Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 62 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
62
Dung lượng
4,18 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010 ĐỀ THAM KHẢO Môn: TOÁN; Khối A Thời gian làm bài 180 phút, không kể thời gian phát đề. ĐỀ SỐ 1 PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7 điểm). Câu I ( 2 điểm) Cho hàm số 2)2()21( 23 ++−+−+= mxmxmxy (1) m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) với m=2. 2. Tìm tham số m để đồ thị của hàm số (1) có tiếp tuyến tạo với đường thẳng d: 07 =++ yx góc α , biết 26 1 cos = α . Câu II (2 điểm) 1. Giải bất phương trình: 54 4 2 log 2 2 1 ≤− − x x . 2. Giải phương trình: ( ) .cos32cos3cos21cos2.2sin3 xxxxx −+=++ Câu III (1 điểm) Tính tích phân: I ( ) ∫ ++ + = 4 0 2 211 1 dx x x . Câu IV(1 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh A, AB 2a= . Gọi I là trung điểm của BC, hình chiếu vuông góc H của S lên mặt đáy (ABC) thỏa mãn: IHIA 2−= , góc giữa SC và mặt đáy (ABC) bằng 0 60 .Hãy tính thể tích khối chóp S.ABC và khoảng cách từ trung điểm K của SB tới (SAH). Câu V(1 điểm) Cho x, y, z là ba số thực dương thay đổi và thỏa mãn: xyzzyx ≤++ 222 . Hãy tìm giá trị lớn nhất của biểu thức: xyz z zxy y yzx x P + + + + + = 222 . PHẦN TỰ CHỌN (3 điểm): Thí sinh chỉ chọn làm một trong hai phần ( phần A hoặc phần B ). A. Theo chương trình chuẩn: Câu VI.a (2 điểm) 1. Trong mặt phẳng Oxy, cho tam giác ABC biết A(3;0), đường cao từ đỉnh B có phương trình 01 =++ yx , trung tuyến từ đỉnh C có phương trình: 2x-y-2=0. Viết phương trình đường tròn ngoại tiếp tam giác ABC. 2. Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(-1;1;0), B(0;0;-2) và C(1;1;1). Hãy viết phương trình mặt phẳng (P) qua hai điểm A và B, đồng thời khoảng cách từ C tới mặt phẳng (P) bằng 3 . Câu VII.a (1 điểm) Cho khai triển: ( ) ( ) 14 14 2 210 2 2 10 121 xaxaxaaxxx ++++=+++ . Hãy tìm giá trị của 6 a . B. Theo chương trình nâng cao: Câu VI.b (2 điểm) 1. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(1;-1), B(2;1), diện tích bằng 5,5 và trọng tâm G thuộc đường thẳng d: 043 =−+ yx . Tìm tọa độ đỉnh C. 2.Trong không gian với hệ trục Oxyz, cho mặt phẳng (P) 01 =+−+ zyx ,đường thẳng d: 3 1 1 1 1 2 − − = − − = − zyx Gọi I là giao điểm của d và (P). Viết phương trình của đường thẳng ∆ nằm trong (P), vuông góc với d và cách I một khoảng bằng 23 . Câu VII.b (1 điểm) 1 Giải phương trình ( ẩn z) trên tập số phức: .1 3 = − + zi iz ĐÁP ÁN ĐỀ SỐ 1 ĐÁP ÁN –THANG ĐIỂM ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010 MÔN:TOÁN, Khối A PHẦN CHUNG CHO TẤT CẢ THÍ SINH. Câu ý Nội dung Điểm I(2đ) 1(1đ ) Khảo sát hàm số khi m = 2 Khi m = 2, hàm số trở thành: y = x 3 − 3x 2 + 4 a) TXĐ: R b) SBT •Giới hạn: lim ; lim x x y y →−∞ →+∞ = −∞ = +∞ 0,25 •Chiều biến thiên: Có y’ = 3x 2 − 6x; y’=0 ⇔ x =0, x =2 x −∞ 0 2 +∞ y’ + 0 − 0 + y −∞ 4 0 +∞ Hàm số ĐB trên các khoảng (−∞ ; 0) và (2 ; +∞), nghịch biến trên (0 ; 2). 0,25 •Hàm số đạt cực đại tại x = 0, y CĐ = y(0) = 4; Hàm số đạt cực tiểu tại x = 2, y CT = y(2) = 0. 0,25 c) Đồ thị: Qua (-1 ;0) Tâm đối xứng:I(1 ; 2) 0,25 2(1đ) Tìm m Gọi k là hệ số góc của tiếp tuyến ⇒ tiếp tuyến có véctơ pháp )1;( 1 −= kn d: có véctơ pháp )1;1( 2 =n Ta có = = ⇔=+−⇔ + − =⇔= 3 2 2 3 0122612 12 1 26 1 . cos 2 1 2 2 21 21 k k kk k k nn nn α 0,5 Yêu cầu của bài toán thỏa mãn ⇔ ít nhất một trong hai phương trình: 1 / ky = (1) và 2 / ky = (2) có nghiệm x ⇔ =−+−+ =−+−+ 3 2 2)21(23 2 3 2)21(23 2 2 mxmx mxmx ⇔ ≥∆ ≥∆ 0 0 2 / 1 / 0,25 2 có nghiệm 1 I 2 2 -1 4 0 x y có nghiệm ⇔ ≥−− ≥−− 034 0128 2 2 mm mm ⇔ ≥−≤ ≥−≤ 1; 4 3 2 1 ; 4 1 mm mm ⇔ 4 1 −≤m hoặc 2 1 ≥m 0,25 II(2đ) 1(1đ ) Giải bất phương trình Bpt ≤ − ≤ −≤ − ≤− ⇔ ≤ − ≥− − ⇔ )2(3 4 2 log2 )1(2 4 2 log3 9 4 2 log 04 4 2 log 2 1 2 1 2 2 1 2 2 1 x x x x x x x x 0,25 . Giải (1): (1) 5 16 3 8 0 4 165 0 4 83 8 4 2 4 ≤≤⇔ ≤ − − ≥ − − ⇔≤ − ≤⇔ x x x x x x x 0,25 . Giải (2): (2) 9 4 17 4 0 4 49 0 4 417 4 1 4 2 8 1 ≤≤⇔ ≤ − − ≥ − − ⇔≤ − ≤⇔ x x x x x x x 0,25 Vậy bất phương trình có tập nghiệm 5 16 ; 3 8 9 4 ; 17 4 . 0,25 2(1đ) Giải PT lượng giác Pt )1cos2()12(cos)cos3(cos)1cos2(2sin3 +−−+−=+⇔ xxxxxx )1cos2(sin2cossin4)1cos2(2sin3 22 +−−−=+⇔ xxxxxx 0)1sin22sin3)(1cos2( 2 =+++⇔ xxx 0,5 • 1) 6 2sin(22cos2sin301sin22sin3 2 −=−⇔−=−⇔=++ π xxxxx π π kx +−=⇔ 6 0,25 • )( 2 3 2 2 3 2 01cos2 Zk kx kx x ∈ +−= += ⇔=+ π π π π Vậy phương trình có nghiệm: π π 2 3 2 kx += ; π π 2 3 2 kx +−= và π π kx +−= 6 (k )Z∈ 0,25 III(1đ) 1(1đ ) Tính tích phân. I ( ) ∫ ++ + = 4 0 2 211 1 dx x x . 0,25 3 IV •Đặt dttdx x dx dtxt )1( 21 211 −=⇒ + =⇒++= và 2 2 2 tt x − = Đổi cận x 0 4 t 2 4 •Ta có I = dt t t tdt t ttt dt t ttt ∫∫ ∫ −+−= −+− = −+− 4 2 2 4 2 4 2 2 23 2 2 24 3 2 1243 2 1)1)(22( 2 1 = ++− t tt t 2 ln43 22 1 2 0,5 = 4 1 2ln2 − 0,25 (1đ) Tính thể tích và khoảng cách •Ta có ⇒−= IHIA 2 H thuộc tia đối của tia IA và IA = 2IH BC = AB 2 a2= ; AI= a ; IH= 2 IA = 2 a AH = AI + IH = 2 3a 0,25 •Ta có 2 5 45cos.2 0222 a HCAHACAHACHC =⇒−+= Vì ⇒⊥ )(ABCSH 0 60))(;( == ∧∧ SCHABCSC 2 15 60tan 0 a HCSH == 0,25 • 6 15 2 15 )2( 2 1 . 3 1 . 3 1 3 2 . aa aSHSV ABCABCS === ∆ 0,25 • )(SAHBI SHBI AHBI ⊥⇒ ⊥ ⊥ Ta có 22 1 )(;( 2 1 ))(;( 2 1 ))(;( ))(;( a BISAHBdSAHKd SB SK SAHBd SAHKd ===⇒== 0,25 V (1đ) Tim giá trị lớn nhất của P 4 H K I BA S C xyz z zxy y xyx x P + + + + + = 222 . Vì 0;; >zyx , Áp dụng BĐT Côsi ta có: xyz z zxy y yzx x P 222 222 ++≤ = ++= xyzxyz 222 4 1 0,25 ++ ≤ ++ = +++++≤ xyz zyx xyz xyzxyz yxxzzy 222 2 1 2 1111111 4 1 2 1 2 1 = ≤ xyz xyz 0,5 Dấu bằng xảy ra 3===⇔ zyx . Vậy MaxP = 2 1 0,25 PHẦN TỰ CHỌN: Câu ý Nội dung Điểm VIa(2đ) 1(1đ ) Viết phương trình đường tròn… KH: 022:;01: 21 =−−=++ yxdyxd 1 d có véctơ pháp tuyến )1;1( 1 =n và 2 d có véctơ pháp tuyến )1;1( 2 =n • AC qua điểm A( 3;0) và có véctơ chỉ phương )1;1( 1 =n ⇒ phương trình AC: 03 =−− yx . ⇒∩= 2 dACC Tọa độ C là nghiệm hệ: )4;1( 022 03 −−⇒ =−− =−− C yx yx . 0,25 • Gọi );( BB yxB ⇒ ) 2 ; 2 3 ( BB yx M + ( M là trung điểm AB) Ta có B thuộc 1 d và M thuộc 2 d nên ta có: )0;1( 02 2 3 01 −⇒ =−−+ =++ B y x yx B B BB 0,25 • Gọi phương trình đường tròn qua A, B, C có dạng: 022 22 =++++ cbyaxyx . Thay tọa độ ba điểm A, B, C vào pt đường tròn ta có −= = −= ⇔ −=+−− −=+− −=+ 3 2 1 1782 12 96 c b a cba ca ca ⇒ Pt đường tròn qua A, B, C là: 0342 22 =−+−+ yxyx . Tâm I(1;-2) bán kính R = 22 0,5 2(1đ) Viết phương trình mặt phẳng (P) 5 •Gọi Ocban ≠= );;( là véctơ pháp tuyến của (P) Vì (P) qua A(-1 ;1 ;0) ⇒ pt (P):a(x+1)+b(y-1)+cz=0 Mà (P) qua B(0;0;-2) ⇒a-b-2c=0 ⇒ b = a-2c Ta có PT (P):ax+(a-2c)y+cz+2c =0 0,25 • d(C;(P)) = 0141623 )2( 2 3 22 222 =+−⇔= +−+ + ⇔ caca ccaa ca = = ⇔ ca ca 7 0,5 •TH1: ca = ta chọn 1== ca ⇒ Pt của (P): x-y+z+2=0 TH2: ca 7 = ta chọn a =7; c = 1 ⇒Pt của (P):7x+5y+z+2=0 0,25 VII.a (1 đ) Tìm hệ số của khai triển • Ta có 4 3 )12( 4 1 1 22 ++=++ xxx nên ( ) 10121422 10 )21( 16 9 )21( 8 3 )21( 16 1 )1(21 xxxxxx +++++=+++ 0,25 • Trong khai triển ( ) 14 21 x+ hệ số của 6 x là: 6 14 6 2 C Trong khai triển ( ) 12 21 x+ hệ số của 6 x là: 6 12 6 2 C Trong khai triển ( ) 10 21 x+ hệ số của 6 x là: 6 10 6 2 C 0,5 • Vậy hệ số .417482 16 9 2 8 3 2 16 1 6 10 66 12 66 14 6 6 =++= CCCa 0,25 VI.b(2đ) 1(1đ ) Tìm tọa độ của điểm C • Gọi tọa độ của điểm ) 3 ; 3 1();( CC CC yx GyxC +⇒ . Vì G thuộc d )33;(3304 33 13 +−⇒+−=⇒=−+ +⇒ CCCC CC xxCxy yx •Đường thẳng AB qua A và có véctơ chỉ phương )2;1(=AB 032: =−−⇒ yxptAB 0,25 • 5 11 5 3332 5 11 );( 2 11 );(. 2 1 = −−+ ⇔=⇔== ∆ CC ABC xx ABCdABCdABS = −= ⇔=−⇔ 5 17 1 1165 C C C x x x 0,5 6 • TH1: )6;1(1 −⇒−= Cx C TH2: ) 5 36 ; 5 17 ( 5 17 −⇒= Cx C . 0,25 2(1đ) Viết phương trình của đường thẳng • (P) có véc tơ pháp tuyến )1;1;1( )( −= P n và d có véc tơ chỉ phương )3;1;1(. −−=u )4;2;1()( IPdI ⇒∩= • vì ∆⇒⊥∆⊂∆ dP);( có véc tơ chỉ phương [ ] )2;2;4(; )( −−== ∆ unu P )1;1;2(2 −−= 0,25 • Gọi H là hình chiếu của I trên ∆ )(QmpH ∈⇒ qua I và vuông góc ∆ Phương trình (Q): 0420)4()2()1(2 =+−+−⇔=−−−+−− zyxzyx Gọi 11 )()( dQPd ⇒∩= có vécto chỉ phương [ ] )1;1;0(3)3;3;0(; )()( == QP nn và 1 d qua I += += = ⇒ tz ty x ptd 4 2 1 : 1 Ta có );;0()4;2;1( 1 ttIHttHdH =⇒++⇒∈ • −= = ⇔=⇔= 3 3 23223 2 t t tIH 0,5 • TH1: 1 7 1 5 2 1 :)7;5;1(3 − − = − = − − ∆⇒⇒= zyx ptHt TH2: 1 1 1 1 2 1 :)1;1;1(3 − − = + = − − ∆⇒−⇒−= zyx ptHt 0,25 VII.b 1 đ Giải phương trình trên tập số phức. ĐK: iz ≠ • Đặt zi iz w − + = ta có phương trình: 0)1)(1(1 23 =++−⇔= wwww −− = +− = = ⇔ =++ = ⇔ 2 31 2 31 1 01 1 2 i w i w w ww w 0,5 • Với 011 =⇔= − + ⇒= z zi iz w • Với 333)31( 2 31 2 31 −=⇔−−=+⇔ +− = − + ⇒ +− = zizi i zi izi w 7 • Với 333)31( 2 31 2 31 =⇔−=−⇔ −− = − + ⇒ −− = zizi i zi izi w Vậy pt có ba nghiệm 3;0 == zz và 3−=z . 0,5 Hết 8 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010 ĐỀ THAM KHẢO Môn: TOÁN; Khối A Thời gian làm bài 180 phút, không kể thời gian phát đề. ĐỀ SỐ 2 PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm): Câu I: (2 điểm) Cho hàm số 2 2 1 x y x − = + (C) 1. Khảo sát hàm số. 2. Tìm m để đường thẳng d: y = 2x + m cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB = 5 . Câu II: (2 điểm) 1. Giải phương trình: 2cos5 .cos3 sin cos8 x x x x+ = , (x ∈ R) 2. Giải hệ phương trình: 2 5 3 x y x y y x y + + − = + = (x, y∈ R) Câu III: (1 điểm) Tính diện tích hình phẳng giới hạn bởi các đường 1 x y e= + ,trục hoành, x = ln3 và x = ln8. Câu IV: (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi ; hai đường chéo AC = 2 3a , BD = 2a và cắt nhau tại O; hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm O đến mặt phẳng (SAB) bằng 3 4 a , tính thể tích khối chóp S.ABCD theo a. Câu V: (1 điểm) Cho x,y ∈ R và x, y > 1. Tìm giá trị nhỏ nhất của ( ) ( ) 3 3 2 2 ( 1)( 1) x y x y P x y + − + = − − PHẦN RIÊNG (3 điểm) : Thí sinh chỉ được làm một trong hai phần ( phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): x 2 + y 2 - 2x - 2my + m 2 - 24 = 0 có tâm I và đường thẳng ∆: mx + 4y = 0. Tìm m biết đường thẳng ∆ cắt đường tròn (C) tại hai điểm phân biệt A,B thỏa mãn diện tích tam giác IAB bằng 12. 2. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 : 1 1 1 2 1 1 x y z+ − − = = − ; d 2 : 1 2 1 1 1 2 x y z− − + = = và mặt phẳng (P): x - y - 2z + 3 = 0. Viết phương trình chính tắc của đường thẳng ∆, biết ∆ nằm trên mặt phẳng (P) và ∆ cắt hai đường thẳng d 1 , d 2 . Câu VII.a (1 điểm) Giải bất phương trình 2 2 log 2log 2 20 0 x x x+ − ≤ 2 B. Theo chương trình Nâng cao Câu VI.b (2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x - y - 2 = 0, phương trình cạnh AC: x + 2y - 5 = 0. Biết trọng tâm của tam giác G(3; 2). Viết phương trình cạnh BC. 3. Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : 1 3 1 1 4 x y z− − = = và điểm M(0 ; - 2 ; 0). Viết phương trình mặt phẳng (P) đi qua điểm M song song với đường thẳng ∆ đồng thời khoảng cách giữa đường thẳng ∆ và mặt phẳng (P) bằng 4. Câu VII.b (1 điểm) Giải phương trình nghiệm phức : 25 8 6z i z + = − … Hết …. Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: ………………………………………………; Số báo danh: ……… 9 ĐÁP ÁN ĐỀ SỐ 2 ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC - NĂM: 2009 -2010 CÂU NỘI DUNG ĐIỂM I-1 (1 điểm) Tập xác định D = R\{- 1} Sự biến thiên: -Chiều biến thiên: 2 4 ' 0, ( 1) y x D x = > ∀ ∈ + . Hàm số nghịch biến trên các khoảng (- ∞; - 1) và (- 1 ; + ∞). - Cực trị: Hàm số không có cực trị. 0,25 - Giới hạn tại vô cực, giới hạn vô cực và tiệm cận: 2 2 2 2 lim 2 ; lim 2 1 1 x x x x x x →−∞ →+∞ − − = = + + . Đường thẳng y = 2 là tiệm cận ngang. 1 1 2 2 2 2 lim ; lim 1 1 x x x x x x − + →− →− − − = +∞ = −∞ + + . Đường thẳng x = - 1 là tiệm cận đứng. 0,25 -Bảng biến thiên: x -∞ - 1 +∞ y’ + + y +∞ 2 2 - ∞ 0,25 Đồ thị: -Đồ thị hàm số cắt trục Ox tại điểm (1;0) -Đồ thị hàm số cắt trục Oy tại điểm (0;- 2) - Đồ thị hàm số có tâm đối xứng là giao điểm hai tiệm cận I(- 1; 2). 0,25 I-2 (1 điểm) Phương trình hoành độ giao điểm: 2x 2 + mx + m + 2 = 0 , (x≠ - 1) (1) 0,25 d cắt (C) tại 2 điểm phân biệt ⇔ PT(1) có 2 nghiệm phân biệt khác -1 ⇔ m 2 - 8m - 16 > 0 (2) 0,25 Gọi A(x 1 ; 2x 1 + m) , B(x 2 ; 2x 2 + m. Ta có x 1 , x 2 là 2 nghiệm của PT(1). Theo ĐL Viét ta có 1 2 1 2 2 2 2 m x x m x x + = − + = . 0,25 AB 2 = 5 ⇔ 2 2 1 2 1 2 ( ) 4( ) 5x x x x− + − = ⇔ 2 1 2 1 2 ( ) 4 1xx x x+ − = ⇔ m 2 - 8m - 20 = 0 ⇔ m = 10 , m = - 2 ( Thỏa mãn (2)) KL: m = 10, m = - 2. 0,25 10 y x 2 y=2 x= -1 -1 O 1 -2 [...]... ( P )) = 4 Vy cú hai mt phng : 2x-y+2z+3=0 v 2x-y+2z-21=0 10 VIb 10 k k =0 Ta cú k =0 Vy h s ca x 4 l: 05 05 025 025 025 025 05 i =0 k k P = (1 + 2 x + 3 x 2 )10 = C10 (2 x + 3 x 2 ) k = ( C10Cki 2 k i 3i x k +i ) Theo gi thit ta cú 05 k + i = 4 i = 0 i = 1 i = 2 0 i k 10 k = 4 k = 3 k = 2 i, k N 4 3 1 2 2 C10 24 + C10C3 223 + C10C2 32 = 8085 025 025 28 VIIb 1 Ta cú PT ng thng AB:2x+3y=0... 7(x 10) + (y 2) 5(z + 1) = 0 7x + y -5z -77 = 0 2 T gi thit bi toỏn ta thy cú C 5 = 10 cỏch chn 2 ch s chn (k c s cú ch s 0 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 3 2 3 ng u) v C 5 =10 cỏch chn 2 ch s l => cú C 5 C 5 = 100 b 5 s c chn 2 3 Mi b 5 s nh th cú 5! s c thnh lp => cú tt c C 5 C 5 5! = 12000 s 0,5 Mt khỏc s cỏc s c lp nh trờn m cú ch s 0 ng u l C C 4!= 960 Vy cú tt c 12000 960 = 1104 0... Oxy cho hỡnh ch nht ABCD cú tõm I ( ;0) ng thng AB cú phng trỡnh: x 2y + 2 = 0, AB = 2AD v honh im A õm Tỡm ta cỏc nh ca hỡnh ch nht ú Cõu VII (1 im) Gii h phng trỡnh : 2 y 2 x 2 = x + 2 010 2009 y 2 + 2 010 3log3 ( x + 2 y + 6) = 2 log 2 ( x + y + 2) +1 - HT - Ghi chỳ: - Thớ sinh khụng c s dng bt c ti liu gỡ! - Cỏn b coi thi khụng gii thớch gỡ thờm! H v tờn thớ sinh: .S bỏo danh:... thnh lp => cú tt c C 5 C 5 5! = 12000 s 0,5 Mt khỏc s cỏc s c lp nh trờn m cú ch s 0 ng u l C C 4!= 960 Vy cú tt c 12000 960 = 1104 0 s tha món bi toỏn 1 4 B GIO DC V O TO 3 5 THI TUYN SINH I HC NM 2 010 18 THAM KHO Mụn: TON; Khi A Thi gian lm bi 180 phỳt, khụng k thi gian phỏt S 4 PHN CHUNG CHO TT C CC TH SINH (7.0 im) Cõu I (2.0 im) Cho hm s y = (C) 1 Kho sỏt s bin thiờn v v th hm s (C) 2 Vit... C x + 2 C x + 2 = Cx + 2 (5 x)! = 2! x = 3 Chỳ ý: Nu thớ sinh lm bi khụng theo cỏch nờu trong ỏp ỏn m vn ỳng thỡ c im tng phn nh ỏp ỏn quy nh 24 B GIO DC V O TO THAM KHO THI TUYN SINH I HC NM 2 010 Mụn: TON; Khi A Thi gian lm bi 180 phỳt, khụng k thi gian phỏt S 5 A.PHN CHUNG CHO TT C CC TH SINH (7 im): y = x 3 3mx 2 + 3(m 2 1) x m3 + m (1) Cõu I (2 im): Cho hm s 1.Kho sỏt s bin thiờn v... chiu ca A trờn d nờn AH d AH u = 0 (u = (2;1;3) l vộc t ch phng ca d) Cõu VIIa 1 im Câu VIa 2 điểm H (3;1;4) AH (7;1;5) Vy (P): 7(x 10) + (y 2) 5(z + 1) = 0 7x + y -5z -77 = 0 2 T gi thit bi toỏn ta thy cú C 4 = 6 cỏch chn 