Mạch điện tử : MẠCH DAO ÐỘNG (Oscillators) part 2 pptx

5 368 4
Mạch điện tử : MẠCH DAO ÐỘNG (Oscillators) part 2 pptx

Đang tải... (xem toàn văn)

Thông tin tài liệu

- Tần số dao động được xác định bởi: c. Mạch dao động dịch pha dùng FET: - Do FET có tổng trở vào rất lớn nên cũng thích hợp cho loại mạch này. - Tổng trở ra của mạch khuếch đại khi không có hồi tiếp: R0 = RD||rD phải thiết kế sao cho R 0 không đáng kể so với tổng trở vào của hệ thống hồi tiếp để tần số dao động vẫn thỏa mãn công thức: Nếu điều kiện trên không thỏa mãn thì ngoài R và C, tần số dao động sẽ còn tùy thuộc vào R 0 (xem mạch dùng BJT). - Ðộ lợi vòng hở của mạch: A v = -g m (R D ||r D )  29 nên phải chọn Fet có g m , r D lớn và phải thiết kế với R D tương đối lớn. d. Mạch dùng BJT: - Mạch khuếch đại là cực phát chung có hoặc không có tụ phân dòng cực phát. - Ðiều kiện tổng trở vào của mạch không thỏa mãn nên điện trở R cuối cùng của hệ thống hồi tiếp là: R = R’ + (R 1 ||R 2 ||Z b ) (10.8) Với Z b = r e nếu có C E và Z b = (r e + R E ) nếu không có C E . - Tổng trở của mạch khi chưa có hồi tiếp R 0  R C không nhỏ lắm nên làm ảnh hưởng đến tần số dao động. Mạch phân giải được vẽ lại -Áp dụng cách phân giải như phần trước ta tìm được tần số dao động: - Thường người ta thêm một tầng khuếch đại đệm cực thu chung để tải không ảnh hưởng đến mạch dao động. 10.1.2 Mạch dao động cầu Wien: (wien bridge oscillators) - Cũng là một dạng dao động dịch pha. Mạch thường dùng op-amp ráp theo kiểu khuếch đại không đảo nên hệ thống hồi tiếp phải có độ lệch pha 0 0 . Mạch căn bản như hình 10.8a và hệ thống hồi tiếp như hình 10.8b Tại tần số dao động  0 : Trong mạch cơ bản hình 10.8a, ta chú ý: - Nếu độ lợi vòng hở A v < 3 mạch không dao động - Nếu độ lợi vòng hở A v >> 3 thì tín hiệu dao động nhận được bị biến dạng (đỉnh dương và đỉnh âm của hình sin bị cắt). - Cách tốt nhất là khi khởi động, mạch tạo A v > 3 (để dễ dao động) xong giảm dần xuống gần bằng 3 để có thể giảm thiểu tối đa việc biến dạng. Người ta có nhiều cách, hình 10.9 là một ví dụ dùng diode hoạt động trong vùng phi tuyến để thay đổi độ lợi điện thế của mạch. - Khi biên độ của tín hiệu ra còn nhỏ, D 1 , D 2 không dẫn điện và không ảnh hưởng đến mạch. Ðộ lợi điện thế của mạch lúc này là: - Ðộ lợi này đủ để mạch dao động. Khi điện thế đỉnh của tín hiệu ngang qua R 4 khoảng 0.5 volt thì các diode sẽ bắt đầu dẫn điện. D 1 dẫn khi ngõ ra dương và D 2 dẫn khi ngõ ra âm. Khi dẫn mạnh nhất, điện thế ngang diode xấp xỉ 0.7 volt. Ðể ý là hai diode chỉ dẫn điện ở phần đỉnh của tín hiệu ra và nó hoạt động như một điện trở thay đổi nối tiếp với R 5 và song song với R 4 làm giảm độ lợi của mạch, sao cho độ lợi lúc này xuống gần bằng 3 và có tác dụng làm giảm thiểu sự biến dạng. Việc phân giải hoạt động của diode trong vùng phi tuyến tương đối phức tạp, thực tế người ta mắc thêm một điện trở R 5 (như