1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Giáo trình hướng dẫn phân tích quy trình khảo sát đoạn nhiệt tại tiết diện ra của ống p1 potx

5 326 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Cấu trúc

  • Bảng 1-1: Khả năng phân giải phụ thuộc nhiệt độ

  • Bảng 1-2: ảnh hưởng của nhiệt độ đến vi sinh vật

  • Bảng 1-3. Chế độ bảo quản rau quả tươi

  • Bảng 1-4: Chế độ bảo quản sản phẩm động vật

  • Bảng 1-5. Các thông số về phương pháp kết đông

  • Bảng 2-1: Chế độ và thời gian bảo quản đồ hộp rau quả

  • Bảng 2-2: Chế độ và thời gian bảo quản rau quả tươi

  • Bảng 2-3: Chế độ và thời gian bảo quản TP đông lạnh

  • Bảng 2-4: Các ứng dụng của panel cách nhiệt

  • Hình 2-1: Kết cấu kho lạnh panel

  • Hình 2-2: Cấu tạo tấm panel cách nhiệt

  • Hình 2-3: Kho lạnh bảo quản

  • 1- Rivê; 2- Thanh nhôm góc; 3- Thanh nhựa; 4- Miếng che mối

  • 9- Miếng đệm; 10- Khoá cam-lock; 11- Nắp nhựa che lổ khoá

  • Hình 2-5 : Các chi tiết lắp đặt panel

  • Bảng 2-5: Tiêu chuẩn chất tải của các loại sản phẩm

  • Bảng 2-6: Hệ số sử dụng diện tích

  • Bảng 2-7: Kích thước kho bảo quản tiêu chuẩn

  • Hình 2-7: Con lươn thông gió kho lạnh

  • Hình 2-9: Màn nhựa che cửa ra vào và xuất nhập hàng kho lạ

  • Bảng 2-8: Khoảng cách cực tiểu khi xếp hàng trong kho lạnh

  • Hình 2-10: Bố trí kênh gió trong kho lạnh

  • Hình 2-11: Cách xác định chiều dài của tường

  • Bảng 2-9. Hiệu nhiệt độ dư phụ thuộc hướng và tính chất bề m

  • Bảng 2-14: Tỷ lệ tải nhiệt để chọn máy nén

  • Hình 2-13: Sơ đồ nguyên lý hệ thống kho lạnh

  • Bảng 2-16: Công suất lạnh máy nén COPELAND, kW

  • Phạm vi nhiệt độ trung bình Môi chất R22

  • Phạm vi nhiệt độ thấp Môi chất R22

  • Bảng 2-19: Công suất lạnh máy nén trục Vít Grasso chủng lo

  • Hình 2-18: Dàn ngưng không khí

  • Hình 2-19: Cấu tạo dàn ngưng không khí

  • Hình 2-20: Dàn lạnh không khí Friga-Bohn

  • Bảng 2-28: Bảng thông số kỹ thuật của dàn lạnh FRIGA-BOHN

  • Hình 2-21: Cấu tạo dàn lạnh không khí Friga-Bohn

  • Hình 2-22: Cụm máy nén - bình ngưng, bình chứa

  • Bảng 3-1: Hàm lượng tạp chất trong nước đá công nghiệp

