1. Trang chủ
  2. » Giáo án - Bài giảng

DE, DA CHUYEN TOAN NINH BINH 08-09

5 208 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 212 KB

Nội dung

Sở giáo dục và đào tạo Đề thi tuyển sinh lớp 10 THPT chuyên Tỉnh ninh bình năm học 2008 - 2009 Môn: Toán Thời gian làm bài: 150 phút (không kể thời gian giao đề) (Đề thi gồm 05 câu trong 01 trang) Câu 1 (3,5 điểm): Cho biểu thức 15 11 3 2 2 3 2 3 1 3 x x x P x x x x + = + + 1. Rút gọn biểu thức P . 2. Tìm giá trị của x để 1 2 P = . Câu 2 (3,5 điểm): Cho hai số thực ,a b thoả mãn điều kiện 2 a b ab > = . Tìm giá trị nhỏ nhất của biểu thức: 2 2 a b Q a b + = . Câu 3 (4,0 điểm): Một đoàn học sinh tổ chức đi tham quan bằng ô tô. Ngời ta nhận thấy rằng, nếu mỗi ô tô chỉ chở 22 học sinh thì còn thừa 1 học sinh. Nếu bớt đi 1 ô tô thì có thể phân phối đều các học sinh trên các ô tô còn lại. Hỏi lúc đầu có bao nhiêu ô tô và có bao nhiêu học sinh đi tham quan, biết rằng mỗi ô tô chỉ chở đợc không quá 32 học sinh. Câu 4 (5,5 điểm): Cho hình vuông ABCD. Điểm M di động trên tia đối của tia CD (M không trùng với C). Đờng thẳng vuông góc với AM tại A cắt đờng thẳng BC tại N. 1. Chứng minh rằng tam giác MAN vuông cân. 2. Gọi E là trung điểm của đoạn thẳng MN. Chứng minh rằng ba điểm D, B, E thẳng hàng. 3. Xác định vị trí của điểm M sao cho tam giác EAC là tam giác đều. Câu 5 (3,5 điểm): 1. Cho tam giác có độ dài các cạnh bằng , ,a b c thoả mãn điều kiện 2 2 2 a b c + . Gọi , , c p r h lần lợt là nửa chu vi, độ dài bán kính đờng tròn nội tiếp, độ dài đờng cao thuộc cạnh c của tam giác. Chứng minh rằng 2 5 c r h > . 2. Tìm tất cả các cặp số nguyên ( ;x y ) thoả mãn : 2 (2009 ) 5 0x y x y + + + = . 3. Cho tam giác ABC nội tiếp đờng tròn. Gọi M là điểm di động trên cung BC không chứa điểm A. Xác định vị trí của điểm M sao cho 2008 MB + 2009 MC đạt giá trị lớn nhất. Hết Họ và tên thí sinh: .SBD: .Số CMND: Chữ ký giám thị 1: Chữ ký giám thị 2: . đề thi chính thức Hớng dẫn chấm thi Môn Toán Tuyển sinh vào lớp 10 THPT Chuyên năm học 2008-2009 ( Hớng dẫn chấm thi gồm 4 trang) I. Hớng dẫn chung: -Dới đây chỉ là HD tóm tắt của một cách giải, bài làm của học sinh phải chi tiết, lập luận chặt chẽ, tính toán chính xác mới đợc điểm tối đa -Bài làm của học sinh đúng đến đâu các giám khảo cho điểm đến đó -Học sinh đợc sử dụng kết quả của câu trớc để áp dụng cho câu sau -Trong bài hình nếu học sinh không vẽ hình hoặc vẽ hình sai thì không cho điểm -Với các cách giải khác với đáp án tổ chấm trao đổi và thống nhất điểm chi tiết nhng không vợt quá số điểm dành cho câu hoặc phần đó. -Mọi vấn đề phát sinh trong quá trình chấm phải đợc thống nhất trong tổ chấm và chỉ cho điểm theo sự thống nhất trong tổ chấm. -Điểm toàn bài là tổng số điểm các phần đã chấm,không làm tròn II. Đáp án và biểu điểm: Câu Hớng dẫn chấm Điểm Câu 1 (3.5 đ) 1. Điều kiện x 0 ; x 1 Ta có (15 11) (3 2)( 3) (2 3)( 1) ( 3)( 1) x x x x x P x x + + = + = 5 7 2 ( 1)( 5 2) ( 5 2) ( 3)( 1) ( 3)( 1) ( 3) x x x x x x x x x x + + + = = + + + 2. Ta có 1 5 2 1 1 1 2 2 11 121 3 x P x x x + = = = = + 0.5 0.5 0.75 1.75 Câu 2 (3.5 đ) Ta có: 2 2 2 ( ) 2 2 4 ( ) ( ) a b a b ab ab Q a b a b a b a b a b a b + + = = = + = + áp dụng kết quả: 2 ; 0 : ( ) 0 2 .x y x y x y x y + Dấu bằng xẩy ra khi và chỉ khi x=y Ta có: 4 2. ( ). 4 ( ) Q a b a b = Dấu bằng xẩy ra khi và chỉ khi: 4 1 3 1 3 2 1 3 1 3 a a b a b b ab a a b b = + = = + = = > = Vậy giá trị nhỏ nhất của Q là 4. ( Học sinh phải CM kết quả 2 ; 0 : ( ) 0 2 .x y x y x y x y + sau đó mới áp dụng, n ếu HS không CM thì trừ 0.5 điểm phần này) 1.0 0.5 0.5 1.0 0.5 Câu 3 (4.0đ) Gọi x là số ô tô ban đầu Sau khi bớt đi một ô tô thì số ô tô còn lại là (x-1); Điều kiện x>1; x N Do mỗi ô tô chỉ chở 22 học sinh thì còn thừa 1 học sinh nên số học sinh đi tham quan là (22x+1). Số học sinh có trong mỗi ô tô của (x-1) ô tô là: 22 1 1 x x + Theo giả thiết bài toán ta có * 22 1 1 22 1 32 1 x N x x x + + Mặt khác ta có: 22 1 22( 1) 23 23 22 1 1 1 x x x x x + + = = + Do đó 22 1 1 x x + * * 23 ( 1) N N x ,hay (x-1) là ớc của 23 x-1=1 2x = . Khi đó 22 1 1 x x + =45>32 nên không thoả mãn x-1=23 24x = .Khi đó 22 1 1 x x + =23<32 nên thoả mãn Vậy Số ô tô ban đầu là 24 Số học sinh đi tham quan là 529 0.25 0.5 0.5 0.75 0.5 0.5 0.25 0.25 0.25 0.25 Câu 4 (5.5 đ) ( Học sinh vẽ hình đúng cho 0.25 đ) a. Ta có: Tứ giác MCAN có ẳ ẳ 0 90MAN MCN= = nên tứ giác MCAN nội tiếp đợc đờng tròn đờng kính MN. Suy ra: ẳ ẳ 0 45AMN ACN= = ( hai góc nội tiếp cùng chắn cung AN) Mặt khác theo giả thiết: ẳ 0 90MAN = Vậy tam giác MAN vuông cân đỉnh A. 0.5 0.5 0.5 0.25 D A B E N C M b. Trong tam giác vuông CMN có ME là trung tuyến nên 1 . 2 CE MN= Trong tam giác vuông AMN có AE là trung tuyến nên 1 . 2 AE MN= Từ đó suy ra CE=AE, hay E thuộc đờng trung trực của AC *.Do ABCD là hình vuông nên DA=DC; BA=BC nên B, D cũng thuộc vào đ- ờng trung trực của AC Do đó ba điểm D, B, E thẳng hàng 0.5 0.5 0.5 0.5 c. Gọi a là độ dài các cạnh của hình vuông. Do tam giác EAC cân đỉnh E nên: EAC đều khi và chỉ khi . 2EA AC a= = * Trong tam giác vuông AMN: MN=2AE=2a 2 Khi đó AM= 2a. * Trong tam giác vuông DAM ta có: DM 2 =AM 2 -AD 2 =4a 2 -a 2 =3a 2 Hay DM=a 3 Kết luận: Tam giác EAC là tam giác đều khi M thuộc tia đối của tia CD và DM=DC. 3 0.5 0.5 0.5 Câu 5 1.( 1.5 điểm) Gọi S là diện tích tam giác. Học sinh phải chứng minh S=p.r ( p: nửa chu vi của tam giác; r : Bán kính đờng tròn nội tiếp tam giác) Mặt khác S= 1 . . 2 c c h nên 2 c r c c h p a b c = = + + : 2 2 2 2 2 2 2 ( ) 2( ) 2 2. ( 2 1). 2 2 1 5 a b c a b a b c a b c a b c c c a b c + + + + + + + > + + Vậy ta có điều phải chứng minh. ( N ếu học sinh không chứng minh S=p. r thì trừ đi 0.5 điểm) 2. ( 1,0 điểm): Ta có: [ ] 2 2 2 (2009 ). 5 0 ( 2 1) 2007( 1) ( 1). 2003 ( 1) 2007( 1) ( 1). 2003 ( 1). ( 1) 2007 2003 x y x y x x x x y x x x y x x y + + + = + = = = Từ phơng trình trên suy ra (x-1) là ớc của 2003. Mặt khác 2003 là số nguyên tố nên xẩy ra bốn khả năng sau * 1 1 2 4009x x y = = = * 1 1 0 5x x y = = = * 1 2003 2004 5x x y = = = * 1 2003 2002 4009x x y = = = V ậy có 4 cặp số nguyên (x;y) thoả mãn là: (2; - 4009);(0; - 5); (2004; -5);(- 2002; - 4009) 0.5 0.25 0.5 0.25 0.5 0.5 3. (1.0 điểm) . Trên tia đối của tia MB lấy điểm E sao cho 2008 2009 MC ME = Khi đó ẳ ẳ CME BAC= ( vì cùng bù với ẳ BMC ) CME có các góc không đổi ẳ CEM không đổi 3 điểm B, C, E nằm trên một đờng tròn cố định. . Ta dựng đờng thẳng vuông góc với BC tại C, cắt đờng tròn ngoại tiếp tam giác BCE tại F. Khi đó BF là đờng kính của đờng tròn ngoại tiếp tam giác BCE F là điểm cố định. .Gọi M 0 là giao điểm thứ 2 của BF và đờng tròn ngoại tiếp tam giác ABC Suy ra M 0 là điểm cố định . Ta có 2008. MB + 2009. MC=2008.MB + 2008 ME=2008. BE 2008BF D ấu bằng xẩy ra khi và chỉ khi M M 0 Vậy 2008.MB + 2009.MC đạt giá trị lớn nhất khi M M 0 0.25 0.25 0.25 0.25 A B C M O M F E A B C M O M F E . Sở giáo dục và đào tạo Đề thi tuyển sinh lớp 10 THPT chuyên Tỉnh ninh bình năm học 2008 - 2009 Môn: Toán Thời gian làm bài: 150 phút (không kể thời gian giao. 1 . 2 AE MN= Từ đó suy ra CE=AE, hay E thuộc đờng trung trực của AC *.Do ABCD là hình vuông nên DA= DC; BA=BC nên B, D cũng thuộc vào đ- ờng trung trực của AC Do đó ba điểm D, B, E thẳng hàng 0.5 0.5 0.5 0.5 c khi . 2EA AC a= = * Trong tam giác vuông AMN: MN=2AE=2a 2 Khi đó AM= 2a. * Trong tam giác vuông DAM ta có: DM 2 =AM 2 -AD 2 =4a 2 -a 2 =3a 2 Hay DM=a 3 Kết luận: Tam giác EAC là tam giác đều khi

Ngày đăng: 11/07/2014, 15:00

TỪ KHÓA LIÊN QUAN

w