng ta một generator: - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau sẽ cho chúng ta một generator: (Trang 29)
Hình sau là mức đầu tiên của đường cong Von Kock bậc hai 3-đoạn: - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau là mức đầu tiên của đường cong Von Kock bậc hai 3-đoạn: (Trang 30)
Hình sau là mức 4 của đường Von Kock 3-đoạn. - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau là mức 4 của đường Von Kock 3-đoạn (Trang 31)
Hình sau là mức 5 của đường Von Kock 8-đoạn. - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau là mức 5 của đường Von Kock 8-đoạn (Trang 32)
Hình sau là mức đầu tiên của đường cong Vonkock bậc hai 18 đoạn: - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau là mức đầu tiên của đường cong Vonkock bậc hai 18 đoạn: (Trang 33)
Hình sau là mức 5 của đường Von Kock 18-đoạn: - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau là mức 5 của đường Von Kock 18-đoạn: (Trang 34)
Hình sau là generator của đường Von Kock bậc hai 32-đoạn: - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau là generator của đường Von Kock bậc hai 32-đoạn: (Trang 34)
Hình sau là mức đầu tiên của đường cong: - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau là mức đầu tiên của đường cong: (Trang 35)
Hình sau là mức 4 của đường VonKock 32-đoạn: - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau là mức 4 của đường VonKock 32-đoạn: (Trang 36)
Hình sau là generator của đường Von Kock bậc hai 50-đoạn: - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau là generator của đường Von Kock bậc hai 50-đoạn: (Trang 36)
Hình sau là mức đầu tiên của đường cong Von Kock bậc hai 50 đoạn: - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau là mức đầu tiên của đường cong Von Kock bậc hai 50 đoạn: (Trang 38)
Hình sau là mức 3 của đường Von Kock 50-đoạn: - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau là mức 3 của đường Von Kock 50-đoạn: (Trang 39)
Hình sau là mức đầu tiên của đường cong (ở đây initiator là một đoạn  thẳng). - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau là mức đầu tiên của đường cong (ở đây initiator là một đoạn thẳng) (Trang 41)
Hình : Đường Complex-Von Kock-Generator ở mức 5. - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
nh Đường Complex-Von Kock-Generator ở mức 5 (Trang 45)
Hình sau cho chúng ta thấy generator của đường Peano nguyên thuỷ: - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau cho chúng ta thấy generator của đường Peano nguyên thuỷ: (Trang 45)
Hình sau là mức thứ hai của đường cong Peano cải tiến: - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau là mức thứ hai của đường cong Peano cải tiến: (Trang 47)
Hình sau cho chúng ta thấy mức thứ tư của tam giác Cesaro cải tiến: - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau cho chúng ta thấy mức thứ tư của tam giác Cesaro cải tiến: (Trang 53)
Hình sau minh hoạ một generator (initiator là đoạn thẳng nằm ngang ). - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau minh hoạ một generator (initiator là đoạn thẳng nằm ngang ) (Trang 53)
Hình sau cho chúng ta thấy hai mức đầu tiên của tam giác Polya: - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau cho chúng ta thấy hai mức đầu tiên của tam giác Polya: (Trang 57)
Hình  sau  là  generator  của  đường  Peano_Gosper  và  một  lưới  gồm  các  tam giác đều liên kết với nó (initiator là một đoạn thẳng nằm ngang): - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
nh sau là generator của đường Peano_Gosper và một lưới gồm các tam giác đều liên kết với nó (initiator là một đoạn thẳng nằm ngang): (Trang 59)
Hình sau cho chúng ta thấy mức thứ hai của đường này: - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình sau cho chúng ta thấy mức thứ hai của đường này: (Trang 60)
Hình  sau  là  generator  của  đường  hoa  tuyết  Peano  7-đoạn  (initiator  là  một đoạn nằm ngang): - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
nh sau là generator của đường hoa tuyết Peano 7-đoạn (initiator là một đoạn nằm ngang): (Trang 63)
Hình  sau  thể  hiện  generator  của  đường  hoa  tuyết  Peano  13-đoạn  (initiator là một đoạn nằm ngang): - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
nh sau thể hiện generator của đường hoa tuyết Peano 13-đoạn (initiator là một đoạn nằm ngang): (Trang 67)
Hình  sau  cho  chúng  thấy  mức  thứ  ba  của  đường  hoa  tuyết  Peano  13- 13-đoạn này: - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
nh sau cho chúng thấy mức thứ ba của đường hoa tuyết Peano 13- 13-đoạn này: (Trang 67)
Hình 11.2 thể hiện tập Mandelbrot cổ điển với các giá trị khảo sát nằm  trong  vùng  giới  hạn  bởi  X min   =  -2.0,  Y min   =  -1.2,  X max  =  1.2,  Y max   =  1.2  và  Max_Iterations = 512, Max_Colors = 1.6 - ĐỒ ÁN TỐT NGHIỆP: " Nghiên cứu về hình học practal. Viết chương trình cài đặt một số đường và mặt practal " ppsx
Hình 11.2 thể hiện tập Mandelbrot cổ điển với các giá trị khảo sát nằm trong vùng giới hạn bởi X min = -2.0, Y min = -1.2, X max = 1.2, Y max = 1.2 và Max_Iterations = 512, Max_Colors = 1.6 (Trang 95)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w