2 ch s chn (vỡ khụng cú s 0)v C 52 = 10 cỏch chn 2 ch s l => cú C 52 C 52 = 60 b 4 s tha món bi toỏn 2 2 Mi b 4 s nh th cú 4! s c thnh lp Vy cú tt c C 4 C 5 4! = 1440 s 2.Ban... 2 3 n +1 2 1 22 2 2n n 3n +1 1 121 3n +1 1 0 Cn + Cn + Cn + + Cn = = 2 3 n +1 2(n + 1) n + 1 2(n + 1) 05 3 3n +1 = 243 n = 4 Vy n=4 05 05 05 29 B GIO DC V O TO THAM KHO THI TUYN SINH I HC NM 2 010 Mụn: TON; Khi A Thi gian lm bi 180 phỳt, khụng k thi gian phỏt S 6 PHN CHUNG CHO TT C TH SINH (7,0 im) Cõu I (2 im) Cho hm s y = 2x +1 x +1 1 Kho sỏt s bin thiờn v v th (C) ca hm s ó cho 2 Tỡm trờn... hai im cn tỡm l (0;1) v (-2;3) II (2,0 im) 0,25 1.(1,0 im) Gii h iu kin: x -1, y 1 Cng v theo v ri tr v theo v ta cú h x+1 + x+6 + y 1 + y + 4 = 10 x+6 x+1 + y + 4 y 1 = 2 0,25 0,25 t u= x + 1 + x + 6 , v = y 1 + y + 4 Ta cú h u + v = 10 u= 5 v =5 5 5 + =2 u v x= 3 y =5 l nghim ca h 2 (1,0 điểm) Giải phơng trình iu kin:sinx.cosx 0 v cotx 1 Phng trỡnh tng ng 1 2(cos x sin x) =... kin : x>0 t ( ) 3 +1 log 2 x =u, ( ) 3 1 log2 x = v ta cú pt u +uv2 = 1 + u2 v2 (uv2-1)(u 1) = 0 1 u =2 x =1 uv =1 B GIO DC V O TO 0,5 0,25 0,25 0,5 0,25 0,25 0,5 0,25 THI TUYN SINH I HC NM 2 010 35 THAM KHO Mụn: TON; Khi A Thi gian lm bi 180 phỳt, khụng k thi gian phỏt S 7 Cõu I (2 im) Cho hm s y = 2 x 1 (1) x +1 1) Kho sỏt v v th (C) ca hm s (1) 2) Tỡm im M thuc th (C) tip tuyn ca (C)... 0,25 0,25 0,25 0,25 0,25 0,25 0,25 Khi ú phng trỡnh z + 0,25 Ta cú a = 0 v a = 4 Vi a = 0 b = 0 ( Loi) Vi a = 4 b = 3 Ta cú s phc z = 4 + 3i 0,25 13 B GIO DC V O TO THAM KHO THI TUYN SINH I HC NM 2 010 Mụn: TON; Khi A Thi gian lm bi 180 phỳt, khụng k thi gian phỏt S 3 I.Phn chung cho tt c thớ sinh (7 im) Cõu I (2 im) Cho hm s y = 2x + 1 cú th l (C) x+2 1.Kho sỏt s bin thiờn v v th ca hm s 2.Chng . ẩn z) trên tập số phức: .1 3 = − + zi iz ĐÁP ÁN ĐỀ SỐ 1 ĐÁP ÁN –THANG ĐIỂM ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2 010 MÔN:TOÁN, Khối A PHẦN CHUNG CHO TẤT CẢ THÍ SINH. Câu ý Nội dung. sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: ………………………………………………; Số báo danh: ……… 9 ĐÁP ÁN ĐỀ SỐ 2 ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC - NĂM: 2009 -2 010 CÂU NỘI DUNG ĐIỂM I-1 (1 điểm) Tập. hai chữ số chẵn và ba chữ số lẻ. -Hết- 14 ĐÁP ÁN ĐỀ SỐ 3 ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC LẦN 1 KHỐI A – MÔN TOÁN I.Phần dành cho tất cả các thí sính Câu Đáp án Điể m I (2 điểm) 1. (1,25 điểm) a.TXĐ: