1. Trang chủ
  2. » Ngoại Ngữ

HANDBOOK OFINTEGRAL EQUATIONS phần 10 pptx

86 280 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 86
Dung lượng 8,31 MB

Nội dung

16.  dx a + b cosh x =        – sign x √ b 2 – a 2 arcsin b + a cosh x a + b cosh x if a 2 < b 2 , 1 √ a 2 – b 2 ln a + b + √ a 2 – b 2 tanh(x/2) a + b – √ a 2 – b 2 tanh(x/2) if a 2 > b 2 .  Integrals containing sinh x. 17.  sinh(a + bx) dx = 1 b cosh(a + bx). 18.  x sinh xdx= x cosh x – sinh x. 19.  x 2 sinh xdx=(x 2 + 2) cosh x – 2x sinh x. 20.  x 2n sinh xdx=(2n)!  n  k=0 x 2k (2k)! cosh x – n  k=1 x 2k–1 (2k – 1)! sinh x  . 21.  x 2n+1 sinh xdx=(2n + 1)! n  k=0  x 2k+1 (2k + 1)! cosh x – x 2k (2k)! sinh x  . 22.  x p sinh xdx= x p cosh x – px p–1 sinh x + p(p – 1)  x p–2 sinh xdx. 23.  sinh 2 xdx= – 1 2 x + 1 4 sinh 2x. 24.  sinh 3 xdx= – cosh x + 1 3 cosh 3 x. 25.  sinh 2n xdx=(–1) n C n 2n x 2 2n + 1 2 2n–1 n–1  k=0 (–1) k C k 2n sinh[2(n – k)x] 2(n – k) , n =1,2, 26.  sinh 2n+1 xdx= 1 2 2n n  k=0 (–1) k C k 2n+1 cosh[(2n – 2k +1)x] 2n – 2k +1 = n  k=0 (–1) n+k C k n cosh 2k+1 x 2k +1 , n =1,2, 27.  sinh p xdx= 1 p sinh p–1 x cosh x – p – 1 p  sinh p–2 xdx. 28.  sinh ax sinh bx dx = 1 a 2 – b 2  a cosh ax sinh bx – b cosh bx sinh ax  . 29.  dx sinh ax = 1 a ln    tanh ax 2    . 30.  dx sinh 2n x = cosh x 2n – 1  – 1 sinh 2n–1 x + n–1  k=1 (–1) k–1 2 k (n – 1)(n – 2) (n – k) (2n – 3)(2n – 5) (2n – 2k – 1) 1 sinh 2n–2k–1 x  , n =1,2, 31.  dx sinh 2n+1 x = cosh x 2n  – 1 sinh 2n x + n–1  k=1 (–1) k–1 (2n–1)(2n–3) (2n–2k+1) 2 k (n–1)(n–2) (n–k) 1 sinh 2n–2k x  +(–1) n (2n – 1)!! (2n)!! ln tanh x 2 , n =1,2, 32.  dx a + b sinh x = 1 √ a 2 + b 2 ln a tanh(x/2) – b + √ a 2 + b 2 a tanh(x/2) – b – √ a 2 + b 2 . 33.  Ax + B sinh x a + b sinh x dx = B b x + Ab – Ba b √ a 2 + b 2 ln a tanh(x/2) – b + √ a 2 + b 2 a tanh(x/2) – b – √ a 2 + b 2 . Page 695 © 1998 by CRC Press LLC © 1998 by CRC Press LLC  Integrals containing tanh x or coth x. 34.  tanh xdx= ln cosh x. 35.  tanh 2 xdx= x – tanh x. 36.  tanh 3 xdx= – 1 2 tanh 2 x + ln cosh x. 37.  tanh 2n xdx= x – n  k=1 tanh 2n–2k+1 x 2n – 2k +1 , n =1,2, 38.  tanh 2n+1 xdx= ln cosh x – n  k=1 (–1) k C k n 2k cosh 2k x = ln cosh x – n  k=1 tanh 2n–2k+2 x 2n – 2k +2 , n =1, 2, 39.  tanh p xdx= – 1 p – 1 tanh p–1 x +  tanh p–2 xdx. 40.  coth xdx=ln|sinh x|. 41.  coth 2 xdx= x – coth x. 42.  coth 3 xdx= – 1 2 coth 2 x +ln|sinh x|. 43.  coth 2n xdx= x – n  k=1 coth 2n–2k+1 x 2n – 2k +1 , n =1,2, 44.  coth 2n+1 xdx=ln|sinh x| – n  k=1 C k n 2k sinh 2k x =ln|sinh x| – n  k=1 coth 2n–2k+2 x 2n – 2k +2 , n =1, 2, 45.  coth p xdx= – 1 p – 1 coth p–1 x +  coth p–2 xdx. 2.5. Integrals Containing Logarithmic Functions 1.  ln ax dx = x ln ax – x. 2.  x ln xdx= 1 2 x 2 ln x – 1 4 x 2 . 3.  x p ln ax dx =    1 p +1 x p+1 ln ax – 1 (p +1) 2 x p+1 if p ≠ –1, 1 2 ln 2 ax if p = –1. 4.  (ln x) 2 dx = x(ln x) 2 – 2x ln x +2x. 5.  