http://ductam_tp.violet.vn/ SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ ĐÀ NẴNG TRƯỜNG THPT PHAN CHÂU TRINH ĐỀ THI THỬ ĐẠI HỌC CAO ĐẲNG NĂM 2010-LẦN 1 Môn thi: TOÁN – Khối D Thời gian làm bài:180 phút, không kể thời gian giao đề I. PHẦN CHUNG DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2,0 điểm) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 3 1 x y x − = + . 2. Viết phương trình đường thẳng d qua điểm ( ) 1;1I − và cắt đồ thị (C) tại hai điểm M, N sao cho I là trung điểm của đoạn MN. Câu II: (2,0 điểm) 1. Giải phương trình ( ) cos3 sin 2 3 sin 3 cos2x x x x+ = + . 2. Giải hệ phương trình ( ) 3 3 2 2 3 4 9 x y xy x y − = = . Câu III: (2,0 điểm) 1. Tìm các giá trị của tham số m để phương trình ( ) ( ) 2 2 2 1 1m x x m− + + = − có nghiệm. 2. Chứng minh ( ) 2 2 2 1 2 a b c ab bc ca a b c a b b c c a + + + + + ≥ + + + + + với mọi số dương ; ;a b c . Câu IV: (1,0 điểm) Cho lăng trụ tam giác đều . ' ' 'ABC A B C có cạnh đáy là a và khoảng cách từ A đến mặt phẳng (A’BC) bằng 2 a . Tính theo a thể tích khối lăng trụ . ' ' 'ABC A B C . II. PHẦN RIÊNG(3,0 điểm): Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn Câu Va: (1,0 điểm) Trong mặt phẳng tọa độ (Oxy). Lập phương trình đường thẳng qua ( ) 2;1M và tạo với các trục tọa độ một tam giác có diện tích bằng 4 . Câu VI.a: (2,0 điểm) 1. Giải bất phương trình ( ) ( ) 2 2 2 1 log log 2 log 6x x x+ + + > − . 2. Tìm 2 ln x dx ∫ . B. Theo chương trình Nâng cao Câu Vb: (1,0 điểm) Trong mặt phẳng tọa độ (Oxy) , cho điểm 1 3; 2 M ÷ . Viết phương trình chính tắc của elip đi qua điểm M và nhận ( ) 1 3;0F − làm tiêu điểm. Câu VI.b: (2,0 điểm) 1. Giải hệ phương trình 2 2 1 2 3 x y y x x y + + = + = . 2. Tìm nguyên hàm của hàm số ( ) cos2 1 cos2 1 x f x x − = + . Hết Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm. Họ và tên thí sinh: Số báo danh: http://ductam_tp.violet.vn/ Chữ ký của giám thị 1: Chữ ký của giám thị 2: SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ ĐÀ NẴNG TRƯỜNG THPT PHAN CHÂU TRINH ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC CAO ĐẲNG NĂM 2010-LẦN 1 Môn thi: TOÁN – Khối D CÂU Ý NỘI DUNG ĐIỂM Câu I (2,0đ) Ý 1 (1,0đ) Tập xác định: { } \ 1D R= − . 0,25 đ Sự biến thiên: • Giới hạn và tiệm cận: lim 1; lim 1 1 x x y y y →−∞ →+∞ = = ⇒ = là TCN. ( ) ( ) 1 1 lim ; lim 1 x x y y x − + → − → − = +∞ = −∞ ⇒ = − là TCĐ 0,25 đ ( ) 2 4 ' 0, 1 y x D x = > ∀ ∈ + . • BBT: Hàm số đồng biến trên các khoảng ( ) ( ) ; 1 , 1;−∞ − − +∞ Và không có cực trị. 0,25 đ Đồ thị: ĐT cắt Ox tại (3;0), cắt Oy tại (0;-3) và đối xứng qua ( ) 1;1− . 