1. Trang chủ
  2. » Ngoại Ngữ

HANDBOOK OFINTEGRAL EQUATIONS phần 2 ppt

73 264 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 73
Dung lượng 7,78 MB

Nội dung

113.  x a  cot(λx) tan(µt) + cot(βx) tan(γt)  y(t) dt = f(x). This is a special case of equation 1.9.15 with g 1 (x) = cot(λx), h 1 (t) = tan(µt), g 2 (x) = cot(βx), and h 2 (t) = tan(γt). 114.  x a  tan(λx) tan(µt) + cot(βx) cot(γt)  y(t) dt = f(x). This is a special case of equation 1.9.15 with g 1 (x) = tan(λx), h 1 (t) = tan(µt), g 2 (x) = cot(βx), and h 2 (t) = cot(γt). 115.  x a  A tan β (λx)+B cot γ (µt)  y(t) dt = f(x). This is a special case of equation 1.9.6 with g(x)=A tan β (λx) and h(t)=B cot γ (µt). 116.  x a  A cot β (λx)+B tan γ (µt)  y(t) dt = f(x). This is a special case of equation 1.9.6 with g(x)=A cot β (λx) and h(t)=B tan γ (µt). 117.  x a  Ax λ tan µ t + Bt β cot γ x  y(t) dt = f(x). This is a special case of equation 1.9.15 with g 1 (x)=Ax λ , h 1 (t) = tan µ t, g 2 (x)=B cot γ x, and h 2 (t)=t β . 118.  x a  Ax λ cot µ t + Bt β tan γ x  y(t) dt = f(x). This is a special case of equation 1.9.15 with g 1 (x)=Ax λ , h 1 (t) = cot µ t, g 2 (x)=B tan γ x, and h 2 (t)=t β . 1.6. Equations Whose Kernels Contain Inverse Trigonometric Functions 1.6-1. Kernels Containing Arccosine 1.  x a  arccos(λx) – arccos(λt)  y(t) dt = f(x). This is a special case of equation 1.9.2 with g(x) = arccos(λx). Solution: y(x)=– 1 λ d dx  √ 1 – λ 2 x 2 f  x (x)  . 2.  x a  A arccos(λx)+B arccos(λt)  y(t) dt = f(x). For B = –A, see equation 1.6.1. This is a special case of equation 1.9.4 with g(x) = arccos(λx). Solution: y(x)= 1 A + B d dx   arccos(λx)  – A A+B  x a  arccos(λt)  – B A+B f  t (t) dt  . Page 59 © 1998 by CRC Press LLC © 1998 by CRC Press LLC 3.  x a  A arccos(λx)+B arccos(µt)+C  y(t) dt = f(x). This is a special case of equation 1.9.6 with g(x) = arccos(λx) and h(t)=B arccos(µt)+C. 4.  x a  arccos(λx) – arccos(λt)  n y(t) dt = f(x), n =1,2, The right-hand side of the equation is assumed to satisfy the conditions f (a)=f  x (a)=···= f (n) x (a)=0. Solution: y(x)= (–1) n λ n n! √ 1 – λ 2 x 2  √ 1 – λ 2 x 2 d dx  n+1 f(x). 5.  x a  arccos(λt) – arccos(λx) y(t) dt = f(x). This is a special case of equation 1.9.38 with g(x)=1– arccos(λx). Solution: y(x)= 2 π ϕ(x)  1 ϕ(x) d dx  2  x a ϕ(t)f(t) dt √ arccos(λt) – arccos(λx) , ϕ(x)= 1 √ 1 – λ 2 x 2 . 6.  