1. Trang chủ
  2. » Giáo án - Bài giảng

Đề + đáp án thi Chung và Chuyên tỉnh Hải Dương

8 258 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 474 KB

Nội dung

02 Đề + Đáp án Tuyển sinh Hải Dương 2010-2011 SỞ GIÁO DỤC VÀ ĐÀO TẠO HẢI DƯƠNG KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2010 - 2011 Môn thi: TOÁN Thời gian làm bài: 120 phút, không kể thời gian giao đề Ngày thi: 06 tháng 07 năm 2010 (Đợt 1) Đề thi gồm : 01 trang Câu 1 (3 điểm) 1) Giải các phương trình sau: a) 2 4 0 3 x − = . b) 4 2 3 4 0x x− − = . 2) Rút gọn biểu thức N 3 . 3 1 1 a a a a a a     + − = + −  ÷ ÷ + −     với 0a ≥ và 1a ≠ . Câu 2 (2 điểm) 1) Cho hàm số bậc nhất 1y ax= + . Xác định hệ số a, biết rằng đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 1 2+ . 2) Tìm các số nguyên m để hệ phương trình 3 2 3 x y m x y + =   − = −  có nghiệm ( ; )x y thỏa mãn điều kiện 2 30x xy+ = . Câu 3 (1 điểm) Theo kế hoạch, một xưởng may phải may xong 280 bộ quần áo trong một thời gian quy định. Đến khi thực hiện, mỗi ngày xưởng đã may được nhiều hơn 5 bộ quần áo so với số bộ quần áo phải may trong một ngày theo kế hoạch. Vì thế, xưởng đã hoàn thành kế hoạch trước 1 ngày. Hỏi theo kế hoạch, mỗi ngày xưởng phải may xong bao nhiêu bộ quần áo? Câu 4 (3 điểm) Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao BE và CF của tam giác ABC cắt nhau tại H và cắt đường tròn (O) lần lượt tại E’ và F’ (E’ khác B và F’ khác C). 1) Chứng minh tứ giác BCEF là tứ giác nội tiếp. 2) Chứng minh EF song song với E’F’. 3) Kẻ OI vuông góc với BC ( I BC∈ ). Đường thẳng vuông góc với HI tại H cắt đường thẳng AB tại M và cắt đường thẳng AC tại N. Chứng minh tam giác IMN cân. Câu 5 (1 điểm) Cho a, b, c, d là các số dương thỏa mãn 2 2 1a b+ = và 4 4 1a b c d c d + = + . Chứng minh rằng 2 2 2 a d c b + ≥ . Hết Họ tên thí sinh: ………………………………Số báo danh: ………………….…… Chữ kí của giám thị 1:……………………… Chữ kí của giám thị 2: ……… …… Nguyễn Mạnh Thành THCS Nguyễn Trãi Nam Sách ĐỀ CHÍNH THỨC 02 Đề + Đáp án Tuyển sinh Hải Dương 2010-2011 SỞ GIÁO DỤC VÀ ĐÀO TẠO HẢI DƯƠNG ĐÁP ÁN VÀ BIỂU ĐIỂM CHẤM MÔN TOÁN KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2010 - 2011 Ngày thi: 06 tháng 07 năm 2010 Đáp án gồm : 03 trang I) HƯỚNG DẪN CHUNG. - Thí sinh làm bài theo cách riêng nhưng đáp ứng được yêu cầu cơ bản vẫn cho đủ điểm. - Việc chi tiết điểm số (nếu có) so với biểu điểm phải được thống nhất trong Hội đồng chấm. - Sau khi cộng điểm toàn bài, điểm lẻ đến 0,25 điểm. II) ĐÁP ÁN VÀ BIỂU ĐIỂM CHẤM. Câu Ý Nội dung Điểm 1 a Giải phương trình 2 4 0 3 x − = 1,00 2 2 4 0 4 3 3 x x− = ⇔ = (hoặc 2 12 0x − = ) 2 12x = 6x = 0,25 0,25 0,5 b Giải phương trình 4 2 3 4 0x x− − = 1,00 Đặt 2 , 0t x t= ≥ ta được 2 3 4 0t t− − = 1, 4t t⇔ = − = 1t = − (loại) 2 4 4 2t x x= ⇒ = ⇔ = ± 0,25 0,25 0,25 0,25 c Rút gọn N 3 . 3 1 1 a a a a a a     + − = + −  ÷ ÷ + −     với 0a ≥ và 1a ≠ 1,00 ( 1) 1 1 a a a a a a a + + = = + + ( 1) 1 1 a a a a a a a − − = = − − ( ) ( ) N 3 . 3 9a a a= + − = − 0,25 0,25 0,5 2 a Xác định hệ số a 1,00 Ra được phương trình 0 ( 2 1) 1a= + + 1 2 1 a − ⇔ = + 1 2a = − Vậy 1 2a = − 0,25 0,25 0,25 0,25 b Tìm các số nguyên m để nghiệm ( ; )x y thỏa mãn 2 30x xy+ = 1,00 Tìm được 1y m= + , 2 1x m= − 0,25 Nguyễn Mạnh Thành THCS Nguyễn Trãi Nam Sách 02 Đề + Đáp án Tuyển sinh Hải Dương 2010-2011 2 2 30 (2 1) (2 1)( 1) 30x xy m m m+ = ⇔ − + − + = 2 2 10 0m m⇔ − − = 2m⇔ = − hoặc 5 2 m = Do m nguyên nên 2m = − 0,25 0,25 0,25 3 Tính số bộ quần áo may trong một ngày theo kế hoạch 1,00 Gọi số bộ quần áo may trong một ngày theo kế hoạch là x bộ (x nguyên dương). Số ngày hoàn thành công việc theo kế hoạch là 280 x Số bộ quần áo may trong một ngày khi thực hiện là 5x + Số ngày hoàn thành công việc khi thực hiện là 280 5x + Theo giả thiết ta có phương trình 280 280 1 5x x − = + 2 280( 5) 280 ( 5) 5 1400 0x x x x x x⇔ + − = + ⇔ + − = Giải pt ta được 35, 40x x= = − (loại) Số bộ quần áo may trong một ngày theo kế hoạch là 35 bộ 0,25 0,25 0,25 0,25 4 a Chứng minh tứ giác BCEF là tứ giác nội tiếp 1,00 Hình 2 Hình 1 Vẽ được hình 1 Theo giả thiết · · 0 0 90 , 90BFC BEC= = · · 0 90BFC BEC⇒ = = ⇒ BCEF là tứ giác nội tiếp 0,5 0,25 0,25 b Chứng minh EF song song với E’F’ 1,00 BCEF là tứ giác nội tiếp suy ra · · CBE CFE= · · ' 'CBE CF E= (cùng chắn cung ¼ 'CE ) 0,25 0,25 0,25 Nguyễn Mạnh Thành THCS Nguyễn Trãi Nam Sách A N D M H I C F' F E' E O B A H C F' F E' E O B 02 Đề + Đáp án Tuyển sinh Hải Dương 2010-2011 Suy ra · · ' 'CFE CF E= Suy ra // ' 'EF E F 0,25 c Chứng minh tam giác IMN cân 1,00 TH 1. M thuộc tia BA. H là trực tâm của tam giác ABC suy ra AH BC⊥ · · CAH CBH= (cùng phụ với góc · ACB ) · · · · 0 0 90 , 90BHI BHM ANH NHE+ = + = · · BHM NHE= (vì đối đỉnh) · · BHI ANH⇒ = ANH⇒ ∆ đồng dạng với AH HN BIH BI IH ∆ ⇒ = (1) Tương tự AHM∆ đồng dạng với AH HM CIH CI IH ∆ ⇒ = (2) Từ (1) và (2) và BI CI= suy ra HM HN HM HN IH HI = ⇒ = Mà HI MN⊥ tại H suy ra IMN∆ cân tại I. TH 2. M thuộc tia đối của tia BA. · · CAH CBH= (cùng phụ với góc · ACB ) · · 0 90ANH NHE= + (góc ngoài ∆ ) · · 0 90BHI BHM= + · · BHM NHE= (vì đối đỉnh) · · ANH BHI ANH= ⇒ ∆ đồng dạng với AH HN BHI BI IH ∆ ⇒ = . Đến đây làm tương tự như TH 1. * Chú ý. Thí sinh chỉ cần làm 1 trong 2 TH đều cho điểm tối đa. 0,25 0,25 0,25 0,25 5 Chứng minh rằng 2 2 2 a d c b + ≥ 1,00 2 2 1a b+ = và 4 4 4 4 2 2 2 1 ( )a b a b a b c d c d c d c d + + = ⇒ + = + + 4 4 2 2 2 ( ) ( ) ( )d c d a c c d b cd a b⇔ + + + = + 4 2 4 2 4 4 4 4 2 2 ( 2 )dca d a c b cdb cd a b a b⇔ + + + = + + 2 4 2 4 2 2 2 2 2 2 0 ( ) 0d a c b cda b da cb⇔ + − = ⇔ − = 2 2 0da cb⇔ − = hay 2 2 a b c d = . Do đó 2 2 2 2 2 2 2 ( ) 2 2 0 a d b d b d c b d b db − + − = + − = ≥ . Vậy 2 2 2 a d c b + ≥ 0,25 0,25 0,25 0,25 Nguyễn Mạnh Thành THCS Nguyễn Trãi Nam Sách C F' E' E N M I H F B A 02 Đề + Đáp án Tuyển sinh Hải Dương 2010-2011 SỞ GIÁO DỤC VÀ ĐÀO TẠO HẢI DƯƠNG KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2010 - 2011 Môn thi: TOÁN Thời gian làm bài: 120 phút, không kể thời gian giao đề Ngày thi: 08 tháng 07 năm 2010 (Đợt 2) Đề thi gồm : 01 trang Câu 1 (3 điểm) a) Vẽ đồ thị của hàm số 2 4y x= − . b) Giải hệ phương trình 2 3 2 3 x y y x = −   = −  . c) Rút gọn biểu thức P = 3 2 9 25 4 2 a a a a a − + + với 0a > . Câu 2 (2 điểm) Cho phương trình 2 3 0x x m− + = (1) (x là ẩn). a) Giải phương trình (1) khi 1m = . b) Tìm các giá trị m để phương trình (1) có hai nghiệm phân biệt 1 2 ,x x thỏa mãn 2 2 1 2 1 1 3 3x x+ + + = . Câu 3 (1 điểm) Khoảng cách giữa hai bến sông A và B là 48 km. Một canô đi từ bến A đến bến B, rồi quay lại bến A. Thời gian cả đi và về là 5 giờ (không tính thời gian nghỉ). Tính vận tốc của canô trong nước yên lặng, biết rằng vận tốc của dòng nước là 4 km/h. Câu 4 (3 điểm) Cho hình vuông ABCD có độ dài cạnh bằng a, M là điểm thay đổi trên cạnh BC (M khác B) và N là điểm thay đổi trên cạnh CD (N khác C) sao cho · 0 MAN 45= . Đường chéo BD cắt AM và AN lần lượt tại P và Q. a) Chứng minh tứ giác ABMQ là tứ giác nội tiếp. b) Gọi H là giao điểm của MQ và NP. Chứng minh AH vuông góc với MN. c) Xác định vị trí điểm M và điểm N để tam giác AMN có diện tích lớn nhất. Câu 5 (1 điểm) Chứng minh 3 3 ( )a b ab a b+ ≥ + với mọi , 0a b ≥ . Áp dụng kết quả trên, chứng minh bất đẳng thức 3 3 3 3 3 3 1 1 1 1 1 1 1a b b c c a + + ≤ + + + + + + với mọi a, b, c là các số dương thỏa mãn 1abc = . Hết Nguyễn Mạnh Thành THCS Nguyễn Trãi Nam Sách ĐỀ CHÍNH THỨC 02 Đề + Đáp án Tuyển sinh Hải Dương 2010-2011 Họ tên thí sinh: ………………………………Số báo danh: ………………….