0,25 đ Ý 2 (1,0đ) Gọi d là đường thẳng qua I và có hệ số góc k ( ) : 1 1d y k x= + + . Ta có: d cắt ( C) tại 2 điểm phân biệt M, N 3 : 1 1 x PT kx k x − ⇔ = + + + có 2 nghiệm PB khác 1− . 0,25 đ Hay: ( ) 2 2 4 0f x kx kx k= + + + = có 2 nghiệm PB khác 1− ( ) 0 4 0 0 1 4 0 k k k f ≠ ⇔ ∆ = − > ⇔ < − = ≠ . 0,25 đ Mặt khác: 2 2 M N I x x x+ = − = ⇔ I là trung điểm MN với 0k ∀ < . 0,25 đ KL: PT đường thẳng cần tìm là 1y kx k= + + với 0k < . 0,25 đ Chú ý: Có thể chứng minh đồ thị ( C) có I là tâm đối xứng, dựa vào đồ thị ( C) để kết luận kết quả trên. Câu II (2,0đ) Ý 1 (1,0đ) Ta có: PT cos3 3sin 3 3 cos 2 sin 2x x x x⇔ − = + 1 3 3 1 cos3 sin 3 cos 2 sin 2 2 2 2 2 x x x x⇔ − = + cos 3 cos 2 3 6 x x π π ⇔ + = − ÷ ÷ . 0,50 đ Do đó: 3 2 2 2 3 6 6 x x k x k π π π π π + = + + ⇔ = − + . 0,25 đ Và: 2 3 2 2 3 6 10 5 k x x k x π π π π π + = − − + ⇔ = − + 0,25 đ Ý 2 Ta có : 2 2 9 3x y xy= ⇔ = ± . 0,25 đ http://ductam_tp.violet.vn/ . Khi: 3xy = , ta có: 3 3 4x y− = và ( ) 3 3 . 27x y− = − Suy ra: ( ) 3 3 ;x y− là nghiệm PT 2 4 27 0 2 31X X X− − = ⇔ = ± 0,25 đ Vậy ngiệm của PT là 3 3 2 31, 2 31x y= + = − − Hay 3 3 2 31, 2 31x y= − = − + . 0,25 đ Khi: 3xy = − , ta có: 3 3 4x y− = − và ( ) 3 3 . 27x y− = Suy ra: ( ) 3 3 ;x y− là nghiệm PT 2 4 27 0( )X X PTVN+ + = 0,25 đ Câu III (2,0đ) Ý 1 (1,0đ) Đặt 2 1t x= + . ĐK: 1t ≥ , ta có: ( ) ( ) 2 2 1 1m t t m− + = − − 0,25 đ Hay: ( ) 1 1 2 m t t t = + ≥ + . Xét ( ) ( ) ( ) 2 1 1 ' 1 2 2 f t t f t t t = + ⇒ = − + + 0,25 đ ( ) ( ) ( ) 2 2 4 3 ' , ' 0 1( ), 3( ) 2 t t f t f t t l t l t + + = = ⇔ = − = − + . 0,25 đ Dựa vào BBT, ta kết luận 4 3 m ≥ . 0,25 đ Ý 2 (1,0đ) Ta có: 2 1 2 2 a ab ab a a a ab a b a b ab = − ≥ − = − + + (1) 0,50 đ Tương tự: 2 1 2 b b bc b c ≥ − + (2), 2 1 2 c c ca c a ≥ − + (3). 0,25 đ Cộng (1), (2), (3), ta có: ( ) 2 2 2 1 2 a b c ab bc ca a b c a b b c c a + + + + + ≥ + + + + + 0,25 đ Câu IV (1,0đ) Gọi M là trung điểm BC, hạ AH vuông góc với A’M Ta có: ( ' ) ' BC AM BC AA M BC AH BC AA ⊥ ⇒ ⊥ ⇒ ⊥ ⊥ . 0,25 đ Mà ' ( ' ) 2 a AH A M AH A BC AH⊥ ⇒ ⊥ ⇒ = . 0,25 đ Mặt khác: 2 2 2 1 1 1 6 ' 4 ' a AA AH A A AM = + ⇒ = . 0,25 đ KL: 3 . ' ' ' 3 2 16 ABC A B C a V = . 0,25 đ Câu Va (1,0đ) Gọi d là ĐT cần tìm và ( ) ( ) ;0 , 0;A a B b là giao điểm của d với Ox, Oy, suy ra: : 1 x y d a b + = . Theo giả thiết, ta có: 2 1 1, 8ab a b + = = . 