x(ln x) 2 dx = 1 2 x 2 (ln x) 2 – 1 2 x 2 ln x + 1 4 x 2 . 6.  x p (ln x) 2 dx =      x p+1 p +1 (ln x) 2 – 2x p+1 (p +1) 2 ln x + 2x p+1 (p +1) 3 if p ≠ –1, 1 3 ln 3 x if p = –1. 7.  (ln x) n dx = x n +1 n  k=0 (–1) k (n +1)n (n – k + 1)(ln x) n–k , n =1,2, Page 696 © 1998 by CRC Press LLC © 1998 by CRC Press LLC 8.  (ln x) q dx = x(ln x) q – q  (ln x) q–1 dx, q ≠ –1. 9.  x n (ln x) m dx = x n+1 m +1 m  k=0 (–1) k (n +1) k+1 (m +1)m (m – k + 1)(ln x) m–k , n, m =1,2, 10.  x p (ln x) q dx = 1 p +1 x p+1 (ln x) q – q p +1  x p (ln x) q–1 dx, p, q ≠ –1. 11.  ln(a + bx) dx = 1 b (ax + b) ln(ax + b) – x. 12.  x ln(a + bx) dx = 1 2  x 2 – a 2 b 2  ln(a + bx) – 1 2  x 2 2 – a b x  . 13.  x 2 ln(a + bx) dx = 1 3  x 3 – a 3 b 3  ln(a + bx) – 1 3  x 3 3 – ax 2 2b + a 2 x b 2  . 14.  ln xdx (a + bx) 2 = – ln x b(a + bx) + 1 ab ln x a + bx . 15.  ln xdx (a + bx) 3 = – ln x 2b(a + bx) 2 + 1 2ab(a + bx) + 1 2a 2 b ln x a + bx . 16.  ln xdx √ a + bx =          2 b  (ln x – 2) √ a + bx + √ a ln √ a + bx + √ a √ a + bx – √ a  if a >0, 2 b  (ln x – 2) √ a + bx +2 √ –a arctan √ a + bx √ –a  if a <0. 17.  ln(x 2 + a 2 ) dx = x ln(x 2 + a 2 ) – 2x +2a arctan(x/a). 18.  x ln(x 2 + a 2 ) dx = 1 2  (x 2 + a 2 ) ln(x 2 + a 2 ) – x 2  . 19.  x 2 ln(x 2 + a 2 ) dx = 1 3  x 3 ln(x 2 + a 2 ) – 2 3 x 3 +2a 2 x – 2a 3 arctan(x/a)  . 2.6. Integrals Containing Trigonometric Functions  Integrals containing cos x. Notation: n =1,2, 1.  cos(a + bx) dx = 1 b sin(a + bx). 2.  x cos xdx= cos x + x sin x. 3.  x 2 cos xdx=2x cos x +(x 2 – 2) sin x. 4.  x 2n cos xdx=(2n)!  n  k=0 (–1) k x 2n–2k (2n – 2k)! sin x + n–1  k=0 (–1) k x 2n–2k–1 (2n – 2k – 1)! cos x  . 5.  x 2n+1 cos xdx=(2n + 1)! n  k=0  (–1) k x 2n–2k+1 (2n – 2k + 1)! sin x + x 2n–2k (2n – 2k)! cos x  . 6.  x p cos xdx= x p sin x + px p–1 cos x – p(p – 1)  x p–2 cos xdx. 7.  cos 2 xdx= 1 2 x + 1 4 sin 2x. Page 697 © 1998 by CRC Press LLC © 1998 by CRC Press LLC 8.  cos 3 xdx= sin x – 1 3 sin 3 x. 9.  cos 2n xdx= 1 2 2n C n 2n x + 1 2 2n–1 n–1  k=0 C k 2n sin[(2n – 2k)x] 2n – 2k . 10.  cos 2n+1 xdx= 1 2 2n n  k=0 C k 2n+1 sin[(2n – 2k +1)x] 2n – 2k +1 . 11.  dx cos x =ln    tan  x 2 + π 4     . 12.  dx cos 2 x = tan x. 13.  dx cos 3 x = sin x 2 cos 2 x + 1 2 ln    tan  x 2 + π 4     . 14.  dx cos n x = sin x (n – 1) cos n–1 x + n – 2 n – 1  dx cos n–2 x , n >1. 15.  xdx cos 2n x = n–1  k=0 (2n – 2)(2n – 4) (2n – 2k +2) (2n – 1)(2n – 3) (2n – 2k +3) (2n – 2k)x sin x – cos x (2n – 2k + 1)(2n – 2k) cos 2n–2k+1 x + 2 n–1 (n – 1)! (2n – 1)!!  x tan x +ln|cos x|  . 16.  cos ax cos bx dx = sin  (b – a)x  2(b – a) + sin  (b + a)x  2(b + a) , a ≠ ±b. 17.  dx a + b cos x =          2 √ a 2 – b 2 arctan (a – b) tan(x/2) √ a 2 – b 2 if a 2 > b 2 , 1 √ b 2 – a 2 ln     √ b 2 – a 2 +(b – a) tan(x/2) √ b 2 – a 2 – (b – a) tan(x/2)     if b 2 > a 2 . 18.  dx (a + b cos x) 2 = b sin x (b 2 – a 2 )(a + b cos x) – a b 2 – a 2  dx a + b cos x . 