x a y(t) dt √ arccos(λt) – arccos(λx) = f(x). Solution: y(x)= λ π d dx  x a ϕ(t)f(t) dt √ arccos(λt) – arccos(λx) , ϕ(x)= 1 √ 1 – λ 2 x 2 . 7.  x a  arccos(λt) – arccos(λx)  µ y(t) dt = f(x), 0 < µ <1. Solution: y(x)=kϕ(x)  1 ϕ(x) d dx  2  x a ϕ(t)f(t) dt [arccos(λt) – arccos(λx)] µ , ϕ(x)= 1 √ 1 – λ 2 x 2 , k = sin(πµ) πµ . 8.  x a  arccos µ (λx) – arccos µ (λt)  y(t) dt = f(x). This is a special case of equation 1.9.2 with g(x) = arccos µ (λx). Solution: y(x)=– 1 λµ d dx  f  x (x) √ 1 – λ 2 x 2 arccos µ–1 (λx)  . 9.  x a y(t) dt  arccos(λt) – arccos(λx)  µ = f(x), 0 < µ <1. Solution: y(x)= λ sin(πµ) π d dx  x a ϕ(t)f(t) dt [arccos(λt) – arccos(λx)] 1–µ , ϕ(x)= 1 √ 1 – λ 2 x 2 . 10.  x a  A arccos β (λx)+B arccos γ (µt)+C  y(t) dt = f(x). This is a special case of equation 1.9.6 with g(x)=A arccos β (λx) and h(t)=B arccos γ (µt)+C. Page 60 © 1998 by CRC Press LLC © 1998 by CRC Press LLC 1.6-2. Kernels Containing Arcsine 11.  x a  arcsin(λx) – arcsin(λt)  y(t) dt = f(x). This is a special case of equation 1.9.2 with g(x) = arcsin(λx). Solution: y(x)= 1 λ d dx  √ 1 – λ 2 x 2 f  x (x)  . 12.  x a  A arcsin(λx)+B arcsin(λt)  y(t) dt = f(x). For B = –A, see equation 1.6.11. This is a special case of equation 1.9.4 with g(x) = arcsin(λx). Solution: y(x)= sign x A + B d dx    arcsin(λx)   – A A+B  x a   arcsin(λt)   – B A+B f  t (t) dt  . 13.  x a  A arcsin(λx)+B arcsin(µt)+C  y(t) dt = f(x). This is a special case of equation 1.9.6 with g(x)=A arcsin(λx) and h(t)=B arcsin(µt)+C. 14.  x a  arcsin(λx) – arcsin(λt)  n y(t) dt = f(x), n =1,2, The right-hand side of the equation is assumed to satisfy the conditions f (a)=f  x (a)=···= f (n) x (a)=0. Solution: y(x)= 1 λ n n! √ 1 – λ 2 x 2  √ 1 – λ 2 x 2 d dx  n+1 f(x). 15.  x a  arcsin(λx) – arcsin(λt) y(t) dt = f(x). Solution: y(x)= 2 π ϕ(x)  1 ϕ(x) d dx  2  x a ϕ(t)f(t) dt √ arcsin(λx) – arcsin(λt) , ϕ(x)= 1 √ 1 – λ 2 x 2 . 16.  x a y(t) dt √ arcsin(λx) – arcsin(λt) = f(x). Solution: y(x)= λ π d dx  x a ϕ(t)f(t) dt √ arcsin(λx) – arcsin(λt) , ϕ(x)= 1 √ 1 – λ 2 x 2 . 17.  x a  arcsin(λx) – arcsin(λt)  µ y(t) dt = f(x), 0 < µ <1. Solution: y(x)=kϕ(x)  1 ϕ(x) d dx  2  x a ϕ(t)f(t) dt [arcsin(λx) – arcsin(λt)] µ , ϕ(x)= 1 √ 1 – λ 2 x 2 , k = sin(πµ) πµ . Page 61 © 1998 by CRC Press LLC © 1998 by CRC Press LLC 18.  x a  arcsin µ (λx) – arcsin µ (λt)  y(t) dt = f(x). This is a special case of equation 1.9.2 with g(x) = arcsin µ (λx). Solution: y(x)= 1 λµ d dx  f  x (x) √ 1 – λ 2 x 2 arcsin µ–1 (λx)  . 