hình vẽ) để điều chỉnh độ lợi của mạch sao cho độ biến dạng đạt được ở mức thấp nhất. - Ngoài ra cũng nên để ý là độ biến dạng sẽ càng nhỏ khi biên độ tín hiệu ở ngõ ra càng thấp. Thực tế, để lấy tín hiệu ra của mạch dao động người ta có thể mắc thêm một mạch không đảo song song với R 1 C 1 như hình vẽ thay vì mắc nối tiếp ở ngõ ra của mạch dao động. Do tổng trở vào lớn, mạch này gần như không ảnh hưởng đến hệ thống hồi tiếp nhưng tín hiệu lấy ra có độ biến dạng được giảm thiểu đáng kể do tác động lọc của R 1 C 1 . - Một phương pháp khác để giảm biến dạng và tăng độ ổn định biên độ tín hiệu dao động, người ta sử dụng JFET trong mạch hồi tiếp âm như một điện trở thay đổi. Lúc này JFET được phân cực trong vùng điện trở (ohmic region-vùng ID chưa bảo hòa) và tác động như một điện trở thay đổi theo điện thế (VVR-voltage variable resistor). - Ta xem mạch hình 10.10 - D 1 , D 2 được dùng như mạch chỉnh lưu một bán kỳ (âm); C 3 là tụ lọc. Mạch này tạo điện thế âm phân cực cho JFET. - Khi cấp điện, mạch bắt đầu dao động, biên độ tín hiêu ra khi chưa đủ làm cho D 1 và D 2 dẫn điện thì V GS = 0 tức JFET dẫn mạnh nhất và r ds nhỏ nhất và độ lợi điện thế của op-amp đạt giá trị tối đa. - Sự dao động tiếp tục, khi điện thế đỉnh ngõ ra âm đạt trị số xấp xỉ -(V z + 0.7v) thì D 1 và D 2 sẽ dẫn điện và V GS bắt đầu âm. - Sự gia tăng của tín hiệu điện thế đỉnh ngõ ra sẽ làm cho V GS càng âm tức r ds tăng. Khi r ds tăng, độ lợi A v của mạch giảm để cuối cùng đạt được độ lợi vòng bằng đơn vị khi mạch hoạt động ổn định. - Thực tế, để mạch hoạt động ở điều kiện tốt nhất, người ta dùng biến trở R 4 để có thể chỉnh đạt độ biến dạng thấp nhất. Vấn đề điều chỉnh tần số: - Trong mạch dao động cầu Wien, tần số và hệ số hồi tiếp được xác định bằng công thức: - Như vậy để thay đổi tần số dao động, ta có thể thay đổi một trong các thành phần trên. Tuy nhiên, để ý là khi có hệ số hồi tiếp  cùng thay đổi theo và độ lợi vòng cũng thay đổi, điều này có thể làm cho mạch mất dao động hoặc tín hiệu dao động bị biến dạng. - Ðể khắc phục điều này, người ta thường thay đổi R 1 , R 2 hoặc C 1 , C 2 cùng lúc (dùng biến trở đôi hoặc tụ xoay đôi) để không làm thay đổi hệ số. Hình 10.11 mô tả việc điều chỉnh này. . độ lợi điện thế của mạch. - Khi biên độ của tín hiệu ra còn nhỏ, D 1 , D 2 không dẫn điện và không ảnh hưởng đến mạch. Ðộ lợi điện thế của mạch lúc này l : - Ðộ lợi này đủ để mạch dao động thu chung để tải không ảnh hưởng đến mạch dao động. 10.1 .2 Mạch dao động cầu Wien: (wien bridge oscillators) - Cũng là một dạng dao động dịch pha. Mạch thường dùng op-amp ráp theo kiểu khuếch. - Tần số dao động được xác định bởi: c. Mạch dao động dịch pha dùng FET: - Do FET có tổng trở vào rất lớn nên cũng thích hợp cho loại mạch này. - Tổng trở ra của mạch khuếch đại

Ngày đăng: 24/07/2014, 06:22

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan