1. Trang chủ
  2. » Khoa Học Tự Nhiên

TÍNH TÍCH PHÂN BẰNG CÁCH SỬ DỤNG TÍNH CHẤT VÀ NGUYÊN HÀM C Ơ BẢN pdf

12 477 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 669 KB

Nội dung

I. TÍNH TÍCH PHÂN BẰNG CÁCH SỬ DỤNG TÍNH CHẤT VÀ NGUYÊN HÀM CƠ BẢN: 1. 1 3 0 ( 1)x x dx+ + ∫ 2. 2 2 1 1 1 ( ) e x x dx x x + + + ∫ 2. 3 1 2x dx− ∫ 3. 2 1 1x dx+ ∫ 4. 2 3 (2sin 3 )x cosx x dx π π + + ∫ 5. 1 0 ( ) x e x dx+ ∫ 6. 1 3 0 ( )x x x dx+ ∫ 7. 2 1 ( 1)( 1)x x x dx+ − + ∫ 8. 2 3 1 (3sin 2 )x cosx dx x π π + + ∫ 9. 1 2 0 ( 1) x e x dx+ + ∫ 10. 2 2 3 1 ( )x x x x dx+ + ∫ 11. 2 1 ( 1)( 1)x x x dx− + + ∫ 12. 3 3 1 x 1 dx( ). − + ∫ 13. 2 2 2 -1 x.dx x + ∫ 14. 2 e 1 7x 2 x 5 dx x − − ∫ 15. x 2 5 2 dx x 2+ + − ∫ 16. 2 2 1 x 1 dx x x x ( ). ln + + ∫ 17. 2 3 3 6 x dx x cos . sin π π ∫ 18. 4 2 0 tgx dx x . cos π ∫ 19. 1 x x x x 0 e e e e dx − − − + ∫ 20. 1 x x x 0 e dx e e . − + ∫ 21. 2 2 1 dx 4x 8x+ ∫ 22. 3 x x 0 dx e e ln . − + ∫ 22. 2 0 dx 1 xsin π + ∫ II. PHƯƠNG PHÁP ĐẶT ẨN PHỤ: 1. 2 3 2 3 sin xcos xdx π π ∫ 2. 2 2 3 3 sin xcos xdx π π ∫ 3. 2 0 sin 1 3 x dx cosx π + ∫ 3. 4 0 tgxdx π ∫ 4. 4 6 cot gxdx π π ∫ 5. 6 0 1 4sin xcosxdx π + ∫ 6. 1 2 0 1x x dx+ ∫ 7. 1 2 0 1x x dx− ∫ 8. 1 3 2 0 1x x dx+ ∫ 9. 1 2 3 0 1 x dx x + ∫ 10. 1 3 2 0 1x x dx− ∫ 11. 2 3 1 1 1 dx x x + ∫ 12. 1 2 0 1 1 dx x+ ∫ 13. 1 2 1 1 2 2 dx x x − + + ∫ 14. 1 2 0 1 1 dx x + ∫ 15. 1 2 2 0 1 (1 3 ) dx x+ ∫ 16. 2 sin 4 x e cosxdx π π ∫ 17. 2 4 sin cosx e xdx π π ∫ 18. 2 1 2 0 x e xdx + ∫ 19. 2 3 2 3 sin xcos xdx π π ∫ 20. 2 sin 4 x e cosxdx π π ∫ 21. 2 4 sin cosx e xdx π π ∫ 22. 2 1 2 0 x e xdx + ∫ 23. 2 3 2 3 sin xcos xdx π π ∫ 24. 2 2 3 3 sin xcos xdx π π ∫ 25. 2 0 sin 1 3 x dx cosx π + ∫ 26. 4 0 tgxdx π ∫ 27. 4 6 cot gxdx π π ∫ 28. 6 0 1 4sin xcosxdx π + ∫ 29. 1 2 0 1x x dx+ ∫ 30. 1 2 0 1x x dx− ∫ 31. 1 3 2 0 1x x dx+ ∫ 32. 1 2 3 0 1 x dx x + ∫ 33. 1 3 2 0 1x x dx− ∫ 34. 2 3 1 1 1 dx x x + ∫ 35. 1 1 ln e x dx x + ∫ 36. 1 sin(ln ) e x dx x ∫ 37. 1 1 3ln ln e x x dx x + ∫ 38. 