ω ω ω ω α θ δ ω ω ω ω ω ω [5] [3] [2] ω ω ω 1. ω 1.1. (X, τ) A X 1 A A = int(clA) A A = cl(intA) A V V ⊆ A ⊆ clV A X − A 1.2. (X, τ) A X x ∈ X A U ∈ τ x ∈ U U ∩ A A ω ω ω ω ω ω ω A clA intA cl ω (A) int ω (A) 1.3. A A ω ω int ω (A) ω ω ω cl ω (A) ω A A ω intA ⊂ int ω (A) A A ω cl ω (A) ⊂ clA 1.4. A (X, τ) ω ω V V ⊆ A ⊆ cl ω (V ) A ω ω X − A ω ω X ωSO(X) ω X ωSC(X) ω A ω ω A sint ω (A) ω A ω ω A scl ω (A) A A scl(A) 1.5. ω ω ω ω sint ω (A) ω ω ω scl ω (A) ω X − scl ω (U) = sint ω (X − U ) A ⊂ B scl ω (A) ⊂ scl ω (B) sint ω (A) ⊂ sint ω (B) scl(A) ⊂ scl ω (A) A ω A = scl ω (A) 1.6. A (X, τ) ω ω ω scl ω (A) ⊂ U U A ⊂ U ω ω ω ω ω ω X ωGSC(X, τ) ωGSO(X, τ) 1.7. A (X, τ) ω ω scl ω (A) ⊂ U U A ⊂ U ω A ω ω X − A ω ω A (X, τ) scl(A) ⊂ U U A ⊂ U 1.8. ω ω ω A (X, τ) X − A X X − A ω A ω A = scl ω (A) U A ⊂ U scl ω (A) ⊂ U A ω A ω U A ⊂ U A ω scl ω (A) ⊂ U A ω 1.9. ω ω ω 1.10. ω A ⊂ X ω U A ⊂ U scl ω (A) ⊂ U scl(A) ⊂ scl ω (A) A 1.11. A (X, τ) A ω F ⊂ sint ω (A) F F ⊂ A A ω F F ⊂ A X − A ω X − F X − A ⊂ X − F scl ω (X − A) ⊂ X − F scl ω (X − A) = X − sint ω (A) F ⊂ sint ω (A) A ω X − A ω U X − A ⊂ U X − U X − U ⊂ A X − U ⊂ sint ω (A) X − sint ω (A) ⊂ U scl ω (X − A) ⊂ U X − A ω A ω 1.12. A ω (X, τ) scl ω (A)−A X F (X, τ) F ⊂ scl ω (A) − A F ⊂ X − A A ⊂ X − F A ω X − F scl ω (A) ⊂ X − F F ⊂ X − scl ω (A) F ⊂ (X − scl ω (A)) ∩ scl ω (A) = φ F = φ 1.13. A ω (X, τ) scl ω (A) − A ω A ω (X, τ) F F ⊂ scl ω (A) − A F = φ F ⊂ sint ω (scl ω (A)−A) scl ω (A)−A ω 2. ω 2.1. f : (X, τ) −→ (Y, σ) ω ω ω F (Y, σ) f −1 (F ) ω (X, τ) f : (X, τ) −→ (Y, σ) ω ω ω F (Y, σ) f −1 (F ) ω (X, τ) 2.2. f : (X, τ) −→ (Y, σ) f ω (Y, σ) ω (X, τ) (a) ⇒ (b) G (Y, σ) Y − G (Y, σ) f −1 (Y − G) ω (X, τ) f −1 (Y − G) = X − f −1 (G) X − f −1 (G) ω (X, τ) f −1 (G) ω (X, τ) (b) ⇒ (a) F (Y, σ) Y − F (Y, σ) f −1 (Y − F ) ω (X, τ ) f −1 (Y − F ) = X − f −1 (F ) X − f −1 (F ) ω (X, τ) f −1 (F ) ω (X, τ) f ω 2.3. f : (X, τ) −→ (Y, σ) ω h : (Y, σ) −→ (Z, δ) h o f : (X, τ) −→ (Z, δ) ω E (Z, δ) h h −1 (E) (Y, σ) f ω f −1 (h −1 (E)) ω (X, τ) (h o f) −1 (E) = f −1 (h −1 (E)) (h ◦ f) −1 (E) ω (X, τ) h o f ω 2.4. (X, τ) ω T ∗ 1 2 ω 2.5. (X, τ) ω T srg ω ω 2.6. (X , τ) (Z, δ) (Y, σ ) ω T ∗ 1 2 f : ( X, τ ) −→ ( Y, σ ) h : ( Y, σ ) −→ ( Z, δ ) ω h o f : (X, τ) −→ (Z, δ) ω F (Z, δ) h ω h −1 (F ) ω (Y, σ) (Y, σ) ω T ∗ 1 2 h −1 (F ) (Y, σ) f ω f −1 (h −1 (F )) ω (X, τ) h o f ω 2.7. (X, τ) ω T ∗ 1 2 f : (X, τ ) −→ (Y, σ) ω h : (Y, σ) −→ (Z, δ) h o f : (X, τ ) −→ (Z, δ) ω h f ω h o f ω A (Z, δ) (h o f) −1 (A) ω (X, τ ) f −1 (h −1 (A)) ω (X, τ) (X, τ) ω T ∗ 1 2 f −1 (h −1 (A)) (X, τ) f(f −1 (h −1 (A))) (Y, σ) h −1 (A) (Y, σ) h h f ω h o f ω 2.8. f : (X, τ) −→ (Y, σ) A (Y, σ) f −1 (A) (X, τ) [4] 2.9. f : (X, τ) −→ (Y, σ) ω ω ω ω A (Y, σ ) f −1 (A) (X , τ) 2.10. f : (X, τ) −→ (Y, σ) ω G (Y, σ) G ω (Y, σ) f ω f −1 (G) (X, τ) f 2.11. f : (X, τ) −→ (Y, σ) ω ω A (Y, σ) f −1 (A) (X, τ) f ω F ω (Y, σ) Y − F ω (Y, σ) f ω f −1 (Y − F ) (X, τ) X − f −1 (F ) (X, τ) f −1 (F ) (X, τ) G ω (Y, σ) Y − G ω (Y, σ) f −1 (Y − G) = X −f −1 (G) (X, τ ) f −1 (G) (X , τ) f ω 2.12. f : (X, τ ) −→ (Y, σ) ω f G ω (Y, σ) f −1 (G) (X , τ) f ω 2.13. f : (X, τ ) −→ (Y, σ) ω h : (Y, σ) −→ (Z, δ) ω h o f : (X, τ) −→ (Z, δ) G (Z, δ) h ω h −1 (G) ω (Y, σ) f ω f −1 (h −1 (G)) (X, τ) (h o f) −1 (G) = f −1 (h −1 (G)) (X, τ) h o f 2.14. f : (X, τ ) −→ (Y, σ) ω ω ω ω A (Y, σ) f −1 (A) (X, τ) 2.15. f : (X, τ) −→ (Y, σ) ω ω f ω G ω (Y, σ) f −1 (G) (X, τ) f ω 2.16. f : (X, τ ) −→ (Y, σ) f ω ω (Y, σ) (X, τ) (a) ⇒ (b) F ω (Y, σ) Y − F ω (Y, σ) f −1 (Y − F ) (X, τ) f −1 (F ) (X, τ ) (b) ⇒ (a) G ω (Y, σ) Y − G ω (Y, σ) f −1 (Y − G) (X, τ) f −1 (G) (X, τ) f ω 3. ω 3.1. f : (X, τ) −→ (Y, σ) ω ω ω ω F (Y, σ) f −1 (F ) ω (X, τ) 3.2. f : (X, τ ) −→ (Y, σ) ω ω F (Y, σ) F ω (Y, σ) f ω f −1 (F ) ω (X, τ) f −1 (F ) ω (X, τ) f ω 3.3. f : (X, τ) −→ (Y, σ) ω h : (Y, σ) −→ (Z, δ) ω h o f : (X, τ) −→ (Z, δ) ω F (Z, δ) h ω h −1 (F ) ω (Y, σ) f ω f −1 (h −1 (F )) ω (X, τ) (h o f) −1 (F ) = f −1 (h −1 (F )) ω (X, τ) h o f ω 3.4. (X, τ) (Z, δ) (Y, σ) ω T srg f : (X, τ) −→ (Y, σ) ω h : (Y, σ) −→ (Z, δ) ω h o f : (X, τ) −→ (Z, δ) ω E (Z, δ) h −1 (E) ω (Y, σ) (Y, σ) ω T srg h −1 (E) ω (Y, σ) f ω f −1 (h −1 (E)) ω (X, τ ) (h o f) −1 (E) = f −1 (h −1 (E)) ω (X, τ) h o f ω 3.5. (X , τ) (Z, δ) (Y, σ ) ω T ∗ 1 2 f : (X, τ) −→ (Y, σ) ω h : (Y, σ) −→ (Z, δ) ω h o f : (X, τ) −→ (Z, δ) ω F (Z, δ) h −1 (F ) ω (Y, σ) (Y, σ) ω T ∗ 1 2 h −1 (F ) (Y, σ) h −1 (F ) ω (Y, σ) f ω f −1 (h −1 (F )) ω (X, τ) (h o f) −1 (F ) = f −1 (h −1 (F )) ω (X, τ) h o f ω 3.6. f : (X, τ) −→ (Y, σ) ω ω ω ω F (Y, σ) f −1 (F ) ω (X, τ) 3.7. f : (X, τ) −→ (Y, σ) ω ω U (Y, σ) f −1 (U) ω (X, τ ) U ω (Y, σ) Y − U ω (Y, σ) f ω f −1 (Y − U) = X − f −1 (U) ω (X, τ) f −1 (U) ω (X, τ) F ω (Y, σ) Y − F ω (Y, σ) f −1 (Y − F ) ω (X, τ) f −1 (Y − F ) = X − f −1 (F ) X − f −1 (F ) ω (X, τ ) f −1 (F ) ω (X, τ) f ω 3.8. f : (X , τ) −→ (Y, σ) ω ω f ω F (Y, σ) F ω (Y, σ) f ω f −1 (F ) ω (X, τ) f ω 3.9. (X, τ) (Y, σ) (Z, δ) f : (X, τ) −→ (Y, σ) ω h : (Y, σ) −→ (Z, δ) ω h o f : (X, τ) −→ (Z, δ) ω F (Z, δ) h ω h −1 (F ) ω (Y, σ) f ω (h o f) −1 (F ) = f −1 (h −1 (F )) ω (X, τ ) h o f ω 3.10. f : (X, τ) −→ (Y, σ) h : (Y, σ) −→ (Z, δ) ω h o f : (X, τ) −→ (Z, δ) ω [1] [2] ω ω [3] [4] [5] ω ω ω