0,25 đ Khi 8ab = thì 2 8b a+ = . Nên: 1 2; 4 : 2 4 0b a d x y= = ⇒ + − = . 0,25 đ Khi 8ab = − thì 2 8b a + = − . Ta có: 2 4 4 0 2 2 2b b b+ − = ⇔ = − ± . Với ( ) ( ) 2 2 2 2 : 1 2 2 1 2 4 0b d x y= − + ⇒ − + + − = 0,25 đ http://ductam_tp.violet.vn/ Với ( ) ( ) 3 2 2 2 : 1 2 2 1 2 4 0b d x y= − − ⇒ + + − + = . KL 0,25 đ Câu VIa (2,0đ) Ý 1 (1,0đ) ĐK: 0 6x < < . BPT ( ) ( ) 2 2 2 2 log 2 4 log 6x x x⇔ + > − . 0,25 đ Hay: BPT ( ) 2 2 2 2 4 6 16 36 0x x x x x⇔ + > − ⇔ + − > 0,25 đ Vậy: 18x < − hay 2 x< 0,25 đ So sánh với điều kiện. KL: Nghiệm BPT là 2 6x< < . 0,25 đ Ý 2 (1,0đ) Đặt 2 2 lnu x du dx x = ⇒ = và dv dx = chọn v x= 0,25 đ Suy ra : 2 2 2 ln ln 2 ln 2I x dx x x dx x x x C= = − = − + ∫ ∫ 0,50 đ KL: 2 2 ln ln 2I x dx x x x C= = − + ∫ 0,25 đ Câu Vb (1,0đ) PTCT elip có dạng: 2 2 2 2 1( 0) x y a b a b + = > > 0,25 đ Ta có: 2 2 2 2 3 1 4 3 1 a b a b − = + = 0,25 đ Ta có: 4 2 2 2 3 4 3 0 1( ), ( ) 4 b b b th b kth− − = ⇔ = = − 0,25 đ Do đó: 2 4a = . KL: 2 2 1 4 1 x y + = 0,25 đ Câu VIb (2,0đ) Ý 1 (1,0đ) ( ) ( ) 2 2 1 0 , 1y x x y y x y x y x y x+ = + ⇔ − + − = ⇔ = = − . 0,50 đ Khi: 1y x= − thì 2 6 2 3 6 9 log 9 x x x x − = ⇔ = ⇔ = 0,25 đ Khi: y x= thì 1 2 3 2 2 3 3 log 3 3 x x x x + = ⇔ = ⇔ = ÷ . 0,25 đ Ý 2 (1,0đ) Ta có: ( ) 2 tanf x x= − . 0,25 đ ( ) 2 1 1 cos f x x = − . 0,25 đ KL: ( ) tanF x x x C= − + . 0,50 đ …HẾT… HƯỚNG DẪN CHẤM: • Học sinh có lời giải khác với đáp án chấm thi nếu có lập luận đúng dựa vào SGK hiện hành và có kết quả chính xác đến ý nào thì cho điểm tối đa ở ý đó ; chỉ cho điểm đến phần học sinh làm đúng từ trên xuống dưới và phần làm bài sau không cho điểm. Điểm toàn bài thi không làm tròn số. • Điểm ở mỗi ý nhỏ cần thảo luận kỹ để được chấm thống nhất . Tuy nhiên , điểm trong từng câu và từng ý không được thay đổi. . ĐÀ NẴNG TRƯỜNG THPT PHAN CHÂU TRINH ĐỀ THI THỬ ĐẠI HỌC CAO ĐẲNG NĂM 2010- LẦN 1 Môn thi: TOÁN – Khối D Thời gian làm bài:180 phút, không kể thời gian giao đề I. PHẦN CHUNG DÀNH CHO TẤT CẢ THÍ. GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ ĐÀ NẴNG TRƯỜNG THPT PHAN CHÂU TRINH ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC CAO ĐẲNG NĂM 2010- LẦN 1 Môn thi: TOÁN – Khối D CÂU Ý NỘI DUNG ĐIỂM Câu I (2,0đ) Ý 1 (1,0đ) Tập xác định:. 2. Tìm nguyên hàm của hàm số ( ) cos2 1 cos2 1 x f x x − = + . Hết Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm. Họ và tên thí sinh: Số báo danh: http://ductam_tp.violet.vn/ Chữ