2ln 1 1 e x e dx x + ∫ 39. 2 2 1 ln ln e e x dx x x + ∫ 40. 2 2 1 (1 ln ) e e dx cos x+ ∫ 41. 2 1 1 1 x dx x+ − ∫ 42. 1 0 2 1 x dx x + ∫ 43. 1 0 1x x dx+ ∫ 44. 1 0 1 1 dx x x+ + ∫ 45. 1 0 1 1 dx x x+ − ∫ 46. 3 1 1x dx x + ∫ 46. 1 1 ln e x dx x + ∫ 47. 1 sin(ln ) e x dx x ∫ 48. 1 1 3ln ln e x x dx x + ∫ 49. 2ln 1 1 e x e dx x + ∫ 50. 2 2 1 ln ln e e x dx x x + ∫ 51. 2 2 1 (1 ln ) e e dx cos x+ ∫ 52. 1 2 3 0 5+ ∫ x x dx 53. ( ) 2 4 0 sin 1 cos+ ∫ x xdx π 54. 4 2 0 4 x dx− ∫ 55. 4 2 0 4 x dx− ∫ 56. 1 2 0 1 dx x+ ∫ II. PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN: Công thức tích phân từng phần : u( )v'(x) x ( ) ( ) ( ) '( ) b b b a a a x d u x v x v x u x dx= − ∫ ∫ Tích phân các hàm số dễ phát hiện u và dv @ Dạng 1 sin ( ) ax ax f x cosax dx e β α           ∫ ( ) '( ) sin sin cos ax ax u f x du f x dx ax ax dv ax dx v cosax dx e e = =           ⇒       = =                   ∫ @ Dạng 2: ( )ln( )f x ax dx β α ∫ Đặt ln( ) ( ) ( ) dx du u ax x dv f x dx v f x dx  = =   ⇒   =   =  ∫ @ Dạng 3: sin .       ∫ ax ax e dx cosax β α Ví dụ 1: tính các tích phân sau a/ 1 2 2 0 ( 1) x x e dx x + ∫ đặt 2 2 ( 1) x u x e dx dv x  =   =  +  b/ 3 8 4 3 2 ( 1) x dx x − ∫ đặt 5 3 4 3 ( 1) u x x dx dv x  =   =  −  c/ 1 1 1 1 2 2 2 1 2 2 2 2 2 2 2 2 0 0 0 0 1 (1 ) (1 ) 1 (1 ) dx x x dx x dx dx I I x x x x + − = = − = − + + + + ∫ ∫ ∫ ∫ Tính I 1 1 2 0 1 dx x = + ∫ bằng phương pháp đổi biến số Tính I 2 = 1 2 2 2 0 (1 ) x dx x+ ∫ bằng phương pháp từng phần : đặt 2 2 (1 ) u x x dv dx x =    =  +  Bài tập 1. 3 3 1 ln e x dx x ∫ 2. 1 ln e x xdx ∫ 3. 1 2 0 ln( 1)x x dx + ∫ 4. 2 1 ln e x xdx ∫ 5. 3 3 1 ln e x dx x ∫ 6. 1 ln e x xdx ∫ 7. 1 2 0 ln( 1)x x dx + ∫ 8. 2 1 ln e x xdx ∫ 9. 2 0 ( osx)sinxx c dx π + ∫ 10. 1 1 ( )ln e x xdx x + ∫ 11. 2 2 1 ln( )x x dx + ∫ 12. 3 2 4 tanx xdx π π ∫ 13. 2 5 1 ln x dx x ∫ 14. 2 0 cosx xdx π ∫ 15. 1 0 x xe dx ∫ 16. 