19.  x a y(t) dt  arcsin(λx) – arcsin(λt)  µ = f(x), 0 < µ <1. Solution: y(x)= λ sin(πµ) π d dx  x a ϕ(t)f(t) dt [arcsin(λx) – arcsin(λt)] 1–µ , ϕ(x)= 1 √ 1 – λ 2 x 2 . 20.  x a  A arcsin β (λx)+B arcsin γ (µt)+C  y(t) dt = f(x). This is a special case of equation 1.9.6 with g(x)=A arcsin β (λx) and h(t)=B arcsin γ (µt)+C. 1.6-3. Kernels Containing Arctangent 21.  x a  arctan(λx) – arctan(λt)  y(t) dt = f(x). This is a special case of equation 1.9.2 with g(x) = arctan(λx). Solution: y(x)= 1 λ d dx  (1 + λ 2 x 2 ) f  x (x)  . 22.  x a  A arctan(λx)+B arctan(λt)  y(t) dt = f(x). For B = –A, see equation 1.6.21. This is a special case of equation 1.9.4 with g(x) = arctan(λx). Solution: y(x)= sign x A + B d dx    arctan(λx)   – A A+B  x a   arctan(λt)   – B A+B f  t (t) dt  . 23.  x a  A arctan(λx)+B arctan(µt)+C  y(t) dt = f(x). This is a special case of equation 1.9.6 with g(x)=A arctan(λx) and h(t)=B arctan(µt)+C. 24.  x a  arctan(λx) – arctan(λt)  n y(t) dt = f(x), n =1,2, The right-hand side of the equation is assumed to satisfy the conditions f (a)=f  x (a)=···= f (n) x (a)=0. Solution: y(x)= 1 λ n n!(1+λ 2 x 2 )  (1 + λ 2 x 2 ) d dx  n+1 f(x). Page 62 © 1998 by CRC Press LLC © 1998 by CRC Press LLC 25.  x a  arctan(λx) – arctan(λt) y(t) dt = f(x). Solution: y(x)= 2 π ϕ(x)  1 ϕ(x) d dx  2  x a ϕ(t)f(t) dt √ arctan(λx) – arctan(λt) , ϕ(x)= 1 1+λ 2 x 2 . 26.  x a y(t) dt √ arctan(λx) – arctan(λt) = f(x). Solution: y(x)= λ π d dx  x a ϕ(t)f(t) dt √ arctan(λx) – arctan(λt) , ϕ(x)= 1 1+λ 2 x 2 . 27.  x a √ t arctan   x – t t  y(t) dt = f(x). The equation can be rewritten in terms of the Gaussian hypergeometric function in the form  x a (x – t) γ–1 F  α, β, γ;1– x t  y(t) dt = f (x), where α = 1 2 , β =1, γ = 3 2 . See 1.8.86 for the solution of this equation. 28.  x a  arctan(λx) – arctan(λt)  µ y(t) dt = f(x), 0 < µ <1. Solution: y(x)=kϕ(x)  1 ϕ(x) d dx  2  x a ϕ(t)f(t) dt [arctan(λx) – arctan(λt)] µ , ϕ(x)= 1 1+λ 2 x 2 , k = sin(πµ) πµ . 29.  x a  arctan µ (λx) – arctan µ (λt)  y(t) dt = f(x). This is a special case of equation 1.9.2 with g(x) = arctan µ (λx). Solution: y(x)= 1 λµ d dx  (1 + λ 2 x 2 )f  x (x) arctan µ–1 (λx)  . 30.  x a y(t) dt  arctan(λx) – arctan(λt)  µ = f(x), 0 < µ <1. Solution: y(x)= λ sin(πµ) π d dx  x a ϕ(t)f(t) dt [arctan(λx) – arctan(λt)] 1–µ , ϕ(x)= 1 1+λ 2 x 2 . 31.  x a  A arctan β (λx)+B arctan γ (µt)+C  y(t) dt = f(x). This is a special case of equation 1.9.6 with g(x)=A arctan β (λx) and h(t)=B arctan γ (µt)+C. Page 63 © 1998 by CRC Press LLC © 1998 by CRC Press LLC 1.6-4. Kernels Containing Arccotangent 32.  x a  arccot(λx) – arccot(λt)  y(t) dt = f(x). This is a special case of equation 1.9.2 with g(x) = arccot(λx). Solution: y(x)=– 1 λ d dx  (1 + λ 2 x 2 ) f  x (x)  . 33.  x a  A arccot(λx)+B arccot(λt)  y(t) dt = f(x). For B = –A, see equation 1.6.32. This is a special case of equation 1.9.4 with g(x) = arccot(λx). Solution: y(x)= 1 A + B d dx   arccot(λx)  – A A+B  x a  arccot(λt)  – B A+B f  t (t) dt  . 34.  x a  A arccot(λx)+B arccot(µt)+C  y(t) dt = f(x). This is a special case of equation 1.9.6 with g(x)=A arccot(λx) and h(t)=B arccot(µt)+C. 35.  x a  arccot(λx) – arccot(λt)  n y(t) dt = f(x), n =1,2, The right-hand side of the equation is assumed to satisfy the conditions f (a)=f  x (a)=···= f (n) x (a)=0. Solution: y(x)= (–1) n λ n n!(1+λ 2 x 2 )  (1 + λ 2 x 2 ) d dx  n+1 f(x). 36.  x a  arccot(λt) – arccot(λx) y(t) dt = f(x). Solution: y(x)= 2 π ϕ(x)  1 ϕ(x) d dx  2  x a ϕ(t)f(t) dt √ arccot(λt) – arccot(λx) , ϕ(x)= 1 1+λ 2 x 2 . 37.  x a y(t) dt √ arccot(λt) – arccot(λx) = f(x). Solution: y(x)= λ π d dx  x a ϕ(t)f(t) dt √ arccot(λt) – arccot(λx) , ϕ(x)= 1 1+λ 2 x 2 . 38.  x a  arccot(λt) – arccot(λx)  µ y(t) dt = f(x), 0 < µ <1. Solution: y(x)=kϕ(x)  1 ϕ(x) d dx  2  x a ϕ(t)f(t) dt [arccot(λt) – arccot(λx)] µ , ϕ(x)= 1 1+λ 2 x 2 , k = sin(πµ) πµ . Page 64 © 1998 by CRC Press LLC © 1998 by CRC Press LLC 39.  x a  arccot µ (λx) – arccot µ (λt)  y(t) dt = f(x). This is a special case of equation 1.9.2 with g(x) = arccot µ (λx). Solution: y(x)=– 1 λµ d dx  (1 + λ 2 x 2 )f  x (x) arccot µ–1 (λx)  . 40.  x a y(t) dt  arccot(λt) – arccot(λx)  µ = f(x), 0 < µ <1. Solution: y(x)= λ sin(πµ) π d dx  x a ϕ(t)f(t) dt [arccot(λt) – arccot(λx)] 1–µ , ϕ(x)= 1 1+λ 2 x 2 . 41.  x a  A arccot β (λx)+B arccot γ (µt)+C  y(t) dt = f(x). This is a special case of equation 1.9.6 with g(x)=A arccot β (λx) and h(t)=B arccot γ (µt)+C. 1.7. Equations Whose Kernels Contain Combinations of Elementary Functions 1.7-1. Kernels Containing Exponential and Hyperbolic Functions 1.  x a e µ(x–t)  A 1 cosh[λ 1 (x – t)] + A 2 cosh[λ 2 (x – t)]  y(t) dt = f(x). The substitution w(x)=e –µx y(x) leads to an equation of the form 1.3.8:  x a  A 1 cosh[λ 1 (x – t)] + A 2 cosh[λ 2 (x – t)]  w(t) dt = e –µx f(x). 