  • Bảng 3-2: ảnh hưởng của tạp chất đến chất lượng nước đá

  • Bảng 3-3: Hàm lượng cho phép của các chất trong nước

    • Hàm lượng tối đa

  • Bảng 3-4: Các lớp cách nhiệt bể đá cây

    • Hình 3-2: Kết cấu cách nhiệt tường bể đá

      • Hình 3-3: Kết cấu cách nhiệt nền bể đá

  • Bảng 3-5: Các lớp cách nhiệt nền bể đá

  • Bảng 3-6: Kích thước khuôn đá

    • Hình 3-4: Linh đá cây 50 kg

  • Hình 3-5: Bế trí bể đá với linh đá 7 khuôn đá

  • Bảng 3-7: Thông số bể đá

  • Hình 3-6: Dàn lạnh panel

    • Hình 3-7: Cấu tạo dàn lạnh xương cá

  • Hình 3-8: Bình tách giữ mức tách lỏng

    • Hình 3-9: Máy nén lạnh MYCOM

      • 1- Dao cắt đá; 2- Vách 2 lớp; 3- Hộp nước inox; 4- Tấm gạt n

        • Hình 3-10: Cấu tạo bên trong cối đá vảy

          • 1- Máy nén; 2- Bình chứa CA; dàn ngưng; 4- Bình tách dầu; 5-

            • Hình 3-11: Sơ đồ nguyên lý hệ thống lạnh máy đá vảy

  • Bảng 3-11: Diện tích yêu cầu của các cối đá

    • Hình 3-13: Cách nhiệt cối đá vảy

  • Bảng 3-13: Cối đá vảy của SEAREE

  • Bảng 4-1 : Khả năng phân giải của men phân giải mỡ lipaza

  • Bảng 4-2: Các hằng số thực nghiệm

  • Bảng 4-3. Các thông số về phương pháp cấp đông

  • Bảng 4-4: Kích thước kho cấp đông thực tế

  • Bảng 4-5 : Các lớp cách nhiệt panel trần, tường kho cấp đôn

  • Bảng 4-6: Các lớp cách nhiệt nền kho cấp đông

  • Hình 4-5: Bình trung gian kiểu nằm ngang R22

  • Hình 4-6: Bình tách lỏng hồi nhiệt

  • Bảng 4-9: Các lớp cách nhiệt tủ cấp đông

  • Bảng 4-10: Số lượng các tấm lắc

  • Bảng 4-12: Diện tích xung quanh của tủ cấp đông

  • Hình 4-12: Cấu tạo bình trống tràn

  • Bảng 4-13: Số lượng vách ngăn các tủ đông gió

  • Bảng 4-14: Thông số kỹ thuật tủ đông gió

  • Hình 4-14: Cấu tạo tủ đông gió 250 kg/mẻ

  • Bảng 4-15: Các lớp cách nhiệt tủ đông gió

  • Hình 4-16: Sơ đồ nguyên lý hệ thống cấp đông I.Q.F dạng xoắn

  • Bảng 4-16: Buồng cấp đông kiểu xoắn của SEAREFICO

  • Hình 4-19: Buồng cấp đông I.Q.F có băng chuyền thẳng

  • Bảng 4-17 Model: MSF-12 (Dây chuyền rộng 1200mm)

  • Bảng 4-18: Model: MSF-15 (Dây chuyền rộng 1500mm)