2 0 cos x e xdx π ∫ III. TÍCH PHÂN HÀM HỮU TỶ: 1. ∫ +− − 5 3 2 23 12 dx xx x 2. ∫ ++ b a dx bxax ))(( 1 3. ∫ + ++ 1 0 3 1 1 dx x xx 4. dx x xx ∫ + ++ 1 0 2 3 1 1 5. ∫ + 1 0 3 2 )13( dx x x 6. ∫ ++ 1 0 22 )3()2( 1 dx xx 7. ∫ + − 2 1 2008 2008 )1( 1 dx xx x 8. ∫ − +− ++− 0 1 2 23 23 9962 dx xx xxx 9. ∫ − 3 2 22 4 )1( dx x x 10. ∫ + − 1 0 2 32 )1( dx x x n n 11. ∫ ++ − 2 1 24 2 )23( 3 dx xxx x 12. ∫ + 2 1 4 )1( 1 dx xx 13. ∫ + 2 0 2 4 1 dx x 14. ∫ + 1 0 4 1 dx x x 15. dx xx ∫ +− 2 0 2 22 1 16. ∫ + 1 0 32 )1( dx x x 17. ∫ +− 4 2 23 2 1 dx xxx 18. ∫ +− ++ 3 2 3 2 23 333 dx xx xx 19. ∫ + − 2 1 4 2 1 1 dx x x 20. ∫ + 1 0 3 1 1 dx x 21. ∫ + +++ 1 0 6 456 1 2 dx x xxx 22. ∫ + − 1 0 2 4 1 2 dx x x 23. ∫ + + 1 0 6 4 1 1 dx x x 24. 1 2 0 4 11 5 6 x dx x x + + + ∫ 25. 1 2 0 1 dx x x+ + ∫ 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. IV. TÍCH PHÂN HÀM LƯỢNG GIÁC: 1. xdxx 4 2 0 2 cossin ∫ π 2. ∫ 2 0 32 cossin π xdxx 3. dxxx ∫ 2 0 54 cossin π 4. ∫ + 2 0 33 )cos(sin π dxx 5. ∫ + 2 0 44 )cos(sin2cos π dxxxx 6. ∫ −− 2 0 22 )coscossinsin2( π dxxxxx 7. ∫ 2 3 sin 1 π π dx x 8. ∫ −+ 2 0 441010 )sincoscos(sin π dxxxxx 9. ∫ − 2 0 cos2 π x dx 10. ∫ + 2 0 sin2 1 π dx x 11. ∫ + 2 0 2 3 cos1 sin π dx x x 12. ∫ 3 6 4 cos.sin π π xx dx 13. ∫ −+ 4 0 22 coscossin2sin π xxxx dx 14. ∫ + 2 0 cos1 cos π dx x x 15. ∫ − 2 0 cos2 cos π dx x x 16. ∫ + 2 0 sin2 sin π dx x x 17. ∫ + 2 0 3 cos1 cos π dx x x 18. ∫ ++ 2 0 1cossin 1 π dx xx 19. ∫ − 2 3 2 )cos1( cos π π x xdx 20. ∫ − ++ +− 2 2 3cos2sin 1cossin π π dx xx xx 21. ∫ 4 0 3 π xdxtg 22. dxxg ∫ 4 6 3 cot π π 23. ∫ 3 4 4 π π xdxtg 24. ∫ + 4 0 1 1 π dx tgx 25. ∫ + 4 0 ) 4 cos(cos π π xx dx 26. ∫ ++ ++ 2 0 5cos5sin4 6cos7sin π dx xx xx 27. ∫ + π 2 0 sin1 dxx 28. ∫ ++ 4 0 13cos3sin2 π xx dx 29. ∫ + 4 0 4 3 cos1 sin4 π dx x x 30. ∫ + ++ 2 0 cossin 2sin2cos1 π dx xx xx 31. ∫ + 2 0 cos1 3sin π dx x x 32. ∫ − 2 4 sin2sin π π xx dx 33. ∫ 4 0 2 3 cos sin π dx x x 34. ∫ + 2 0 32 )sin1(2sin π dxxx 35. ∫ π 0 sincos dxxx 36. ∫ − 3 4 3 3 3 sin sinsin π π dx xtgx xx 37. ∫ ++ 2 0 cossin1 π xx dx 38. ∫ + 2 0 1sin2 π x dx 39. ∫ 2 4 53 sincos π π xdxx 40. ∫ + 4 0 2 cos1 4sin π x xdx 41. ∫ + 2 0 3sin5 π x dx 2. ∫ 6 6 4 cossin π π xx dx 43. ∫ + 3 6 ) 6 sin(sin π π π xx dx 4. ∫ + 3 4 ) 4 cos(sin π π π xx dx 45. ∫ 3 4 6 2 cos sin π π x xdx 46. dxxtgxtg ) 6 ( 3 6 π π π ∫ + 47. ∫ + 3 0 3 )cos(sin sin4 π xx xdx 48. ∫ − + 0 2 2 )sin2( 2sin π x x 49. ∫ 2 0 3 sin π dxx 50. ∫ 2 0 2 cos π xdxx 51. ∫ + 2 0 12 .2sin π dxex x 52. dxe x x x ∫ + + 2 0 cos1 sin1 π 53. ∫ + 4 6 2cot 4sin3sin π π dx xgtgx xx 54. ∫ +− 2 0 2 6sin5sin 2sin π xx xdx 55. ∫ 2 1 )cos(ln dxx 56. ∫ 3 6 2 cos )ln(sin π π dx x x 57. dxxx ∫ − 2 0 2 cos)12( π 58. ∫ π 0 2 cossin xdxxx 59. ∫ 4 0 2 π xdxxtg 60. ∫ π 0 22 sin xdxe x 61. ∫ 2 0 3sin cossin 2 π xdxxe x 62. ∫ + 4 0 )1ln( π dxtgx 63. ∫ + 4 0 2 )cos2(sin π xx dx 64. ∫ −+ − 2 0 2 )cos2)(sin1( cos)sin1( π dx xx xx 65. 2 2 sin 2 sin 7 − ∫ x xdx π π 66. 2 4 4 0 cos (sin cos ) + ∫ x x x dx π 67. 2 3 0 4sin 1 cos + ∫ x dx x π 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. V. TÍCH PHÂN HÀM VÔ TỶ: ∫ b a dxxfxR ))(,( Trong ®ã R(x, f(x)) cã c¸c d¹ng: +) R(x, xa xa + − ) §Æt x = a cos2t, t ] 2 ;0[ π ∈ +) R(x, 22 xa − ) §Æt x = ta sin hoÆc x = ta cos +) R(x, n dcx bax + + ) §Æt t = n dcx bax + + +) R(x, f(x)) = γβα +++ xxbax 2 )( 1 Víi ( γβα ++ xx 2 )’ = k(ax+b) Khi ®ã ®Æt t = γβα ++ xx 2 , hoÆc ®Æt t = bax + 1 +) R(x, 22 xa + ) §Æt x = tgta , t ] 2 ; 2 [ ππ −∈ +) R(x, 22 ax − ) §Æt x = x a cos , t } 2 {\];0[ π π ∈ +) R ( ) 1 2 i n n n x x x; ; ; Gäi k = BCNH(n 1 ; n 2 ; ; n i ) §Æt x = t k 1. ∫ + 32 5 2 4xx dx 2. ∫ − 2 3 2 2 1xx dx 3. ∫ − +++ 2 1 2 1 2 5124)32( xxx dx 4. ∫ + 2 1 3 1xx dx 5. ∫ + 2 1 2 2008dxx 6. ∫ + 2 1 2 2008x dx 7. ∫ + 1 0 22 1 dxxx 8. ∫ − 1 0 32 )1( dxx 9. ∫ + + 3 1 22 2 1 1 dx xx x 10. ∫ − + 2 2 0 1 1 dx x x 11. ∫ + 1 0 32 )1( x dx 12. ∫ − 2 2 0 32 )1( x dx 13. ∫ + 1 0 2 1 dxx 14. ∫ − 2 2 0 2 2 1 x dxx 15. ∫ + 2 0 2cos7 cos π x xdx 16. ∫ − 2 0 2 coscossin π dxxxx 17. ∫ + 2 0 2 cos2 cos π x xdx 18. ∫ + + 2 0 cos31 sin2sin π dx x xx 19. ∫ + 7 0 3 2 3 1 x dxx 20. ∫ − 3 0 23 10 dxxx 21. ∫ + 1 0 12x xdx 22. ∫ ++ 1 0 2 3 1xx dxx 23. ∫ ++ 7 2 112x dx 24. dxxx ∫ + 1 0 815 31 25. ∫ − 2 0 5 6 3 cossincos1 π xdxxx 26. ∫ + 3ln 0 1 x e dx 27. ∫ − +++ 1 1 2 11 xx dx 28. ∫ + 2ln 0 2 1 x x e dxe 29. ∫ −− 1 4 5 2 8412 dxxx 30. ∫ + e dx x xx 1 lnln31 31. ∫ + + 3 0 2 35 1 dx x xx 32. dxxxx ∫ +− 4 0 23 2 33. ++ 0 1 3 2 )1( dxxex x 34. + 3ln 2ln 2 1ln ln dx xx x 35. + 3 0 2 2 cos 32 cos 2cos dx x tgx x x 36. + 2ln 0 3 )1( x x e dxe 37. + 3 0 2cos2 cos x xdx 38. + 2 0 2 cos1 cos x xdx 39. dx x x + + 7 0 3 3 2 40. + a dxax 2 0 22 VI. MT S TCH PHN C BIT: Bài toán mở đầu: Hàm số f(x) liên tục trên [-a; a], khi đó: += aa a dxxfxfdxxf 0 )]()([)( Ví dụ: +) Cho f(x) liên tục trên [- 2 3 ; 2 3 ] thỏa mãn f(x) + f(-x) = x2cos22 , Tính: 2 3 2 3 )( dxxf +) Tính + + 1 1 2 4 1 sin dx x xx Bài toán 1: Hàm số y = f(x) liên tục và lẻ trên [-a, a], khi đó: a a dxxf )( = 0. Ví dụ: Tính: ++ 1 1 2 )1ln( dxxx ++ 2 2 2 )1ln(cos dxxxx Bài toán 2: Hàm số y = f(x) liên tục và chẵn trên [-a, a], khi đó: a a dxxf )( = 2 a dxxf 0 )( Ví dụ: Tính + 1 1 24 1xx dxx 2 2 2 cos 4 sin + x x dx x Bài toán 3: Cho hàm số y = f(x) liên tục, chẵn trên [-a, a], khi đó: = + aa a x dxxfdx b xf 0 )( 1 )( (1 b>0, a) Ví dụ: Tính: + + 3 3 2 21 1 dx x x + 2 2 1 5cos3sinsin dx e xxx x Bài toán 4: Nếu y = f(x) liên tục trên [0; 2 ], thì = 2 0 2 0 )(cos)(sin dxxfxf [...]... 7: Nếu f(x) liên t c trên R và tuần hoàn với chu kì T thì: a +T a T nT f ( x )dx = f ( x)dx 0 Ví dụ: Tính 2008 0 1 cos 2 x dx 0 C c bài tập áp dụng: 1 1 1 x dx 1+ 2x 1 1 3 4 2 (1 + e 1 x dx )(1 + x 2 ) 1 2 1 x )dx 5 cos 2 x ln( 1+ x 1 4 2 x7 x5 + x3 x + 1 dx cos 4 x x + cos x dx 2 x 4 sin 4 2 2 6 sin(sin x + nx)dx 0 2 tga sin 5 x 2 7 2 1 + cos x 2 dx cot ga e 1 e xdx 8 1 + x 2... dụ: Tính sin 0 2 2009 sin x dx x + cos 2009 x 2009 0 sin x sin x + cos x dx Bài toán 5: Cho f(x) x c định trên [-1; 1], khi đó: xf (sin