Chuyên đề tích phân
CHUYÊN ĐỀ TÍCH PHÂN Bảng công thức tích phân bất định : ∫ = Cdx0 ∫ += Cxdx 1 1 1 −≠+ + = ∫ + nC n x dxx n n Cxdx x += ∫ ln 1 ∫ += Cedxe xx ∫ = C a a dxa x x ln ∫ +−= Cxxdx cossin ∫ += Cxxdx sincos ∫ += Cxdx x tan cos 1 2 ∫ +−= Cxdx x cot sin 1 2 ∫ += ′ Cxudx xu xu )(ln )( )( ∫ + + − = − C ax ax a dx ax ln 2 11 22 ∫ +++++=+ Caxx a ax x dxax 222 ln 22 Phương pháp biến số phụ : Cho hàm số )(xf liên tục trên đoạn [ ] ba; có nguyên hàm là )(xF . Giả sử )(xu là hàm số có đạo hàm và liên tục trên đoạn [ ] βα , và có miền giá trị là [ ] ba; thì ta có : [ ] [ ] CxuxFdxxuxuf += ∫ )()()('.)( BÀI TẬP Tính các tích phân sau : a) ∫ + = 1 0 2 1 1x xdx I b) ∫ − = 1 0 2 1 x x e dxe I c) ∫ + = e x dxx I 1 3 ln1 Bài làm : a) Đặt 2 21 2 dt xdxxdxdtxt =⇒=⇒+= Đổi cận : =→= =→= 21 10 tx tx Vậy : 2ln 2 1 ln 2 1 2 1 1 2 1 2 1 2 1 2 1 === + = ∫ ∫ t t dt x xdx I b) Đặt dxedtet xx =⇒−= 1 www.giasubienhoa.net Trang 1 Đổi cận : −=→= −=→= 12 11 2 etx etx Vậy : )1ln(ln 1 1 1 1 1 1 0 2 2 2 +=== − = − − − − ∫∫ et t dt e dxe I e e e e x x c) Đặt dx x tdtxt 1 ln1 =⇒+= Đổi cận : =→= =→= 2 11 tex tx Tích phân lượng giác : Dạng 1 : ∫ = β α nxdxmxI cos.sin Cách làm: biến đổi tích sang tổng . Dạng 2 : ∫ = β α dxxxI nm .cos.sin Cách làm : Nếu nm, chẵn . Đặt xt tan = Nếu m chẵn n lẻ . Đặt xt sin = (trường hợp còn lại thì ngược lại) Dạng 3 : ∫ ++ = β α cxbxa dx I cos.sin. Cách làm : Đặt : + − = + = ⇒= 2 2 2 1 1 cos 1 2 sin 2 tan t t x t t x x t Dạng 4 : ∫ + + = β α dx xdxc xbxa I . cos.sin. cos.sin. Cách làm : Đặt : xdxc xdxcB A xdxc xbxa cos.sin. )sin.cos.( cos.sin. cos.sin. + − += + + www.giasubienhoa.net Trang 2 )122( 3 2 3 2ln1 2 1 2 1 2 3 1 3 −=== + = ∫∫ tdtt x dxx I e Sau đó dùng đồng nhất thức . Dạng 5: ∫ ++ ++ = β α dx nxdxc mxbxa I . cos.sin. cos.sin. Cách làm : Đặt : nxdxc C nxdxc xdxcB A nxdxc mxbxa ++ + ++ − += ++ ++ cos.sin.cos.sin. )sin.cos.( cos.sin. cos.sin. Sau đó dùng đồng nhất thức. BÀI TẬP Tính tích phân : a) ∫ + = 2 0 4 1 )1(sin cos π x xdx I b) ∫ = 2 0 5 2 cos π xdxI c) ∫ = 4 0 6 3 tan π xdxI Bài làm : a) Đặt : xdxdtxt cos1sin =⇒+= Đổi cận : =→= =→= 2 2 10 tx tx π Vậy : 24 7 3 1 )1(sin cos 2 1 3 2 1 4 2 0 4 1 =−== + = ∫∫ tt dt x xdx I π b) Đặt : xdxdtxt cossin =⇒= Đổi cận : =→= =→= 1 2 00 tx tx π Vậy : ( ) ( ) 15 8 3 2 5 211cos 1 0 1 0 3 5 1 0 1 0 24 2 2 2 0 5 2 = +−= −+=−== ∫ ∫ ∫∫ tt t dtttdttxdxI π c) Đặt : dxxdtxt )1(tantan 2 +=⇒= Đổi cận : =→= =→= 1 4 00 tx tx π www.giasubienhoa.net Trang 3 Vậy : 415 13 35 1 1 1 1 tan 4 0 1 0 35 1 0 1 0 2 24 2 6 4 0 6 3 π π π −=− +−= + −+−= + == ∫ ∫ ∫∫ dut tt dt t tt t dtt xdxI Tính các tích phân sau : a) ∫ + = 2 0 2222 1 cos.sin. cos.sin π dx xbxa xx I b) ∫ + = 3 0 2 2cos2 cos π dx x x I Bài làm : a) Đặt : xdxxabdtxbxat cos.sin)(2cos.sin. 222222 +−=⇒+= Đổi cận : =→= =→= 2 2 2 0 btx atx π Nếu ba ≠ Vậy : ( ) ba ab ba t ab t dt ab dx xbxa xx I b a b a + = − − = − = − = + = ∫ ∫ 11 2 1 cos.sin. cos.sin 2222 2 0 22 22 1 2 2 2 2 π Nếu ba = Vậy : a x a xdx a a xdxx dx xbxa xx I 2 1 2cos 4 1 2sin 2 1 cos.sin cos.sin. cos.sin 2 0 2 0 2 0 2 0 2222 1 =−== = + = ∫ ∫∫ π π ππ b) Đặt : xdxdtxt cossin =⇒= Đổi cận : =→= =→= 2 3 3 00 tx tx π www.giasubienhoa.net Trang 4 Vậy : ∫∫∫ − = − = + = 2 3 0 2 2 3 0 2 3 0 2 2 32 1 23 2cos2 cos t dt t dt dx x x I π Đặt : ududtut sin 2 3 cos 2 3 −=⇒= Đổi cận : =→= =→= 42 3 2 0 π π ut ut Vậy : ( ) 242 1 2 1 cos1 2 3 sin 2 3 2 1 2 32 1 2 4 4 4 2 4 2 2 3 0 2 2 π π π π π π π === − = − = ∫ ∫∫ udu u udu t dt I Tính các tích phân sau : a) ∫ ++ = 2 0 1 5cos3sin4 1 π dx xx I b) ∫ ++ ++ = 2 0 2 5cos3sin4 6cos7sin π dx xx xx I Bài làm : a) Đặt : 1 2 1 2 tan 2 tan 2 2 + =⇒ +=⇒= t dt dxdx x dt x t Đổi cận : =→= =→= 1 2 00 tx tx π Vậy : ( ) 6 1 2 1 1 5 1 1 3 1 2 4 1 2 1 0 1 0 2 1 0 2 2 2 2 1 = + −= + = + + − + + + = ∫∫ t t dt dt t t t t t I b)Đặt : 5cos3sin45cos3sin4 sin3cos4 5cos3sin4 6cos7sin ++ + ++ − += ++ ++ xx C xx xx BA xx xx Dùng đồng nhất thức ta được: 1,1,1 === CBA www.giasubienhoa.net Trang 5 Vậy : ( ) 6 1 8 9 ln 2 5cos3sin4ln 5cos3sin4 1 5cos3sin4 sin3cos4 1 5cos3sin4 6cos7sin 1 2 0 2 0 2 0 2 ++=++++= ++ + ++ − += ++ ++ = ∫∫ π π ππ Ixxx dx xxxx xx dx xx xx I Bạn đọc tự làm : a) ∫ = 2 6 2 3 1 sin cos π π dx x x I b) ∫ = 2 0 3 2 sin.cos π xdxxI c) ∫ + = 2 0 3 2sin π x dx I c) ∫ + = 2 0 3 3 1cos sin4 π dx x x I d) ∫ ++ = 2 0 5 3cos2sin 1 π dx xx I d) ∫ ++ +− = 2 0 6 3cos2sin 1cossin π dx xx xx I Tính nguyên hàm,tích phân các hàm hữu tỷ Dạng 1 : ( ) ( ) C ax n ax dx I nn + − − −= − = − ∫ 1 1 . 1 1 với ( ) { }( ) 1,0, −×∈ NCna ta có : Nếu Ran ∈= ,1 ta có : Cx ax dx I += − = ∫ ln Dạng 2 : ( ) ∫ ++ + = dx cbxax x I n 2 βα trong đó : <−=∆ ∈ 04 ,,,, 2 acb Rcba βα * Giai đoạn 1 : 0 ≠ α ,làm xuất hiện ở tử thức đạo hàm của tam thức cbxax ++ 2 , sai khác một số : ( ) ( ) ( ) ∫∫∫ ++ −+ ++ + = ++ −++ = nnn cbxax dx b a a dx cbxax bax a dx cbxax b a bax a I 222 2 2 2 2 2 2 2 α βαα α β α * Giai đoạn 2 : Tính ( ) ( ) ∫∫ ∆− + = + ∆− ∆− = ++ = bax t n n n t dt a a dx cbxax dx I 2 22 1 2 . 4 * Giai đoạn 3 : Tính ( ) ∫ + = dt t I n 1 1 2 có thể tính bằng hai phương pháp , truy hồi hoặc đặt φ tan = t Dạng 3 : ( ) ( ) ∫ = dx xQ xP I n m Ta có : ( ) ( ) 01 01 bxbxb axaxa xQ xP n n m m n m +++ +++ = www.giasubienhoa.net Trang 6 Nếu : ( ) ( ) QP degdeg ≥ thì ta thực hiện phép chia ( ) ( ) ( ) ( ) ( ) ( ) xQ xR xA xQ xP n r nm n m += − trong đó phân số ( ) ( ) xQ xR n r có ( ) ( ) QR degdeg < Nếu : ( ) ( ) QP degdeg < ta có các qui tắc sau : *Qt 1: ( ) ( ) ( ) ( ) ( ) n n n n n xm ax A ax A ax A ax P − + − ++ − = − − − 1 11 Vdụ 1a : ( ) ( ) ( ) ∑ ∏ = = − = − n i i i i n i i i m ax A ax xP 1 1 Vdụ 1b : ( ) ( ) 2 2 ))()(( cx D cx C bx B ax A cxbxax xP m − + − + − + − = −−− *Qt 2': ( ) ( ) ( ) ( ) ( ) n nn n nn n m cbxax BxA cbxax BxA cbxax BxA cbxax xP ++ + + ++ + ++ ++ + = ++ − −− 2 1 2 11 2 11 2 với 0 <∆ *Qt 3: ( ) ( ) ( ) ( ) ( ) ∑ ∑ = = ++ + + − = ++− m i n k i i i i n m t cbxax BxA x A cbxaxx xP 1 1 2 1 2 α α Vdụ 1 : ( ) ( ) ( ) cbxax CBx x A cbxaxx xP t ++ + + − = ++− 22 )( αα Vdụ 2 : ( ) ( ) ( ) ( ) ( ) ( ) 2 2 22 2 11 2 2 cbxax CxB cbxax CxB x A cbxaxx xP t ++ + + ++ + + − = ++− α α BÀI TẬP Tính các tích phân sau : a) ∫ ++ = 1 0 2 1 23xx dx I b) ( ) ∫ ++ = 1 0 2 2 2 23xx dx I Bài làm : a) ( )( ) ∫∫∫ + − + = ++ = ++ = 1 0 1 0 1 0 2 1 2 1 1 1 21 23 dx xxxx dx xx dx I b) ( ) ( ) ( ) ( )( ) dx xx xx dx xx dx I ∫∫ ++ − + + + = ++ = 1 0 22 1 0 2 2 2 21 2 2 1 1 1 23 ( ) OKxx xx = +−+− + − + −= 1 0 2ln1ln2 2 1 1 1 www.giasubienhoa.net Trang 7 [ ] 3 4 ln2ln1ln 1 0 =+−+= xx Tính các tích phân sau : a) ∫ ++ = 1 0 24 1 33xx dx I b) ( ) ( ) ∫ ++ − = 1 0 2 2 21 24 dx xx x I Bài làm : a)* Bạn đọc dễ dàng chứng minh được ∫ += + = C a x aax dx I arctan 1 22 0 với 0 > a ( )( ) dx xxxx dx xx dx I ∫ ∫∫ + − + = ++ = ++ = 1 0 1 0 2222 1 0 24 1 3 1 1 