19.  dx a 2 + b 2 cos 2 x = 1 a √ a 2 + b 2 arctan a tan x √ a 2 + b 2 . 20.  dx a 2 – b 2 cos 2 x =        1 a √ a 2 – b 2 arctan a tan x √ a 2 – b 2 if a 2 > b 2 , 1 2a √ b 2 – a 2 ln     √ b 2 – a 2 – a tan x √ b 2 – a 2 + a tan x     if b 2 > a 2 . 21.  e ax cos bx dx = e ax  b a 2 + b 2 sin bx + a a 2 + b 2 cos bx  . 22.  e ax cos 2 xdx= e ax a 2 +4  a cos 2 x + 2 sin x cos x + 2 a  . 23.  e ax cos n xdx= e ax cos n–1 x a 2 + n 2 (a cos x + n sin x)+ n(n – 1) a 2 + n 2  e ax cos n–2 xdx.  Integrals containing sin x. Notation: n =1,2, 24.  sin(a + bx) dx = – 1 b cos(a + bx). 25.  x sin xdx= sin x – x cos x. Page 698 © 1998 by CRC Press LLC © 1998 by CRC Press LLC 26.  x 2 sin xdx=2x sin x – (x 2 – 2) cos x. 27.  x 3 sin xdx=(3x 2 – 6) sin x – (x 3 – 6x) cos x. 28.  x 2n sin xdx=(2n)!  n  k=0 (–1) k+1 x 2n–2k (2n – 2k)! cos x + n–1  k=0 (–1) k x 2n–2k–1 (2n – 2k – 1)! sin x  . 29.  x 2n+1 sin xdx=(2n + 1)! n  k=0  (–1) k+1 x 2n–2k+1 (2n – 2k + 1)! cos x +(–1) k x 2n–2k (2n – 2k)! sin x  . 30.  x p sin xdx= –x p cos x + px p–1 sin x – p(p – 1)  x p–2 sin xdx. 31.  sin 2 xdx= 1 2 x – 1 4 sin 2x. 32.  x sin 2 xdx= 1 4 x 2 – 1 4 x sin 2x – 1 8 cos 2x. 33.  sin 3 xdx= – cos x + 1 3 cos 3 x. 34.  sin 2n xdx= 1 2 2n C n 2n x + (–1) n 2 2n–1 n–1  k=0 (–1) k C k 2n sin[(2n – 2k)x] 2n – 2k , where C k m = m! k!(m – k)! are binomial coefficients (0! = 1). 35.  sin 2n+1 xdx= 1 2 2n n  k=0 (–1) n+k+1 C k 2n+1 cos[(2n – 2k +1)x] 2n – 2k +1 . 36.  dx sin x =ln    tan x 2    . 37.  dx sin 2 x = – cot x. 38.  dx sin 3 x = – cos x 2 sin 2 x + 1 2 ln    tan x 2    . 39.  dx sin n x = – cos x (n – 1) sin n–1 x + n – 2 n – 1  dx sin n–2 x , n >1. 40.  xdx sin 2n x = – n–1  k=0 (2n – 2)(2n – 4) (2n – 2k +2) (2n – 1)(2n – 3) (2n – 2k +3) sin x +(2n – 2k)x cos x (2n – 2k + 1)(2n – 2k) sin 2n–2k+1 x + 2 n–1 (n – 1)! (2n – 1)!!  ln |sin x| – x cot x  . 41.  sin ax sin bx dx = sin[(b – a)x] 2(b – a) – sin[(b + a)x] 2(b + a) , a ≠ ±b. 42.  dx a + b sin x =          2 √ a 2 – b 2 arctan b + a tan x/2 √ a 2 – b 2 if a 2 > b 2 , 1 √ b 2 – a 2 ln     b – √ b 2 – a 2 + a tan x/2 b + √ b 2 – a 2 + a tan x/2     if b 2 > a 2 . 43.  dx (a + b sin x) 2 = b cos x (a 2 – b 2 )(a + b sin x) + a a 2 – b 2  dx a + b sin x . 44.  dx a 2 + b 2 sin 2 x = 1 a √ a 2 + b 2 arctan √ a 2 + b 2 tan x a . Page 699 © 1998 by CRC Press LLC © 1998 by CRC Press LLC 45.  dx a 2 – b 2 sin 2 x =          1 a √ a 2 – b 2 arctan √ a 2 – b 2 tan x a if a 2 > b 2 , 1 2a √ b 2 – a 2 ln     √ b 2 – a 2 tan x + a √ b 2 – a 2 tan x – a     if b 2 > a 2 . 46.  sin xdx √ 1+k 2 sin 2 x = – 1 k arcsin k cos x √ 1+k 2 . 47.  sin xdx √ 1 – k 2 sin 2 x = – 1 k ln   k cos x + √ 1 – k 2 sin 2 x   . 48.  sin x √ 1+k 2 sin 2 xdx= – cos x 2 √ 1+k 2 sin 2 x – 1+k 2 2k arcsin k cos x √ 1+k 2 . 49.  sin x √ 1 – k 2 sin 2 xdx= – cos x 2 √ 1 – k 2 sin 2 x – 1 – k 2 2k ln   k cos x + √ 1 – k 2 sin 2 x   . 