x)dx = f (sin x)dx 20 0 x dx Ví dụ: Tính 1 + sin x 0 b Bài toán 6: a 0 b b f (a + b x )dx = f ( x)dx a Ví dụ: Tính x sin x 1 + cos 0 2 x x sin x 2 + cos x dx 0 b f (b x) dx = f ( x)dx 0 4 dx sin 4 x ln(1 + tgx)dx 0 Bài toán 7: Nếu f(x) liên t c. .. + x 2 ) VII TCH PHN HM GI TR TUYT I: 3 1 x 2 2 1dx 2 3 x 0 5 2 4 x + 3 dx 0 2 3 x 2 1 2 x dx x x m dx 4 0 1 sin x dx sin x dx 3 6 6 T f ( x) dx = n f ( x)dx 2 tg 2 x + cot g 2 x 2dx 0 3 4 2 7 sin 2 x dx 8 4 9 ( x + 2 x 2 )dx 2 11 cos x 1 + cos x dx 0 5 3 cos x cos 3 x dx 3 x 10 2 4 dx 0 12 2 VIII NG DNG CA TCH PHN: TNH DIN TCH HèNH PHNG Vớ d 1 : Tớnh din tớch hỡnh phng... y = x + x -1 , trc honh , ng thng x = -2 v ng thng x =1 b/ th hm s y = ex +1 , trc honh , ng thng x = 0 v ng thng x = 1 c/ th hm s y = x3 - 4x , trc honh , ng thng x = -2 v ng thng x =4 d/ th hm s y = sinx , trc honh , trc tung v ng thng x = 2 Vớ d 2 : Tớnh din tớch hỡnh phng gii hn bi a/ th hm s y = x + x -1 , trc honh , ng thng x = -2 v ng thng x =1 b/ th hm s y = ex +1 , trc honh , ng thng... a/ th hm s y = x + x -1 , trc honh , ng thng x = -2 v ng thng x =1 b/ th hm s y = ex +1 , trc honh , ng thng x = 0 v ng thng x = 1 c/ th hm s y = x3 - 4x , trc honh , ng thng x = -2 v ng thng x =4 d/ th hm s y = sinx , trc honh , trc tung v ng thng x = 2 TNH TH TCH VT TH TRềN XOAY . I. TÍNH TÍCH PHÂN BẰNG C CH SỬ DỤNG TÍNH CHẤT VÀ NGUYÊN HÀM C BẢN: 1. 1 3 0 ( 1)x x dx+ + ∫ 2. 2 2 1 1 1 ( ) e x x dx x x + + + ∫ 2. 3 1 2x dx− ∫ 3. 2 1 1x dx+ ∫ 4. 2 3 (2sin 3 )x cosx. ∫ + π 2 0 cos1 dxx 9. ∫ − −−+ 5 2 )22( dxxx 10. ∫ − 3 0 42 dx x 11. ∫ − − 3 2 3 coscoscos π π dxxxx 12. VIII. ỨNG DỤNG C A TÍCH PHÂN: TÍNH DIỆN TÍCH HÌNH PHẲNG Ví dụ 1 : Tính diện tích hình. 39. 40. IV. TÍCH PHÂN HÀM LƯỢNG GI C: 1. xdxx 4 2 0 2 cossin ∫ π 2. ∫ 2 0 32 cossin π xdxx 3. dxxx ∫ 2 0 54 cossin π 4. ∫ + 2 0 33 )cos(sin π dxx 5. ∫ + 2 0 44 )cos(sin2cos π dxxxx 6.

Ngày đăng: 21/07/2014, 23:22

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w