1 2 1 3133 ( ) 329 2 3 arctan 3 1 arctan 2 1 1 0 −= −= π x x b) Đặt : ( ) ( ) ( ) ( ) ( ) ( ) 12 22 1 2 12 24 2 2 22 ++ +++++ = + + + + = ++ − xx ACCBxBAx x CBx x A xx x Do đó ta có hệ : = = −= ⇔ =+ =+ =+ 0 2 2 02 42 0 C B A AC CB BA Vậy : ( ) ( ) ∫ ∫ + + + −= ++ − = 1 0 1 0 2 2 2 1 2 2 2 21 24 dx x x x dx xx x I [ ] 9 4 ln1ln2ln2ln3ln21ln2ln2 1 0 2 =−++−=+++−= xx Bạn đọc tự làm : a) ( ) ∫ − + = 3 2 2 1 1 1 dx xx x I b) ∫ −+ = 5 2 2 2 32xx dx I c) dx xx x I ∫ − − = 2 1 3 3 3 4 1 d) ∫ +− = 2 3 24 3 23 dx xx x I HD: a) ( ) 1 1 1 22 − ++= − + x C x B x A xx x b) 31 32 1 2 + + − = −+ x B x A xx c) ( )( ) −+ − += − − 1212 4 1 4 1 4 1 3 3 xxx x xx x d) 22 1123 24 − + + + + + − = +− x D x C x B x A xx x Đẳng thức tích phân : www.giasubienhoa.net Trang 8 Muốn chứng minh đẳng thức trong tích phân ta thường dùng cách đổi biến số và nhận xét một số đặc điểm sau . * Cận tích phân , chẵn lẻ , tuần hoàn , cận trên + cận dưới, …. Chúng ta cần phải nhớ những đẳng thức nầy và xem nó như 1 bổ đề áp dụng. BÀI TẬP Chứng minh rằng : ( ) ( ) ∫ ∫ −=− 1 0 1 0 11 dxxxdxxx m n n m Bài làm : Xét ( ) ∫ −= 1 0 1 dxxxI n m Đặt : dtdxdxdtxt −=⇒−=⇒−= 1 Đổi cận : =→= =→= 01 10 tx tx Vậy : ( ) ( ) ( ) ∫ ∫∫ −=−−=−= 0 1 1 0 1 0 111 dtttdtttdxxxI n m n mn m (đpcm) Chứng minh rằng nếu )(xf là hàm lẻ và liên tục trên đoạn [ ] aa, − thì : ( ) ∫ − == a a dxxfI 0 Bài làm : ( ) ( ) ( ) 1)( 0 0 ∫ ∫ ∫ − − +== a a a a dxxfdxxfdxxfI Xét ( ) ∫ − 0 a dxxf . Đặt dtdxdxdtxt −=⇒−=⇒−= Đổi cận : =→= =→−= 00 tx atax V ậy : ( ) ( ) ( ) ∫ ∫∫ −=−= − a a a dttfdttfdxxf 0 0 0 Thế vào (1) ta được : 0 = I (đpcm) www.giasubienhoa.net Trang 9 • Tương tự bạn đọc có thể chứng minh : Nếu )(xf là hàm chẳn và liên tục trên đoạn [ ] aa, − thì ( ) ( ) ∫ ∫ − == a a a dxxfdxxfI 0 2 Cho 0 > a và ( ) xf là hàm chẵn , liên tục và xác định trên R . Chứng minh rằng : ( ) ( ) ∫ ∫ − = + α α α dxxfdx a xf x 0 1 Bài làm : Xét ( ) dx a xf x ∫ − + 0 1 α . Đặt dtdxdxdtxt −=⇒−=⇒−= Đổi cận : =→= =→−= 00 tx tx αα Vậy : ( ) ( ) ( ) ∫ ∫∫ + = + − = + − − α α α 0 0 0 111 t t tx a tfa dt a tf dx a xf Thế vào (1) ta được : ( ) ( ) ( ) ( ) ∫∫ ∫ ∫ = + + + = + − − αα α α α 0 0 0 111 dxxfdx a xf dx a xfa dx a xf xx x x (đpcm) Cho hàm số ( ) xf liên tục trên [ ] 1,0 . Chứng minh rằng : ( ) ( ) ∫ ∫ = π π π 0 0 sin 2 sin. dxxfdxxfx Bài làm : Xét ( ) ∫ π 0 sin. dxxfx . Đặt dtdxdxdtxt −=⇒−=⇒−= π Đổi cận : =→= =→= 0 0 tx tx π π Vậy : ( ) ( ) ( ) [ ] ( ) ( ) ∫ ∫∫ −=−−= π ππ πππ 0 00 sin.sin.sin. dttftdttftdxxfx ( ) ( ) ∫ ∫ −= π π π 0 0 sin.sin dttftdttf www.giasubienhoa.net Trang 10 ( ) ( ) ( ) ( ) ∫ ∫ ∫ − − + + + = + α α α α 0 0 1 111 dx a xf dx a xf dx a xf xxx [...]... I ∗8 = 2009 π ∫ 1 − cos 2 x dx 0 Tích phân từng phần : Cho hai hàm số u và v có đạo hàm liên tục trên đoạn [a, b ] , thì ta có : b b ∫ udv = [uv] a − ∫ vdu b a a Trong lúc tính tính tích phân từng phần ta có những ưu tiên sau : *ưu tiên1: Nếu có hàm ln hay logarit thì phải đặt u = ln x hay *ưu tiên 2 : Đặt u = ?? mà có thể hạ bậc u = log a x BÀI TẬP Tính các tích phân sau : π 2 1 a) I1 = ∫ x.e dx... dx.∫ g ( x ) dx ∫ 0 0 0 Một số ứng dụng của tích phân thường gặp : 1)Tính diện tích : Cho hai hàm số f ( x ) & f ( x ) liên tục trên đoạn [a, b ] Diện tích hình phẳng giới hạn bởi các đường là : www.giasubienhoa.net Trang 22 x= a x= b ; y = ( xf ) y = ( xg ) Được tính như sau : b S = ∫ f ( x ) − g ( x ) dx a 2)Tính thể tích : • Nếu diện tích S ( x ) của mặt cắt vật thể do mặt phẳng vuông... x e x dx 0 1 + cos x Tích phân hàm trị tuyệt đối, min , max : www.giasubienhoa.net Trang 14 b Muốn tính I = ∫ f ( x ) dx f ( x) ta đi xét dấu trên đoạn [a, b] , khử trị tuyệt đối a b Muốn tính I = ∫ max[ f ( x ), g ( x ) ]dx ta đi xét dấu f ( x) − g( x) trên đoạn [a, b] ta đi xét dấu f ( x) − g( x) trên đoạn [a, b] a b Muốn tính I = ∫ min[ f ( x ), g ( x ) ]dx a Tính các tích phân sau : 2 4 2 b) I1... cos x ) dx c) I 3 = ∫ sin x − cos x dx 2 −2 0 0 3 5 −2 1 d) I 4 = ∫ max( x 2 ,4 x − 3)dx d) I ∗ 4 = ∫ x + 2 x − 1 + x − 2 x − 1 dx Nguyên hàm , tích phân của hàm số vô tỷ : Trong phần nầy ta chỉ nghiên cứu những trường hợp đơn giản của tích phân Abel Dạng 1: ∫ R (x, ) ax 2 + bx + c dx 2ax + b 2 a> 0 2 −∆ → ax + bx + c = 1 + 4a − ∆ ∆ < 0 ∫ R ( x, ) ax 2 + bx + c... π 2 Ta đi tính tích phân ∫ x sin xdx 0 u = x ⇒ du = dx Đặt : dv = sin xdx ⇒ v = − cos x Vậy : π 2 ∫ x sin xdx = − x cos x π 2 0 0 π 2 π 0 1 Thế vào (1) ta được : π 2 2 + ∫ cos xdx = − x cos x 0 + sin 0 = 1 I1 = ∫ x.e x dx = 0 π 2 −8 4 1 u = ln x ⇒ du = dx c) Đặt : x dv = dx ⇒ v = x e e 1 1 e e e Vậy : I 3 = ∫ ln xdx = x ln x 1 − ∫ dx = x ln x 1 − x 0 = 1 Tính các tích phân sau : π a)... , là hàm số liên tục trên đoạn [a, b ] thì thể tích vật thể được tính : b V = ∫ f ( x )dx a f ( x) • Nếu hàm số đường: liên tục trên [a, b ] và (H) là hình phẳng giới hạn bởi các x= a, x= b y = f ( x) Ox Khi (H) quay quanh Ox ta được 1 vật thể tròn xoay Lúc đó thể tích được tính : b V = π ∫ [ f ( x ) ] dx 2 a Tương tự ta cũng có thể tính thể tích vật thể quay quanh oy 3)Tính giới hạn : n... hoành độ các điểm đầu cung a 4)Tính tổng trong khai triển nhị thức Newton Tìm công thức tổng quát , chọn số liệu thích hợp,sau đó dùng đồng nhất thức, bước cuối cùng là tính tích phân Hình1a hình1b hình1c hình1d BÀI TẬP Tính diện tích hình tròn , tâm O , bán kính R Bài làm : (hình 1a) Phương trình đường tròn có dạng : x2 + y2 = R2 ⇔ y = ± R2 − x2 R 2 2 Do tính đối xứng của đồ thị nên : S = 4∫ R − x... n n n n 1 i = ∑ i =1 n n 5 Xét hàm số f ( x ) = x 5 ∀∈[ 0, 1] Ta lập phân hoạch đều trên [0,1] với các điểm chia : 0 = x0 < x1 < x2 < .xn −1 < xn = 1 và Chọn ξi = xi = i n ta có n lim ∑( xi − xi −1 ) f (ζ i ) n→∞ i =1 1 ⇒lim S n = lim S n = ∫ x 5 dx = l →0 n→∞ chiều dài phân hoạch 0 l = xi − xi −1 = 1 n l = xi − xi −1 = 1 n 5 1 i = ∑ i =1 n n n 1 6 Với mỗi số... 1 Sn = + + + + n n 1 +1 2 +1 3 +1 +1 n n n n n 1 1 =∑ i i= n 1 +1 n Xét hàm số f ( x) = 1 x +1 ∀∈[ 0,1] Ta lập phân hoạch đều trên [0,1] với các điểm chia : 0 = x0 < x1 < x2 < .xn −1 < xn = 1 và chiều dài phân hoạch 1 1 Chọn ta có lim ∑ ( xi − xi −1 ) f ( ζ i ) = ∑ i n→∞ i =1 i =1 n + 1 n 1 1 dx ⇒lim S n = lim S n = ∫ = ln x +1 0 = ln 2... ∫ (t 4 ) 2 − 16 dt t5 t4 36 256 64 = −∫ t 3 − + 5 dt = − − 36 ln t − 4 + C 4 t t t ( x − x2 + 4 = − 4 ) 4 + 36 ln x − x 2 + 4 − ( +C 4 2 x− x +4 64 ) Tính các tích phân sau : 1 a) −8 I1 = ∫ x − x 2 dx dx dx x 1− x −3 b) I 2 = ∫ 1 2 Bài làm : 1 I1 = ∫ x − x 2 dx = 1 2 1 1 2 ∫ 1 − ( 2 x − 1) dx 21 2 www.giasubienhoa.net Trang 19 2 x − 1 = sin t ⇒ dx = Đặt : 1 cos . CHUYÊN ĐỀ TÍCH PHÂN Bảng công thức tích phân bất định : ∫ = Cdx0 ∫ += Cxdx 1 1 1 −≠+ + = ∫ + nC. +− x D x C x B x A xx x Đẳng thức tích phân : www.giasubienhoa.net Trang 8 Muốn chứng minh đẳng thức trong tích phân ta thường dùng cách đổi biến