    • Bảng 4-19: Thông số kỹ thuật buồng cấp đông I.Q.F dạng thẳng

      • Bảng 4-20: Thời gian cấp đông và hao hụt nước

        • Bảng 4-21: Thông số buòng cấp đông I.Q.F siêu tốc của SEAREF

          • Bảng 4-22: Nhiệt độ không khí trong các buồng I.Q.F

            • Bảng 4-23: Các lớp cách nhiệt buồng I.Q.F

              • Hình 4-23: Sơ đồ nguyên lý hệ thống lạnh máy nén Bitzer 2 c

                • Bảng 4-24 : Năng suất lạnh máy nén Bitzer n = 1450 V/phút,

                • Bảng 4-25 : Năng suất lạnh máy nén Bitzer n = 1450 V/phút,

                • Bảng 4-26 : Năng suất lạnh máy nén 2 cấp MYCOM - R22

                • Bảng 4-27 : Năng suất lạnh máy nén 2 cấp MYCOM NH3

  • Hình 5-1 : Sơ đồ nguyên lý hệ thống lạnh nhà máy bia

  • Hình 5-2 : Bình bay hơi làm lạnh glycol

  • Hình 5-3: Sơ đồ nguyên lý hệ thống ngưng tụ CO2

  • Bảng 5-1: Các thông số các thiết bị

  • Thiết bị

  • Bảng 5-2 :Thông số cách nhiệt các thiết bị

  • Hình 5-6 : Sơ đồ nguyên lý hệ thống lạnh của cụm water chill

  • Bảng 5-3: Thông số nhiệt của cụm chiller Carrier

  • Bảng 5-3 : Thông số kỹ thuật FCU của hãng Carierr

  • Hình 5-8 : Sơ đồ nguyên lý hệ thống lạnh tủ lạnh gia đình

  • Hình 5-9 : Sơ đồ nguyên lý hệ thống lạnh của tủ lạnh thương

  • Hình 5-10 : Sơ đồ nguyên lý hệ thống lạnh hoạt động ở nhiều

  • Máy nén; 2- Dàn ngưng; 3- Bình chứa; 4- Lọc ẩm; 5- TB hồi n

  • Hình 5-11 : Sơ đồ nguyên lý hệ thống lạnh của xe tải lạnh

  • Hình 5-12: Sơ đồ nguyên lý hệ thống làm lạnh nước chế biến

  • Bảng 5-4: Nhiệt lượng qn(J/kg) phụ thuộc nhiệt độ nước vào

  • Hình 6-1 : Bình ngưng ống chùm nằm ngang

  • Hình 6-2: Bố trí đường nước tuần hoàn

  • Hình 6-9 : Dàn ngưng không khí đối lưu tự nhiên

  • Hình 6-10 : Dàn ngưng không khí đối cưỡng bức

  • Bảng 6-1: Hệ số truyền nhiệt và mật độ dòng nhiệt của các lo

  • Bảng 6-6 : Hệ số hiệu chỉnh số dãy ống Cz

  • Bảng 6-7: Hệ số A

  • Hình 7-3: Thiết bị bay hơi kiểu panen

  • Hình 7-4: Dàn lạnh xương cá

  • Hình 7-6: Dàn lạnh đối lưu tự nhiên có cánh

  • Bảng 7-1 : Hệ số truyền nhiệt k và mật độ dòng nhiệt các dàn

  • Bảng 7-2: Giới hạn mật độ dòng nhiệt, W/m2

  • Bảng 7-3 : Hệ số A

Nội dung

55 Chơng 6. các quá trình nhiệt động thực tế 6.1. Quá trình lu động Sự chuyển động của môi chất gọi là lu động. Khi khảo sát dòng lu động, ngoài các thông số trạng thái nh áp suất, nhiệt độ . . . . ta còn phải xét một thông số nữa là tốc độ, kí hiệu là . 6.1.1 Các điều kiện khảo sát để đơn giản, khi khảo sát ta giả thiết : - Dòng lu động là ổn định: nghĩa là các thông số của môi chất không thay đổi theo thời gian . - Dòng lu động một chiều: vận tốc dòng không thay đổi trong tiết diện ngang. - Quá trình lu động là đoạn nhiệt: bỏ qua nhiệt do ma sát và dòng không trao đổi nhiệt với môi trờng. - Quá trình lu động là liên tục: các thông số của dòng thay đổi một cách liên tục, không bị ngắt quảng và tuân theo phơng trình liên tục: G = f = const (6-1) ở đây: G lu lợng khối lợng [kg/s]; - vận tốc của dòng [m/s]; f diện tích tiết diện ngang của dòng tại nơi khảo sát [m 2 ]; - khối lợng riêng của mổi chất [kg/m 3 ]; 6.1.2. Các qui luật chung của của quá trình lu động 6.1.2.1. Tốc độ âm thanh Tốc độ âm thanh là tốc độ lan truyền sóng chấn động trong một môi trờng nào đó. Tốc độ âm thanh trong môi trờng khí hoặc hơi đợc xác định theo công thức: kRTkpva == (6-2) ở đây: a tốc độ âm thanh [m/s]; k số mũ đoạn nhiệt; p - áp suất môi chất [N/m 2 ]; v thể tích riêng [m 3 /kg]; R Hằng số chất khí [J/kg 0 K]; T nhiệt độ tuyệt đối của môi chất [ 0 K]; Giỏo trỡnh hng dn phõn tớch quy trỡnh kho sỏt on nhit ti tit din ra ca ng 56 Từ (6-2) ta thấy tốc độ âm thanh phụ thuộc vào bản chất và các thông số trạng thái của môi chất. Tỉ số giữa tốc độ của dòng với tốc độ âm thanh đợc gọi là số Mach, ký hiệu là M. M a = (6-3) Khi: - < a nghĩa là M < 1, ta nói dòng lu động dới âm thanh, - = a nghĩa là M = 1, ta nói dòng lu động bằng âm thanh, - > a nghĩa là M > 1, ta nói dòng lu động trên âm thanh (vợt âm thanh. Dòng lu động trong ống là một hệ hở, do đó ta theo đ ịnh luật nhiệt động I ta có thể viết: dq = di - vdp (6-4a) dq = di + 2 d 2 (6-4b). 6.1.2.2. Quan hệ giữa tốc độ và hình dáng ống Vì dòng đoạn nhiệt có đq = 0, nên từ (6-4) ta suy ra: 2 d 2 = -vdp (6-5). d = -vdp (6-6) Các đại lợng , v, p luôn dơng, do đó ngợc dấu với p, nghĩa là: - Khi tốc độ tăng (d > 0) thì áp suất giảm (dp < 0), ống loại này là ống tăng tốc. ống tăng tốc đợc dùng để tăng động năng của dòng môi chất trong tuốc binhơi, tuốc bin khí. - Khi tốc độ tăng (d < 0) thì áp suất tăng (dp > 0), ống loại này là ống tăng áp. ống tăng áp đợc dùng để tăng áp suất của chất khí trong máy nén li tâm, động cơ phản lực. 6.1.2.3. Quan hệ giữa tốc độ và hình dáng ống Từ (6-1) ta có: Gv = f, lấy vi phân ta đợc: Gdv = fd + df, chia 2 vế của phơng trình cho f ta đợc: = d v dv f df (6-7). Mặt khác, quá trình lu động là đoạn nhiệt nên kp dp v dv , thay vào (6-7) ta đợc: = d kp dp f df (6-8) 57 Đồng thời từ (6-6) ta có: dp = v d dp = , thay vào (6-8) ta đợc: = d kpv d f df hay = dd a f df 2 2 , từ đó suy ra: = d )1M( f df 2 , (6-9) Đối với ống tăng tốc, vì F, , M luôn dơng và d > 0, nên df sẽ cùng dấu với (M 2 -1), từ đây ta có 3 trờng hợp sau: - Nếu (M 2 -1) < 0 nghiã là M < 1 hay (< a) thì df < 0 (tiết diện giảm). ống tăng tốc có tiết diện nhỏ dần (hình 6.1a), - Nếu (M 2 -1) > 0 nghiã là M > 1 hay (> a) thì df > 0 (tiết diện tăng). ống tăng tốc có tiết diện lớn dần (hình 6.1b), - Nếu (M 2 -1) = 0 nghiã là M = 1 hay ( = a) thì df = 0 (tiết diện không đổi). Nghĩa là tại nơi bắt đầu có ( = a) thì tiết diện không đổi (hình 6.1c). Hình 6.1. ống tăng tốc Đối với ống tăng áp, vì d < 0, nên df sẽ ngợc dấu với (M 2 -1), các kết quả thu đợc sẽ ngợc lại với ống tăng tốc, nghĩa là khi nghiã là M > 1 thì df < 0, ống tăng áp có tiết diện nhỏ dần (hình 6.2a); khi M < 1 thì df > 0, ống tăng tốc có tiết diện lớn dần (hình 6.2b). Qua phân tích ta thấy: đối với một ống phun nhất định (lớn dần hay nhỏ dần) thì tuỳ theo tốc độ ở đàu vào mà ống có thể làm việc nh ống tăng tốc hay ống tăng áp. 6.1.2.4. Tốc độ dòng khí tại tiết diện ra cua rống tăng tốc 58 Dòng lu động đoạn nhiệt có dq = 0 nên theo (6-4a) ta có: -di = dl kt = 2 d 2 , tích phân lên ta đợc: 2 lii 2 1 2 2 kt21 == (6-10) Với ống tăng tốc thì thông thờng 2 >> 1 nên có thể coi 2 lii 2 2 kt21 == , khi đó tốc độ tại tiết diện ra là: )ii(2l2 21kt2 == (6-11a) = k 1k 1 2 12 p p 1RT 1k k 2 (6-11b) 6.1.2.5. Tốc độ tới hạn và áp suất tới hạn Khi lu động qua ống tăng tốc nhỏ dần với tốc độ đầu vào nhỏ hơn âm thanh, tốc độ dòng sẽ tăng dần, còn áp suất và nhiệt độ giảm dần đến tiết diện nào đó, tốc độ dòng bằng tốc độ âm thanh ( k = a k ), ta nói dòng đạt trạng thái tới hạn, các thông số tại đó gọi là thông số tới hạn, ký hiệu là v k , p k , k . . . Tỷ số giữa áp suất tới hạn và áp suất ở tiết diện vào gọi là tỉ số áp suất tới hạn, ký hiệu k = p k /p 1 . Khi dòng đạt trạng thái tới hạn k = a k , theo (6-2) và (6-11b) ta có: = k 1k 1 2 112 p p 1vp 1k k 2 = a k = kk2 vkp2= , suy ra: 1k k 1 k k 1k 2 p p + == (6-12) Từ (6-12) ta thấy tỉ số áp suất tới hạn chỉ phụ thuộc vào số mũ đoạn nhiệt k, tức là vào bản chất của chất khí. Với khí 2 nguyên tử k = 1,4 thì k = 0,528. Với khí 3 nguyên tử k = 1,3 thì k = 0,55. Khi thay bởi k thì tốc độ tới hạn đợc xác định theo (6-11b): = k 1k k12 1RT 1k k 2 , (6-13) 1 1k k k 1k 12 RT 1k k2 1k 2 1RT 1k k 2 + = + = + , 59 6.1.2.6. Lu lợng cực đại Lu lợng của dòng lu động đợc xác định theo công thức (6-1) tại tiết diện ra f 2 của ống: 2 22 v f G = (6-14) Khi áp suất tại tiết diện ra thay đổi thì lu lợng cũng thay đổi và chỉ phụ thuộc vào tỉ số áp suất = p 2 /p 1 . Để tính lu lợng lớn nhất G max ta lấy đạo hàm của G theo và xác định đợc lu lợng lớn nhất khi = k . Nghĩa là khi tốc độ dòng đạt tới tốc độ âm thanh thì lu lợng cũng đạt giá trị cực đại. Thực nghiệm cho thấy: Nếu tiếp tục giảm , thì lu lợng sẽ không tăng lên mà vẫn giữ nguyên ở giá trị G max , khi đó lu lợng cực đại đợc tính theo các thông số tới hạn; k kmin max v f G = (6-15) 6.1.3. Ôngs tăng tốc nhỏ dần và ống tăng tốc hỗn hợp 6.1.3.1. ống tăng tốc nhỏ dần Nh đã biết trong mục 6.1.2.3, đối với ống tăng tốc nhỏ dần, nếu dòng vào có tốc độ nhỏ hơn âm thanh thì tốc độ của dòng tăng dần và cùng lắm thì bằng tốc độ âm thanh. Vì vậy, trớc khi tính toán cần so sánh tỉ số áp suất = p 2 /p 1 với k = p k /p 1 . + Nếu > k , trạng thái dòng khí trong ống phun cha đạt đến trạng thái tới hạn, tốc độ 2 < k đợc tính theo (6-11) và lu lợng G < G max đợc tính theo (6-14). + Nếu k , dòng khí trong ống phun đạt đến trạng thái tới hạn, tốc độ 2 = k đợc tính theo (6-13) và lu lợng G = G max đợc tính theo (6-15). 6.1.3.2. ống tăng tốc hỗn hợp (ống Lavan) ống tăng tốc nhỏ dần không thể đạt đợc tốc độ lớn hơn âm thanh, do đó để đạt đợc tốc độ trên âm thanh ngời ta ghép ống tăng tốc nhỏ dần với ống tăng tốc lớn dần gọi là ống tăng tốc Lavan (hình 6.1c). . đổi trong tiết diện ngang. - Quá trình lu động là đoạn nhiệt: bỏ qua nhiệt do ma sát và dòng không trao đổi nhiệt với môi trờng. - Quá trình lu động là liên tục: các thông số của dòng thay. trình liên tục: G = f = const (6-1) ở đây: G lu lợng khối lợng [kg/s]; - vận tốc của dòng [m/s]; f diện tích tiết diện ngang của dòng tại nơi khảo sát [m 2 ]; - khối lợng riêng của. Lu lợng cực đại Lu lợng của dòng lu động đợc xác định theo công thức (6-1) tại tiết diện ra f 2 của ống: 2 22 v f G = (6-14) Khi áp suất tại tiết diện ra thay đổi thì lu lợng cũng

Ngày đăng: 23/07/2014, 03:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w