…… Chữ kí của giám thị 1:……………………… Chữ kí của giám thị 2: ……… …… SỞ GIÁO DỤC VÀ ĐÀO TẠO HẢI DƯƠNG ĐÁP ÁN VÀ BIỂU ĐIỂM CHẤM MÔN TOÁN KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2010 - 2011 Ngày thi: 08 tháng 07 năm 2010 Đáp án gồm : 03 trang I) HƯỚNG DẪN CHUNG. - Thí sinh làm bài theo cách riêng nhưng đáp ứng được yêu cầu cơ bản vẫn cho đủ điểm. - Việc chi tiết điểm số (nếu có) so với biểu điểm phải được thống nhất trong Hội đồng chấm. - Sau khi cộng điểm toàn bài, điểm lẻ đến 0,25 điểm. II) ĐÁP ÁN VÀ BIỂU ĐIỂM CHẤM. Câu Ý Nội dung Điểm 1 a Vẽ đồ thị của hàm số 2 4y x= − 1,00 Đồ thị cắt trục Ox tại A (2;0) (HS có thể lấy điểm khác) Đồ thị cắt trục Oy tại B (0; 4)− (HS có thể lấy điểm khác) Vẽ được đồ thị hàm số 0,25 0,25 0,5 b Giải hệ phương trình 2 3 2 3 x y y x = −   = −  1,00 Hệ 2 3 2 3 x y x y − = −  ⇔  − =  (HS có thể dùng phép thế hoặc phép trừ) Tìm được 3x = Tìm được 3y = Kết luận. Hệ có nghiệm duy nhất 3, 3x y= = 0,25 0,25 0,25 0,25 c Rút gọn biểu thức P = 3 2 9 25 4 2 a a a a a − + + với 0a > 1,00 3 9 25 4 9 5 2a a a a a a a− + = − + 2 ( 2)a a= + 2 2 ( 2)a a a a+ = + P = 2 a hoặc 2 a a 0,25 0,25 0,25 0,25 2 a Giải phương trình 2 3 0x x m− + = khi 1m = . 1,00 1m = ta có phương trình 2 3 1 0x x− + = 9 4 5∆ = − = 0,25 0,25 Nguyễn Mạnh Thành THCS Nguyễn Trãi Nam Sách 02 Đề + Đáp án Tuyển sinh Hải Dương 2010-2011 1 3 5 2 x + = , 2 3 5 2 x − = (mỗi nghiệm đúng cho 0,25) 0,5 b Tìm m để 1 2 ,x x thỏa mãn 2 2 1 2 1 1 3 3x x + + + = 1,00 Pt (1) có hai nghiệm phân biệt 9 9 4 0 4 m m⇔ ∆ = − > ⇔ < (1) Theo định lí Viet 1 2 1 2 3,x x x x m+ = = . Bình phương ta được 2 2 2 2 1 2 1 2 2 2 ( 1)( 1) 27x x x x+ + + + + = 2 2 2 2 2 2 1 2 1 2 1 2 2 1 25x x x x x x ⇔ + + + + + = . Tính được 2 2 2 1 2 1 2 1 2 ( ) 2 9 2x x x x x x m+ = + − = − và đưa hệ thức trên về dạng 2 2 10 8m m m− + = + (2) 2 2 2 10 16 64 18 54 3m m m m m m⇒ − + = + + ⇔ = − ⇔ = − . Thử lại thấy 3m = − thỏa mãn pt (2) và điều kiện (1). 0,25 0,25 0,25 0,25 3 Tính vận tốc của canô trong nước yên lặng 1,00 Gọi vận tốc canô trong nước yên lặng là (km/h, 4)x x > Vận tốc canô khi nước xuôi dòng là 4x + và thời gian canô chạy khi nước xuôi dòng là 48 4x + . Vận tốc canô khi nước ngược dòng là 4x − và thời gian canô chạy khi nước ngược dòng là 48 4x − . Theo giả thiết ta có phương trình 48 48 5 4 4x x + = + − pt 2 2 48( 4 4) 5( 16) 5 96 80 0x x x x x⇔ − + + = − ⇔ − − = Giải phương trình ta được 0,8x = − (loại), 20x = (thỏa mãn) Vậy vận tốc canô trong nước yên lặng là 20 km/h 0,25 0,25 0,25 0,25 4 a Chứng minh tứ giác ABMQ là tứ giác nội tiếp 1,00 Hình 1 Hình 2 Vẽ được hình 1 Theo giả thiết · 0 45QAM = và · 0 45QBM = · · QAM QBM⇒ = ABMQ⇒ là tứ giác nội tiếp 0,5 0,25 0,25 b Chứng minh AH vuông góc với MN 1,00 Nguyễn Mạnh Thành THCS Nguyễn Trãi Nam Sách A B C D M N P Q H I A B C D M N P Q 02 Đề + Đáp án Tuyển sinh Hải Dương 2010-2011 ABMQ là tứ giác nội tiếp suy ra · · 0 180AQM ABM+ = · · 0 0 90 90ABM AQM MQ AN= ⇒ = ⇒ ⊥ Tương tự ta có ADNP là tứ giác nội tiếp NP AM⇒ ⊥ Suy ra H là trực tâm của tam giác AMN AH MN⇒ ⊥ * Chú ý. Lập luận trên vẫn đúng khi M trùng với C 0,25 0,25 0,25 0,25 c Xác định vị trí điểm M và N để ∆ AMN có diện tích lớn nhất 1,00 M là điểm thay đổi trên cạnh BC (M khác B) nên có 2 TH TH 1. M không trùng với C, khi đó M, N, C không thẳng hàng. Gọi I là giao điểm của AH và MN và S là diện tích tam giác AMN thì S = 1 . 2 AI MN . Tứ giác APHQ nội tiếp suy ra · · PAH PQH= (1) Tứ giác ABMQ nội tiếp suy ra · · BAM BQM= (2) Từ (1) và (2) suy ra · · PAH BAM= hay · · MAI MBA= Hai tam giác vuông MAI và MAB có · · MAI MBA= , AM chung suy ra ,MAI MAB AI AB a IM BM∆ = ∆ ⇒ = = = Tương tự NAI NAD IN DN∆ = ∆ ⇒ = . Từ đó S = 1 1 . . 2 2 AI MN a MN= Ta có 2 ( )MN MC NC a BM a DN a IM IN< + = − + − = − + Vậy 2MN a MN< − hay 2 1 1 . 2 2 MN a S a MN a< ⇒ = < . TH 2. M trùng với C, khi đó N trùng với D và AMN ACD∆ = ∆ nên S = 2 1 1 . 2 2 AD DC a= Vậy ∆ AMN có diện tích lớn nhất M C⇔ ≡ và N D≡ . 0,25 0,25 0,25 0,25 5 3 3 3 3 3 3 1 1 1 1 1 1 1a b b c c a + + ≤ + + + + + + 1,00 3 3 2 2 ( ) ( ) ( ) 0a b ab a b a a b b b a+ ≥ + ⇔ − + − ≥ 2 2 2 ( )( ) 0 ( ) ( ) 0a b a b a b a b⇔ − − ≥ ⇔ − + ≥ , đúng , 0a b∀ ≥ 3 3 3 3 ( ) ( )a b ab a b a b abc ab a b abc+ ≥ + ⇔ + + ≥ + + 3 3 3 3 1 1 1 ( ) 1 ( ) a b ab a b c a b ab a b c ⇔ + + ≥ + + ⇔ ≤ + + + + (Do các vế đều dương). Tương tự, cộng lại ta được 3 3 3 3 3 3 1 1 1 1 1 1a b b c c a + + + + + + + + 1 1 1 1 ( ) ( ) ( )ab a b c bc a b c ca a b c ≤ + + = + + + + + + 0,25 0,25 0,25 0,25 Nguyễn Mạnh Thành THCS Nguyễn Trãi Nam Sách . − − ≥ ⇔ − + ≥ , đúng , 0a b∀ ≥ 3 3 3 3 ( ) ( )a b ab a b a b abc ab a b abc+ ≥ + ⇔ + + ≥ + + 3 3 3 3 1 1 1 ( ) 1 ( ) a b ab a b c a b ab a b c ⇔ + + ≥ + + ⇔ ≤ + + + + (Do các vế đều dương) . Tương. 1a b b c c a + + ≤ + + + + + + với mọi a, b, c là các số dương thỏa mãn 1abc = . Hết Nguyễn Mạnh Thành THCS Nguyễn Trãi Nam Sách ĐỀ CHÍNH THỨC 02 Đề + Đáp án Tuyển sinh Hải Dương 2010-2011. Sách ĐỀ CHÍNH THỨC 02 Đề + Đáp án Tuyển sinh Hải Dương 2010-2011 SỞ GIÁO DỤC VÀ ĐÀO TẠO HẢI DƯƠNG ĐÁP ÁN VÀ BIỂU ĐIỂM CHẤM MÔN TOÁN KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2010 - 2011 Ngày thi:

Ngày đăng: 13/07/2014, 22:00

TỪ KHÓA LIÊN QUAN

w