SỞ GD VÀ ĐÀO TẠO HÀ NỘI KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN Năm học 2010 – 2011 MÔN: TOÁN Ngày thi: 24 tháng 6 năm 2010 Thời gian Làm bài 150 phút BÀI I (2,0 điểm) 1) Cho n là số nguyên, chứng minh nnA 11 3 += chia hết cho 6 2) Tìm tất cả các số tự nhiên n để 13 24 +−= nnB là số nguyên tố BÀI II (2,0 điểm) Cho phương trình : 01)22()22( 222 =−+−−++ xmmxmm .Gọi 21 , xx là hai nghiệm của phương trình đã cho. 1) Tìm các giá trị của m để )12(2 2121 2 2 2 1 −=+ xxxxxx . 2) Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức 21 xxS += BÀI III (2.0 điểm) 1) Cho a là số bất kì,chứng minh rằng: 2 2009 2010 2010 2010 > + + a a 2) Tìm các số nguyên x, y thỏa mãn phương trình 0)22)(2( 22 =+−−− xxxxy BÀI IV (3,0 điểm) Cho đường tròn (O;R) và một điểm M nằm ngoài đường tròn.Đường tròn đường kính OM cắt đường tròn (O;R) tại hai điểm E , F. 1) Chứng minh giao điểm I của đoạn thẳng OM với đường tròn (O;R) là tâm đường tròn nội tiếp tam giác MEF. 2) Cho A là một điểm bất kì của thuộc cung EF chứa điểm M của đường tròn đường kính OM (A khác E,F). Đoạn thẳng OA cắt đoạn thẳng EF tại điểm B. Chứng minh 2 ROBOA = 3) Cho biết OM=2R và N là một điểm bất kì thuộc cung EF chứa điểm I của đường tròn (O;R) ( N khác E,F). Gọi d là đường thẳng qua F và vuông góc với đường thẳng EN tại điểm P, d cắt đường tròn đường kính OM tại điểm K (K khác F). Hai đường thẳng FN và KE cắt nhau tại điểm Q. chứng minh rằng: 2 2 3 RQKQNPKPN ≤+ BÀI V ( 1,0 điểm) Giải phương trình: 01 34578 =+−+−+− xxxxxx Lưu ý: Giám thị không giải thích gì thêm ĐỀ CHÍNH THỨC SỞ GD VÀ ĐÀO TẠO HÀ NỘI ĐỀ CHÍNH THỨC HƯỚNG DẪN CHẤM TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN Năm học 2010 – 2011 Môn thi : TOÁN Bài Ý HƯỚNG DẪN CHẤM ĐIỂM I 2,0 1 Cho n là số nguyên, chứng minh nnA 11 3 += chia hết cho 6 (1 điểm ) nnnA 12 3 +−= 0,25 nnn 12)1( 2 +−= 0,25 nnnn 12)1)(1( ++−= 0,25 Nhận xét : tích 3 số nguyên liên tiếp n(n-1)(n+1) 6 Vậy 6A 0,25 2 Tìm tất cả các số tự nhiên n để 13 24 +−= nnB là số nguyên tố (1 điểm ) 222224 )1(12 nnnnnB −−=−+−= 0,25 )1)(1( 22 nnnn −−+−= 0,25 Với n=0 có B=1.Với n là số tự nhiên 1 ≥ n thì 01,11 222 >+−+−>+− nnnnnn 0,25 B là số nguyên tố suy ra 211 2 =⇒=−− nnn .với n=2 ta có B=5 là số nguyên tố 0,25 II Cho phương trình… 2,0 1 Tìm các giá trị của m để )12(2 2121 2 2 2 1 −=+ xxxxxx . (1 điểm ) Nhận xét 0. < ca suy ra phương trình luôn có 2 nghiệm 21 , xx 0,25 Theo định lí Viet ta có: 22 22 2 2 21 ++ +− =+ mm mm xx 22 1 . 2 21 ++ − = mm xx 0,25 )12(2 2121 2 2 2 1 −=+ xxxxxx 2 21 2 21 )(4)( xxxx =+⇔ 2 2 2 2 2 22 1 4 22 22 ++ − = ++ +− ⇔ mmmm mm ⇔ 222 2 =+− mm 0,25 Kết luận: m=0;m=2 0,25 2 Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức 21 xxS += (1 điểm ) 22 22 2 2 21 ++ +− =+= mm mm xxS 0,25 Xét phương trình : 22 22 2 2 ++ +− = mm mm S 22)22( 22 +−=++⇔ mmmmS ⇔ 0)1(2)1(2)1( 2 =−+++− SmSmS 0,25 Với 1 ≠ S Phương trính có nghiệm ⇔≥−−+⇔≥∆⇔ 0)1(2)1(0' 22 SS 223223 +≤≤− S 0,25 S=1 khi m=0.Kết luận GTNN của S bằng 223− GTLN của S bằng 223+ 0,25 III 2,0 1 Cho a là số bất kì,chứng minh rằng: 2 2009 2010 2010 2010 > + + a a (1 điểm ) 2009212009200922010 2010201020102010 +>++⇔+>+ aaaa 0,5 ( ) 01200922009 2010 2 2010 >++−+⇔ aa 0,25 luôn đúng với mọi a 0,25 Các chú ý khi chấm: 1) Thí sinh lập luận đầy đủ mới cho điểm tối đa 2) Thí sinh có cách giải khác đúng,khác với hướng dẫn chấm thì giám khảo vẫn chấm và cho điểm theo số điểm qui định dành cho câu (hay ý) đó 3) Giám khảo vận dụng hướng dẫn chấm đã chi tiết đến 0,25 điểm và không làm tròn điểm bài thi. . số bất kì,chứng minh rằng: 2 2009 2 010 2 010 2 010 > + + a a (1 điểm ) 2009212009200922 010 2 0102 0102 0102 010 +>++⇔+>+ aaaa 0,5 ( ) 01200922009 2 010 2 2 010 >++−+⇔ aa 0,25 luôn đúng với. SỞ GD VÀ ĐÀO TẠO HÀ NỘI KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN Năm học 2 010 – 2011 MÔN: TOÁN Ngày thi: 24 tháng 6 năm 2 010 Thời gian Làm bài 150 phút BÀI I (2,0 điểm) 1). thị không giải thích gì thêm ĐỀ CHÍNH THỨC SỞ GD VÀ ĐÀO TẠO HÀ NỘI ĐỀ CHÍNH THỨC HƯỚNG DẪN CHẤM TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN Năm học 2 010 – 2011 Môn thi : TOÁN Bài Ý HƯỚNG DẪN CHẤM ĐIỂM I