2.  x a e µ(x–t) cosh 2 [λ(x – t)]y(t) dt = f(x). Solution: y(x)=ϕ(x) – 2λ 2 k  x a e µ(x–t) sinh[k(x – t)]ϕ(x) dt, k = λ √ 2, ϕ(x)=f  x (x) – µf(x). 3.  x a e µ(x–t) cosh 3 [λ(x – t)]y(t) dt = f(x). The substitution w(x)=e –µx y(x) leads to an equation of the form 1.3.15:  x a cosh 3 [λ(x – t)]w(t) dt = e –µx f(x). 4.  x a e µ(x–t) cosh 4 [λ(x – t)]y(t) dt = f(x). The substitution w(x)=e –µx y(x) leads to an equation of the form 1.3.19:  x a cosh 4 [λ(x – t)]w(t) dt = e –µx f(x). Page 65 © 1998 by CRC Press LLC © 1998 by CRC Press LLC 5.  x a e µ(x–t)  cosh(λx) – cosh(λt)  n y(t) dt = f(x), n =1,2, Solution: y(x)= 1 λ n n! e µx sinh(λx)  1 sinh(λx) d dx  n+1 F µ (x), F µ (x)=e –µx f(x). 6.  x a e µ(x–t) √ cosh x – cosh ty(t) dt = f (x), f (a)=0. Solution: y(x)= 2 π e µx sinh x  1 sinh x d dx  2  x a e –µt sinh tf(t) dt √ cosh x – cosh t . 7.  x a e µ(x–t) y(t) dt √ cosh x – cosh t = f(x). Solution: y(x)= 1 π e µx d dx  x a e –µt sinh tf(t) dt √ cosh x – cosh t . 8.  x a e µ(x–t) (cosh x – cosh t) λ y(t) dt = f(x), 0 < λ <1. The substitution w(x)=e –µx y(x) leads to an equation of the form 1.3.23:  x a (cosh x – cosh t) λ w(t) dt = e –µx f(x). 9.  x a  Ae µ(x–t) + B cosh λ x  y(t) dt = f(x). This is a special case of equation 1.9.15 with g 1 (x)=Ae µx , h 1 (t)=e –µt , g 2 (x)=B cosh λ x, and h 2 (t)=1. 10.  x a  Ae µ(x–t) + B cosh λ t  y(t) dt = f(x). This is a special case of equation 1.9.15 with g 1 (x)=Ae µx , h 1 (t)=e –µt , g 2 (x)=B, and h 2 (t) = cosh λ t. 11.  x a e µ(x–t) (cosh λ x – cosh λ t)y(t) dt = f(x). The substitution w(x)=e –µx y(x) leads to an equation of the form 1.3.24:  x a (cosh λ x – cosh λ t)w(t) dt = e –µx f(x). 12.  x a e µ(x–t)  A cosh λ x + B cosh λ t  y(t) dt = f(x). The substitution w(x)=e –µx y(x) leads to an equation of the form 1.3.25:  x a  A cosh λ x + B cosh λ t  w(t) dt = e –µx f(x). Page 66 © 1998 by CRC Press LLC © 1998 by CRC Press LLC 13.  x a e µ(x–t) y(t) dt (cosh x – cosh t) λ = f(x), 0 < λ <1. Solution: y(x)= sin(πλ) π e µx d dx  x a e –µt sinh tf(t) dt (cosh x – cosh t) 1–λ . 14.  x a e µ(x–t)  A 1 sinh[λ 1 (x – t)] + A 2 sinh[λ 2 (x – t)]  y(t) dt = f(x). The substitution w(x)=e –µx y(x) leads to an equation of the form 1.3.41:  x a  A 1 sinh[λ 1 (x – t)] + A 2 sinh[λ 2 (x – t)]  w(t) dt = e –µx f(x). 15.  