50.  e ax sin bx dx = e ax  a a 2 + b 2 sin bx – b a 2 + b 2 cos bx  . 51.  e ax sin 2 xdx= e ax a 2 +4  a sin 2 x – 2 sin x cos x + 2 a  . 52.  e ax sin n xdx= e ax sin n–1 x a 2 + n 2 (a sin x – n cos x)+ n(n – 1) a 2 + n 2  e ax sin n–2 xdx.  Integrals containing sin x and cos x. 53.  sin ax cos bx dx = – cos[(a + b)x] 2(a + b) – cos  (a – b)x  2(a – b) , a ≠ ±b. 54.  dx b 2 cos 2 ax + c 2 sin 2 ax = 1 abc arctan  c b tan ax  . 55.  dx b 2 cos 2 ax – c 2 sin 2 ax = 1 2abc ln    c tan ax + b c tan ax – b    . 56.  dx cos 2n x sin 2m x = n+m–1  k=0 C k n+m–1 tan 2k–2m+1 x 2k – 2m +1 , n, m =1,2, 57.  dx cos 2n+1 x sin 2m+1 x = C m n+m ln |tan x| + n+m  k=0 C k n+m tan 2k–2m x 2k – 2m , n, m =1,2,  Reduction formulas. The parameters p and q below can assume any values, except for those at which the denominators on the right-hand side vanish. 58.  sin p x cos q xdx= – sin p–1 x cos q+1 x p + q + p – 1 p + q  sin p–2 x cos q xdx. 59.  sin p x cos q xdx= sin p+1 x cos q–1 x p + q + q – 1 p + q  sin p x cos q–2 xdx. 60.  sin p x cos q xdx= sin p–1 x cos q–1 x p + q  sin 2 x – q – 1 p + q – 2  + (p – 1)(q – 1) (p + q)(p + q – 2)  sin p–2 x cos q–2 xdx. 61.  sin p x cos q xdx= sin p+1 x cos q+1 x p +1 + p + q +2 p +1  sin p+2 x cos q xdx. 62.  sin p x cos q xdx= – sin p+1 x cos q+1 x q +1 + p + q +2 q +1  sin p x cos q+2 xdx. Page 700 © 1998 by CRC Press LLC © 1998 by CRC Press LLC 63.  sin p x cos q xdx= – sin p–1 x cos q+1 x q +1 + p – 1 q +1  sin p–2 x cos q+2 xdx. 64.  sin p x cos q xdx= sin p+1 x cos q–1 x p +1 + q – 1 p +1  sin p+2 x cos q–2 xdx.  Integrals containing tan x and cot x. 65.  tan xdx= – ln |cos x|. 66.  tan 2 xdx= tan x – x. 67.  tan 3 xdx= 1 2 tan 2 x +ln|cos x|. 68.  tan 2n xdx=(–1) n x – n  k=1 (–1) k (tan x) 2n–2k+1 2n – 2k +1 , n =1,2, 69.  tan 2n+1 xdx=(–1) n+1 ln |cos x| – n  k=1 (–1) k (tan x) 2n–2k+2 2n – 2k +2 , n =1,2, 70.  dx a + b tan x = 1 a 2 + b 2  ax + b ln |a cos x + b sin x|  . 71.  tan xdx √ a + b tan 2 x = 1 √ b – a arccos   1 – a b cos x  , b > a, b >0. 72.  cot xdx=ln|sin x|. 73.  cot 2 xdx= – cot x – x. 74.  cot 3 xdx= – 1 2 cot 2 x – ln |sin x|. 75.  cot 2n xdx=(–1) n x + n  k=1 (–1) k (cot x) 2n–2k+1 2n – 2k +1 , n =1,2, 76.  cot 2n+1 xdx=(–1) n ln |sin x| + n  k=1 (–1) k (cot x) 2n–2k+2 2n – 2k +2 , n =1,2, 77.  dx a + b cot x = 1 a 2 + b 2  ax – b ln |a sin x + b cos x|  . 2.7. Integrals Containing Inverse Trigonometric Functions 1.  arcsin x a dx = x arcsin x a + √ a 2 – x 2 . 2.   arcsin x a  2 dx = x  arcsin x a  2 – 2x +2 √ a 2 – x 2 arcsin x a . 3.  x arcsin x a dx = 1 4 (2x 2 – a 2 ) arcsin x a + x 4 √ a 2 – x 2 . 4.  x 2 arcsin x a dx = x 3 3 arcsin x a + 1 9 (x 2 +2a 2 ) √ a 2 – x 2 . Page 701 © 1998 by CRC Press LLC © 1998 by CRC Press LLC 5.  arccos x a dx = x arccos x a – √ a 2 – x 2 . 6.   arccos x a  2 dx = x  arccos x a  2 – 2x – 2 √ a 2 – x 2 arccos x a . 7.  x arccos x a dx = 1 4 (2x 2 – a 2 ) arccos x a – x 4 √ a 2 – x 2 . 8.  x 2 arccos x a dx = x 3 3 arccos x a – 1 9 (x 2 +2a 2 ) √ a 2 – x 2 . 9.  arctan x a dx = x arctan x a – a 2 ln(a 2 + x 2 ). 10.  x arctan x a dx = 1 2 (x 2 + a 2 ) arctan x a – ax 2 . 11.  x 2 arctan x a dx = x 3 3 arctan x a – ax 2 6 + a 3 6 ln(a 2 + x 2 ). 12.  arccot x a dx = x arccot x a + a 2 ln(a 2 + x 2 ). 13.  x arccot x a dx = 1 2 (x 2 + a 2 ) arccot x a + ax 2 . 14.  x 2 arccot x a dx = x 3 3 arccot x a + ax 2 6 – a 3 6 ln(a 2 + x 2 ). • References for Supplement 2: H. B. Dwight (1961), I. S. Gradshteyn and I. M. Ryzhik (1980), A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev (1986, 1988). Page 702 © 1998 by CRC Press LLC © 1998 by CRC Press LLC Supplement 3 Tables of Definite Integrals Throughout Supplement 3 it is assumed that n is a positive integer, unless otherwise specified. 3.1. Integrals Containing Power-Law Functions 1.  ∞ 0 dx ax 2 + b = π 2 √ ab . 2.  ∞ 0 dx x 4 +1 = π √ 2 4 . 3.  1 0 x n dx x +1 =(–1) n  ln 2 + n  k=1 (–1) k k  . 4.  ∞ 0 x a–1 dx x +1 = π sin(πa) ,0<a <1. 5.  ∞ 0 x λ–1 dx (1 + ax) 2 = π(1 – λ) a λ sin(πλ) ,0<λ <2. 6.  1 0 dx x 2 +2x cos β +1 = β 2 sin β . 7.  1 0  x a + x –a  dx x 2 +2x cos β +1 = π sin(aβ) sin(πa) sin β , |a| <1, β ≠ (2n +1)π. 8.  ∞ 0 x λ–1 dx (x + a)(x + b) = π(a λ–1 – b λ–1 ) (b – a) sin(πλ) ,0<λ <2. 9.  ∞ 0 x λ–1 (x + c) dx (x + a)(x + b) = π sin(πλ)  a – c a – b a λ–1 + b – c b – a b λ–1  ,0<λ <1. 10.  ∞ 0 x λ dx (x +1) 3 = πλ(1 – λ) 2 sin(πλ) , –1<λ <2. 11.  ∞ 0 x λ–1 dx (x 2 + a 2 )(x 2 + b 2 ) = π  b λ–2 – a λ–2  2  a 2 – b 2  sin(πλ/2) ,0<λ <4. 12.  1 0 x a (1 – x) 1–a dx = πa(1 – a) 2 sin(πa) , –1<a <1. 13.  1 0 dx x a (1 – x) 1–a = π sin(πa) ,0<a <1. Page 703 © 1998 by CRC Press LLC © 1998 by CRC Press LLC 14.  1 0 x a dx (1 – x) a = πa sin(πa) , –1<a <1. 15.  1 0 x p–1 (1 – x) q–1 dx ≡ B(p, q)= Γ(p)Γ(q) Γ(p + q) , p, q >0. 16.  1 0 x p–1 (1 – x q ) –p/q dx = π q sin(πp/q) , q > p >0. 17.  1 0 x p+q–1 (1 – x q ) –p/q dx = πp q 2 sin(πp/q) , q > p. 18.  1 0 x q/p–1 (1 – x q ) –1/p dx = π q sin(π/p) , p >1, q >0. 19.  1 0 x p–1 – x –p 1 – x dx = π cot(πp), |p| <1. 20.  1 0 x p–1 – x –p 1+x dx = π sin(πp) , |p| <1. 21.  1 0 x p – x –p x – 1 dx = 1 p – π cot(πp), |p| <1. 22.  1 0 x p – x –p 1+x dx = 1 p – π sin(πp) , |p| <1. 23.  1 0 x 1+p – x 1–p 1 – x 2 dx = π 2 cot  πp 2  – 1 p , |p| <1. 24.  1 0 x 1+p – x 1–p 1+x 2 dx = 1 p – π 2 sin(πp/2) , |p| <1. 25.  ∞ 0 x p–1 – x q–1 1 – x dx = π[cot(πp) – cot(πq)], p, q >0. 26.  1 0 dx  (1 + a 2 x)(1 – x) = 2 a arctan a. 27.  1 0 dx  (1 – a 2 x)(1 – x) = 1 a ln 1+a 1 – a . 28.  1 –1 dx (a – x) √ 1 – x 2 = π √ a 2 – 1 ,1<a. 29.  1 0 x n dx √ 1 – x = 2(2n)!! (2n + 1)!! , n =1,2, 30.  1 0 x n–1/2 dx √ 1 – x = π (2n – 1)!! (2n)!! , n =1,2, 31.  1 0 x 2n dx √ 1 – x 2 = π 2 1 ⋅ 3 (2n – 1) 2 ⋅ 4 (2n) , n =1,2, 32.  1 0 x 2n+1 dx √ 1 – x 2 = 2 ⋅ 4 (2n) 1 ⋅ 3 (2n +1) , n =1,2, 33.  ∞ 0 x λ–1 dx (1 + ax) n+1 =(–1) n πC n λ–1 a λ sin(πλ) ,0<λ < n +1. Page 704 © 1998 by CRC Press LLC © 1998 by CRC Press LLC [...]... ∞ 4 n! 1 , k! an–k+1 2π x2n–1 dx = (–1)n–1 px – 1 e p π , a > 0 a 0 ∞ Γ(ν) xν–1 e–µx dx = ν , µ, ν > 0 µ 0 ∞ dx ln 2 = 1 + eax a 0 7 0 2n B2n , 4n n = 1, 2, (Bm are the Bernoulli numbers) ∞ 8 9 10 11 12 x2n–1 dx 2π 2n |B2n | = (1 – 21–2n ) , n = 1, 2, px + 1 e p 4n 0 ∞ –px e dx π , q > p > 0 or 0 > p > q = 1 + e–qx q sin(πp/q) –∞ ∞ ax e + e–ax π dx = πa , b > a ebx + e–bx 0 2b cos 2b ∞ –px... bx π cos 2c cos 2c dx = , c > |a| + |b| πa πb cosh(cx) c cos + cos c c 2 π x dx = , a > 0 sinh ax 2a2 √ dx 1 a + b + a2 + b2 √ = √ ln , ab ≠ 0 a + b sinh x a2 + b2 a + b – a2 + b2 ∞ 7 0 ∞ 8 0 ∞ 9 0 ∞ 10 0 ∞ 11 sinh ax π πa dx = tan , sinh bx 2b 2b x2n 0 ∞ 12 0 b > |a| sinh ax πa π d2n tan dx = , sinh bx 2b dx2n 2b x2n π 2n dx = 2n+1 |B2n |, a sinh2 ax b > |a|, n = 1, 2, a > 0 3.4 Integrals Containing... x2n ln(1 + x) dx = 8 π , µaµ sin(πµ) 0 2n k=1 (–1)k–1 , k 1 ln 4 + 2n + 1 2n+1 k=1 –1 < µ < 0 n = 1, 2, (–1)k , k n = 0, 1, © 1998 by CRC Press LLC © 1998 by CRC Press LLC Page 707 1 n–1/2 x 9 0 ∞ 10 ln 0 ∞ 11 0 ∞ 12 0 2 ln 2 4(–1)n ln(1 + x) dx = + π– 2n + 1 2n + 1 a2 + x2 dx = π(a – b), b2 + x2 n k=0 (–1)k , 2k + 1 n = 1, 2, a, b > 0 xp–1 ln x π 2 cos(πp/q) dx = – 2 2 , 1 + xq q sin (πp/q)... 1)!! (2k – 1)!! a + b (n – k)! k! a–b k , a > |b| a > 0 b cos ax – cos bx , dx = ln x a ab ≠ 0 cos ax – cos bx dx = 1 π(b – a), 2 x2 xµ–1 cos ax dx = a–µ Γ(µ) cos 0 a, b ≥ 0 1 2 πµ , a > 0, 0 < µ < 1 ∞ 9 10 11 cos ax π –ab e , a, b > 0 dx = b2 + x2 2b 0 √ ∞ cos ax π 2 ab ab ab dx = exp – √ cos √ + sin √ b4 + x4 4b3 2 2 2 0 ∞ cos ax π dx = 3 (1 + ab)e–ab , a, b > 0 2 + x2 )2 (b 4b 0 ∞ 12 0 ∞ 13 π be–ac... References for Supplement 3: H B Dwight (1961), I S Gradshteyn and I M Ryzhik (1980), A P Prudnikov, Yu A Brychkov, and O I Marichev (1986, 1988) © 1998 by CRC Press LLC © 1998 by CRC Press LLC Page 710 Supplement 4 Tables of Laplace Transforms 4.1 General Formulas ∞ Laplace transform, f˜(p) = Original function, f (x) No e–px f (x) dx 0 1 af1 (x) + bf2 (x) 2 f (x/a), a > 0 3 0 f (x – a) if 0 < x –1 x f˜(p – iω) + f˜(p + iω) , i2 = –1 p2 ˜ 2 f (t ) dt 4t2 0 ∞ √ (t/p)a/2 Ja 2 pt f˜(t) dt exp – 0 ∞ 13 ∞ f (a sinh x), a > 0 Jp (at)f˜(t) dt 0 14... –eap Ei(–ap) 5 xn , n = 1, 2, n–1/2 6 x 7 √ 8 9 n = 1, 2, , n! pn+1 √ 1 ⋅ 3 (2n – 1) π 2n pn+1/2 π ap √ e erfc ap p 1 x+a √ x x+a √ π √ – π aeap erfc ap p 2a–1/2 – 2(πp)1/2 eap erfc (x + a)–3/2 10 x1/2 (x + a)–1 11 x–1/2 (x + a)–1 (π/p)1/2 – πa1/2 eap erfc √ πa–1/2 eap erfc ap 12 xν , (x + a)ν , 14 xν (x + a)–1 , 15 (x2 + 2ax)–1/2 (x + a) √ ap Γ(ν + 1)p–ν–1 13 √ ν > –1 ν > –1 ν > –1 ap p–ν–1... Laplace transform, f˜(p) = Original function, f (x) No e–px f (x) dx 0 5 1 1 – e–ax x2 6 exp –ax2 , 7 x exp –ax2 8 exp(–a/x), a≥0 √ x exp(–a/x), a≥0 9 2 (p + 2a) ln(p + 2a) + p ln p – 2(p + a) ln(p + a) 10 1 √ exp(–a/x), x 11 1 √ exp(–a/x), x x 12 13 14 xν–1 exp(–a/x), √ exp –2 ax √ (πb)1/2 exp bp2 erfc(p b), a>0 √ 2b – 2π 1/2 b3/2 p erfc(p b), a≥0 a>0 a>0 2 1 2 √ a/pK1 2 ap √ √ π/p3 1 + 2 ap exp –2 ap... 1/2 –1/2 p 2π a/p – a1/2 p–2 a/p ea/p – 1 p p2 – a2 © 1998 by CRC Press LLC © 1998 by CRC Press LLC Page 714 ∞ Laplace transform, f˜(p) = Original function, f (x) No e–px f (x) dx 0 p2 – 2a2 p3 – 4a2 p 10 cosh2 (ax) 11 xν–1 cosh(ax), 12 √ cosh 2 ax 13 √ ν>0 √ x cosh 2 ax 1 2 Γ(ν) (p – a)–ν + (p + a)–ν √ 1 πa + √ ea/p erf p p p π 1/2 p–5/2 1 2p 14 √ 1 √ cosh 2 ax x √ 1 √ cosh2 ax x 1 1/2 –1/2 p 2π + a... (2na)2 a2n+1 (2n + 1)! p2 + 32 a2 p2 + (2n + 1)2 a2 p2 + a2 n! pn+1 p2 + a2 a arctan p 1 4 2k+1 (–1)k Cn+1 n+1 0≤2k≤n a p 2k+1 ln 1 + 4a2 p–2 a arctan(2a/p) – 1 p ln 1 + 4a2 p–2 4 √ πa √ e–a/p p p 10 √ 1 sin 2 ax x π erf 11 cos(ax) p p2 + a2 12 cos2 (ax) p2 + 2a2 p p2 + 4a2 13 xn cos(ax), 14 15 16 17 √ 1 √ cos 2 ax x 18 sin(ax) sin(bx) 19 cos(ax) sin(bx) n! pn+1 n = 1, 2, 1 1 – cos(ax) x 1 cos(ax) . –1. 9.  x n (ln x) m dx = x n+1 m +1 m  k=0 (–1) k (n +1) k+1 (m +1)m (m – k + 1)(ln x) m–k , n, m =1,2, 10.  x p (ln x) q dx = 1 p +1 x p+1 (ln x) q – q p +1  x p (ln x) q–1 dx, p, q ≠ –1. 11.  ln(a. – 1 3 sin 3 x. 9.  cos 2n xdx= 1 2 2n C n 2n x + 1 2 2n–1 n–1  k=0 C k 2n sin[(2n – 2k)x] 2n – 2k . 10.  cos 2n+1 xdx= 1 2 2n n  k=0 C k 2n+1 sin[(2n – 2k +1)x] 2n – 2k +1 . 11.  dx cos x =ln    tan  x 2 + π 4     . 12.  dx cos 2 x =. = x 3 3 arccos x a – 1 9 (x 2 +2a 2 ) √ a 2 – x 2 . 9.  arctan x a dx = x arctan x a – a 2 ln(a 2 + x 2 ). 10.  x arctan x a dx = 1 2 (x 2 + a 2 ) arctan x a – ax 2 . 11.  x 2 arctan x a dx = x 3 3 arctan x a – ax 2 6 + a 3 6 ln(a 2 +

Ngày đăng: 23/07/2014, 16:20

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
Corduneanu, C., Integral Equations and Applications, Cambridge Univ. Press, Cambridge–New York, 1991 Sách, tạp chí
Tiêu đề: Integral Equations and Applications
Năm: 1991
Courant, R. and Hilbert, D., Methods of Mathematical Physics. Vol. 1., Interscience Publ., New York, 1953 Sách, tạp chí
Tiêu đề: Methods of Mathematical Physics. Vol. 1
Năm: 1953
Davenport, W. B. and Root, W. L., An Introduction to the Theory of Random Signals and Noise, McGraw-Hill Book Co., New York, 1958 Sách, tạp chí
Tiêu đề: An Introduction to the Theory of Random Signals and Noise
Năm: 1958
Davis, B., Integral Transforms and Their Applications, Springer-Verlag, New York, 1978 Sách, tạp chí
Tiêu đề: Integral Transforms and Their Applications
Năm: 1978
Delves, L. M. and Mohamed J. L., Computational Methods for Integral Equations, Cambridge Univ. Press, Cambridge–New York, 1985 Sách, tạp chí
Tiêu đề: Computational Methods for Integral Equations
Năm: 1985
Demidovich, B. P., Maron, I. A., and Shuvalova E. Z., Numerical Methods. Approximation of Functions and Differential and Integral Equations [in Russian], Fizmatgiz, Moscow, 1963 Sách, tạp chí
Tiêu đề: Numerical Methods. Approximation ofFunctions and Differential and Integral Equations
Năm: 1963
Ditkin, V. A. and Prudnikov, A. P., Integral Transforms and Operational Calculus, Pergamon Press, New York, 1965 Sách, tạp chí
Tiêu đề: Integral Transforms and Operational Calculus
Năm: 1965
Doetsch, G., Handbuch der Laplace-Transformation. Theorie der Laplace-Transformation, Birk- h¨ auser Verlag, Basel–Stuttgart, 1950 Sách, tạp chí
Tiêu đề: Handbuch der Laplace-Transformation. Theorie der Laplace-Transformation
Năm: 1950
Doetsch, G., Handbuch der Laplace-Transformation. Anwendungen der Laplace-Transformation, Birkh¨ auser Verlag, Basel–Stuttgart, 1956 Sách, tạp chí
Tiêu đề: Handbuch der Laplace-Transformation. Anwendungen der Laplace-Transformation
Năm: 1956
Doetsch, G., Einf¨ uhrung in Theorie und Anwendung der Laplace-Transformation, Birkh¨ auser Verlag, Basel–Stuttgart, 1958 Sách, tạp chí
Tiêu đề: Einf¨uhrung in Theorie und Anwendung der Laplace-Transformation
Năm: 1958
Dwight, H. B., Tables of Integrals and Other Mathematical Data, Macmillan, New York, 1961 Sách, tạp chí
Tiêu đề: Tables of Integrals and Other Mathematical Data
Năm: 1961
Dzhuraev, A., Methods of Singular Integral Equations, J. Wiley, New York, 1992 Sách, tạp chí
Tiêu đề: Methods of Singular Integral Equations
Năm: 1992
Fock, V. A., Some integral equations of mathematical physics, Doklady AN SSSR, Vol. 26, No. 4–5, pp. 147–151, 1942 Sách, tạp chí
Tiêu đề: Some integral equations of mathematical physics
Năm: 1942
Gakhov, F. D., Boundary Value Problems [in Russian], Nauka, Moscow, 1977 Sách, tạp chí
Tiêu đề: Boundary Value Problems
Năm: 1977
Gakhov, F. D. and Cherskii, Yu. I., Equations of Convolution Type [in Russian], Nauka, Moscow, 1978 Sách, tạp chí
Tiêu đề: Equations of Convolution Type
Năm: 1978
Gohberg, I. C. and Krein, M. G., The Theory of Volterra Operators in a Hilbert Space and Its Applications [in Russian], Nauka, Moscow, 1967 Sách, tạp chí
Tiêu đề: The Theory of Volterra Operators in a Hilbert Space and ItsApplications
Năm: 1967
Golberg, A. (Editor), Numerical Solution of Integral Equations, Plenum Press, New York, 1990 Sách, tạp chí
Tiêu đề: Numerical Solution of Integral Equations
Năm: 1990
Gradshteyn, I. S. and Ryzhik, I. M., Tables of Integrals, Series, and Products, Academic Press, New York, 1980 Sách, tạp chí
Tiêu đề: Tables of Integrals, Series, and Products
Năm: 1980
Gripenberg, G., Londen, S.-O., and Staffans, O., Volterra Integral and Functional Equations, Cambridge Univ. Press, Cambridge–New York, 1990 Sách, tạp chí
Tiêu đề: Volterra Integral and Functional Equations
Năm: 1990
Hackbusch, W., Integral Equations: Theory and Numerical Treatment, Birkh¨ auser Verlag, Boston, 1995 Sách, tạp chí
Tiêu đề: Integral Equations: Theory and Numerical Treatment
Năm: 1995

TỪ KHÓA LIÊN QUAN