x a e µ(x–t) sinh 2 [λ(x – t)]y(t) dt = f(x). The substitution w(x)=e –µx y(x) leads to an equation of the form 1.3.43:  x a sinh 2 [λ(x – t)]w(t) dt = e –µx f(x). 16.  x a e µ(x–t) sinh 3 [λ(x – t)]y(t) dt = f(x). The substitution w(x)=e –µx y(x) leads to an equation of the form 1.3.49:  x a sinh 3 [λ(x – t)]w(t) dt = e –µx f(x). 17.  x a e µ(x–t) sinh n [λ(x – t)]y(t) dt = f(x), n =2,3, The substitution w(x)=e –µx y(x) leads to an equation of the form 1.3.54:  x a sinh n [λ(x – t)]w(t) dt = e –µx f(x). 18.  x a e µ(x–t) sinh  k √ x – t  y(t) dt = f(x). Solution: y(x)= 2 πk e µx d 2 dx 2  x a e –µt cos  k √ x – t  √ x – t f(t) dt. 19.  x a e µ(x–t) √ sinh x – sinh ty(t) dt = f (x). Solution: y(x)= 2 π e µx cosh x  1 cosh x d dx  2  x a e –µt cosh tf(t) dt √ sinh x – sinh t . 20.  x a e µ(x–t) y(t) dt √ sinh x – sinh t = f(x). Solution: y(x)= 1 π e µx d dx  x a e –µt cosh tf(t) dt √ sinh x – sinh t . Page 67 © 1998 by CRC Press LLC © 1998 by CRC Press LLC 21.  x a e µ(x–t) (sinh x – sinh t) λ y(t) dt = f(x), 0 < λ <1. The substitution w(x)=e –µx y(x) leads to an equation of the form 1.3.58:  x a (sinh x – sinh t) λ w(t) dt = e –µx f(x). 22.  x a e µ(x–t) (sinh λ x – sinh λ t)y(t) dt = f(x). The substitution w(x)=e –µx y(x) leads to an equation of the form 1.3.59:  x a (sinh λ x – sinh λ t)w(t) dt = e –µx f(x). 23.  x a e µ(x–t)  A sinh λ x + B sinh λ t  y(t) dt = f(x). The substitution w(x)=e –µx y(x) leads to an equation of the form 1.3.60:  x a  A sinh λ x + B sinh λ t  w(t) dt = e –µx f(x). 24.  x a  Ae µ(x–t) + B sinh λ x  y(t) dt = f(x). This is a special case of equation 1.9.15 with g 1 (x)=Ae µx , h 1 (t)=e –µt , g 2 (x)=B sinh λ x, and h 2 (t)=1. 25.  x a  Ae µ(x–t) + B sinh λ t  y(t) dt = f(x). This is a special case of equation 1.9.15 with g 1 (x)=Ae µx , h 1 (t)=e –µt , g 2 (x)=B, and h 2 (t) = sinh λ t. 26.  x a e µ(x–t) y(t) dt (sinh x – sinh t) λ = f(x), 0 < λ <1. Solution: y(x)= sin(πλ) π e µx d dx  x a e –µt cosh tf(t) dt (sinh x – sinh t) 1–λ . 27.  x a e µ(x–t)  A tanh λ x + B tanh λ t  y(t) dt = f(x). The substitution w(x)=e –µx y(x) leads to an equation of the form 1.3.77:  x a  A tanh λ x + B tanh λ t  w(t) dt = e –µx f(x). 28.  x a e µ(x–t)  A tanh λ x + B tanh β t + C  y(t) dt = f(x). The substitution w(x)=e –µx y(x) leads to an equation of the form 1.9.6 with g(x)=A tanh λ x, g(t)=B tanh β t + C:  x a  A tanh λ x + B tanh β t + C  w(t) dt = e –µx f(x). Page 68 © 1998 by CRC Press LLC © 1998 by CRC Press LLC [...]... Marichev (1993) x x2 – t 2 69 –1/4 √ I–1 /2 λ x2 – t2 y(t) dt = f (x) 0 Solution: 2 d π dx y(x) = ∞ 70 t 2 – x2 –1/4 x 0 √ cos λ x2 – t2 √ t f (t) dt x2 – t2 √ I–1 /2 λ t2 – x2 y(t) dt = f (x) x Solution: 2 d π dx y(x) = – x x2 – t 2 71 ν /2 ∞ x √ cos λ t2 – x2 √ t f (t) dt t2 – x2 √ Iν λ x2 – t2 y(t) dt = f (x), –1 < ν < 0 0 Solution: y(x) = λ d dx x t x2 – t2 –(ν+1) /2 √ J–ν–1 λ x2 – t2 f (t) dt 0 • Reference:... = x x2 – t 2 29 –1/4 2 λ x n 2 x–t n–ν 2 2 √ In–ν 2 λ x – t ft(n) (t) dt a √ J–1 /2 λ x2 – t2 y(t) dt = f (x) 0 Solution: y(x) = 2 d π dx x 0 √ cosh λ x2 – t2 √ t f (t) dt x2 – t2 • Reference: S G Samko, A A Kilbas, and O I Marichev (1993) © 1998 by CRC Press LLC © 1998 by CRC Press LLC Page 82 ∞ 30 t 2 – x2 –1/4 √ J–1 /2 λ t2 – x2 y(t) dt = f (x) x Solution: 2 d π dx y(x) = – x x2 – t 2 31 ν /2 ∞ x... y(x) = π 4 2 3 d2 + 2 dx2 x (x – t)3 /2 J3 /2 [λ(x – t)] f (t) dt a x (x – t)3 /2 J1 /2 [λ(x – t)]y(t) dt = f (x) 10 a Solution: x y(x) = g(t) dt, a where g(t) = π d2 + 2 2 dt2 8λ 4 t (t – τ )3 /2 J3 /2 [λ(t – τ )] f (τ ) dτ a x (x – t)3 /2 J3 /2 [λ(x – t)]y(t) dt = f (x) 11 a Solution: √ π y(x) = 3 /2 5 /2 2 λ 3 d2 + 2 dx2 x sin[λ(x – t)] f (t) dt a x (x – t)5 /2 J3 /2 [λ(x – t)]y(t) dt = f (x) 12 a Solution:... Page 85 x (x – t)1 /2 I1 /2 [λ(x – t)]y(t) dt = f (x) 49 a Solution: y(x) = d2 – 2 dx2 π 4 2 3 x (x – t)3 /2 I3 /2 [λ(x – t)] f (t) dt a x (x – t)3 /2 I1 /2 [λ(x – t)]y(t) dt = f (x) 50 a Solution: x y(x) = g(t) dt, a where d2 – 2 dt2 π g(t) = 8 2 4 t (t – τ )3 /2 I3 /2 [λ(t – τ )] f (τ ) dτ a x (x – t)3 /2 I3 /2 [λ(x – t)]y(t) dt = f (x) 51 a Solution: √ y(x) = π 3 /2 λ5 /2 2 3 d2 – 2 dx2 x sinh[λ(x – t)]... x (x – t)5 /2 I3 /2 [λ(x – t)]y(t) dt = f (x) 52 a Solution: x y(x) = g(t) dt, a where g(t) = x x–t 53 2n–1 2 d2 – 2 dt2 π 128 λ4 6 t (t – τ )5 /2 I5 /2 [λ(t – τ )] f (τ ) dτ a I 2n–1 [λ(x – t)]y(t) dt = f (x), a n = 2, 3, 2 Solution: √ y(x) = √ 2n+1 2 2 π (2n – 2) !! n d2 – 2 dx2 x sinh[λ(x – t)] f (t) dt a x [Iν (λx) – Iν (λt)]y(t) dt = f (x) 54 a This is a special case of equation 1.9 .2 with g(x)... Solution: y(x) = x x–t 6 2 1 3λ3 4 d2 + 2 dx2 x (x – t )2 J2 [λ(x – t)] f (t) dt a J1 [λ(x – t)]y(t) dt = f (x) a Solution: x y(x) = g(t) dt, a where g(t) = x x–t 7 n 1 9λ3 5 d2 + 2 dt2 t t–τ 2 J2 [λ(t – τ )] f (τ ) dτ a Jn [λ(x – t)]y(t) dt = f (x), n = 0, 1, 2, a Solution: y(x) = A d2 + 2 dx2 A= 2n +2 x (x – t)n+1 Jn+1 [λ(x – t)] f (t) dt, 2 λ a 2n+1 n! (n + 1)! (2n)! (2n + 2) ! If the right-hand... – x x2 – t 2 31 ν /2 ∞ x √ cosh λ t2 – x2 √ t f (t) dt t2 – x2 √ Jν λ x2 – t2 y(t) dt = f (x), –1 < ν < 0 0 Solution: y(x) = λ d dx x –(ν+1) /2 t x2 – t2 √ I–ν–1 λ x2 – t2 f (t) dt 0 • Reference: S G Samko, A A Kilbas, and O I Marichev (1993) ∞ 32 t 2 – x2 ν /2 √ Jν λ t2 – x2 y(t) dt = f (x), –1 < ν < 0 x Solution: y(x) = –λ d dx ∞ t t2 – x2 –(ν+1) /2 √ I–ν–1 λ t2 – x2 f (t) dt x • Reference: S G Samko,... Solution: y(x) = 1 3λ3 4 d2 – 2 dx2 x (x – t )2 I2 [λ(x – t)] f (t) dt a x (x – t )2 I1 [λ(x – t)]y(t) dt = f (x) 46 a Solution: x y(x) = g(t) dt, a where g(t) = 1 9λ3 5 d2 – 2 dt2 t t–τ 2 I2 [λ(t – τ )] f (τ ) dτ a x (x – t)n In [λ(x – t)]y(t) dt = f (x), 47 n = 0, 1, 2, a Solution: y(x) = A 2n +2 d2 – 2 dx2 x (x – t)n+1 In+1 [λ(x – t)] f (t) dt, a 2n+1 2 λ A= n! (n + 1)! (2n)! (2n + 2) ! If the right-hand... dt, a where π g(t) = 128 λ4 d2 + 2 dt2 6 t (t – τ )5 /2 J5 /2 [λ(t – τ )] f (τ ) dτ a © 1998 by CRC Press LLC © 1998 by CRC Press LLC Page 79 x (x – t) 13 2n–1 2 J 2n–1 [λ(x – t)]y(t) dt = f (x), a n = 2, 3, 2 Solution: √ y(x) = √ 2 2n+1 2 n d2 + 2 dx2 π (2n – 2) !! x sin[λ(x – t)] f (t) dt a x [Jν (λx) – Jν (λt)]y(t) dt = f (x) 14 a This is a special case of equation 1.9 .2 with g(x) = Jν (λx) d... t)3/4 J3 /2 λ x – t y(t) dt = f (x) a Solution: x 25 x 23 /2 d3 y(x) = √ 3 /2 3 dx πλ a √ cosh λ x – t √ f (t) dt x–t √ (x – t)n /2 Jn λ x – t y(t) dt = f (x), n = 0, 1, 2, a Solution: y(x) = x x–t 26 2n–3 4 n 2 λ a n = 1, 2, 2 Solution: 1 y(x) = √ π x √ I0 λ x – t f (t) dt √ J 2n–3 λ x – t y(t) dt = f (x), a 27 x dn +2 dxn +2 2n–3 2 2 λ dn dxn x a √ cosh λ x – t √ f (t) dt x–t √ (x – t)–1/4 J–1 /2 λ x . t  n J n [λ(x – t)]y(t) dt = f(x), n =0,1 ,2, Solution: y(x)=A  d 2 dx 2 + λ 2  2n +2  x a (x – t) n+1 J n+1 [λ(x – t)] f(t) dt, A =  2 λ  2n+1 n!(n + 1)! (2n)! (2n + 2) ! . If the right-hand side of. dt, where g(t)= 1 λ  d 2 dt 2 + λ 2  3  t a (t – τ) J 1 [λ(t – τ)] f(τ) dτ. 5.  x a (x – t)J 1 [λ(x – t)]y(t) dt = f(x). Solution: y(x)= 1 3λ 3  d 2 dx 2 + λ 2  4  x a (x – t) 2 J 2 [λ(x – t)] f(t). f(a)=f  x (a)=···= f (2n+1) x (a) = 0 are satisfied, then the solution of the integral equation can be written in the form y(x)=A  x a (x – t) 2n+1 J 2n+1 [λ(x – t)]F(t) dt, F (t)=  d 2 dt 2 + λ 2  2n +2 f(t)

Ngày đăng: 23/07/2014, 16:20

w