1. Trang chủ
  2. » Công Nghệ Thông Tin

Giáo trình xử lý ảnh y tế Tập 1a P2 pptx

11 683 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 305,3 KB

Nội dung

11 Hình 2.3 T V và T H cho lấy mẫu ảnh trên một ma trận camera CCD. Hình 2.4 T V và T H cho một ảnh quét xen kẽ. Hàm H( 1 , 2 ) xác định trên toàn bộ miền                  1 2 và là hàm tuần hoàn trong miền tần số với chu kì tuần hoàn là 2 đối với  1 và  2 . H(u,v) xác định trên miền     HHVV TvTTuT 2 1 2 1 2 1 2 1  và là hàm tuần hoàn với chu kì 1/T V và 1/T H cho u và v. Có thể chiếu H(  1 ,  2 ) hoặc H(u, v) lên miền chuẩn hoá, ở đây  / 1 ,  / 2    11, bằng cách đặt  / 1 = 1 /;  / 2 = 2 / hoặc  / 1 =2uT V ;  / 2 =2vT h .  / 1 và  / 2 gọi là tần số chuẩn hoá, hàm H(  / 1 ,  / 2 ) có thể viết lại 12 )( 2121 2211 1 2 ),(),( kkj k k ekkhH          (2.13) Nếu chúng ta hạn chế h(n 1 ,n 1 ) chỉ lấy các giá trị thực thì đáp ứng tần số thoả mãn: ),(),( 2121  jjjj eeHeeH   (2.14) H* = liên hợp phức của H. Điều này dẫn đến H(  1 ,  2 ) đối xứng (Hình 2.5). Hình 2.5 Đối xứng tâm. Chú ý rằng nếu x(n 1 ,n 2 ) =  (n 1 ,n 2 ), thì biểu thức (2.2) trở thành y(n 1 ,n 2 ) = h(n 1 ,n 2 ). Vì lý do này mà h(n 1 ,n 2 ) được gọi là đáp ứng xung, hoặc là đáp ứng biên độ, của hệ thống 2-D. Bài tập 2.1 Tính biểu thức đáp ứng tần số của một hệ thống với đáp ứng xung cho bởi           0.0 5.0 125.0 125.0 125.0 ),( 21 nnh Chứng minh rằng công thức tính đáp ứng tần số có thể tách được. A B B * A *  1  2 l¹i cßn hîptrêng c¸c 0 1,0 0,1 1,1 21 21 21 21        nn nn nn nn 13 2.5 Tính đáp ứng xung từ đáp ứng tần số Đáp ứng tần số của h(n 1 ,n 2 ) được cho bởi :     1 2 )( 2121 2211 ),(),H( n n nnj ennh   (2.15) Xét tích phân             21 )( 21 2 2211 ),( 4 1 ddeH kkj (2.16) Thay biểu thức (2.15) vào biểu thức (2.16) chúng ta được 21 )()( 21 2 1 2 22112211 )),(( 4 1        ddeennh n n kkjnnj       Và có thể viết thành    2 )( 1 )( 21 2122111 1 2 2 1 2 1 ),(           dedennh knjknj n n       Và biến đổi thành ),()()(),( 21221121 1 2 kkhknknnnh n n     Điều này có nghĩa là đáp ứng xung có thể tính từ đáp ứng tần số qua mối quan hệ: h(n 1 ,n 2 ) =             21 )( 21 2 2211 ),( 4 1 ddeH nnj (2.17) Nếu đáp ứng tần số được cho dưới dạng hàm của u,v (vòng/đơn vị), thì biểu thức (2.17) có thể viết thành vdduvuHTTnnh V V H H HV T T T T nvTnuTj HV e      2 1 2 1 2 1 2 1 _ )(2 21 211 ),(),(  (2.18) Hoặc cho tần số chuẩn hoá:          1 1 2 1 1 1 )( 2121 2211 ),( 4 1 ),(   ddeHnnh nnj (2.19) 14 Ví dụ 2.3 Cho đáp ứng tần số      0 ||,|| 1 ),( 21 21 l¹i cßn hîp trêng c¸c   ba H (xem hình 2.10), hãy tính đáp ứng xung. Hình 2.10 Ví dụ 2.3. Giải Từ phương trình (2.17) chúng ta có thể viết : 2 2 1 1 21 21 )( 2 21 )sin(bn . )sin(an = 2 1 2 1 = 4 1 ),( 2211 2211 nn dede ddennh b b nj a a nj a a b b nnj                  Bởi vì đáp ứng tần số là hàm tách được của hai biến 1  và 2  nên đáp ứng xung cũng là một hàm hai biến tách được. Khái niệm “tách được” ở đây nghĩa là có thể phân tích h(n 1 ,n 2 ) = f 1 (n 1 ).f 2 (n 2 ). Ví dụ 2.4 Tìm đáp ứng xung của một bộ lọc thông thấp đối xứng vòng tròn lý tưởng được mô tả như sau (xem hình 2.11 và 2.12):  1 a - a b b   -  -   2 15      l¹i cßn hîp trêng c¸c 0 1 ),( 22 2 2 1 21   R eeH jj Giải Có thể dễ dàng thấy nếu ),( 21  H là một hàm đối xứng vòng tròn lý tưởng, cụ thể là )(),( 2 2 2 121   HH thì ),( 21 nnh cũng là một hàm tuần hoàn đối xứng vòng tròn, tức là h n n h n n( , ) ( ) 1 2 1 2 2 2   . Vì vậy cách dễ dàng nhất để tìm ),( 21 nnh là tìm h(n 1 , 0) và hàm 2 2 2 1 + nn theo n 1 . Chúng ta rút ra )0,( 1 nh từ:    A nj ddenh 21 2 1 11 4 1 )0,(    e 4 1 = R R- j 2 1 2       1 21 2 1 )cos(2 4 1 )0,( 1 2 2 2 2 2 11         dR ddenh n R R R R nj Ta có )sin( 1  R  dRd )cos( 1  dcos2 4 1 )0,( /2 /2- sin 2 2 1 1        jRn eRnh hoặc               deRn n R nh jRn 2/ 2/ sin2 1 1 1 1 cos)( 1 2 )0,(  1 R - R   -  -   2 16 Hình 2.11 Ví dụ 2.4. Hình 2.12 Ví dụ 2.4. Biểu thức này có thể biểu diễn thành h n R n J Rn( , ) ( ) 1 1 1 1 0 2   ở đây J 1 (x) = hàm Bessel loại 1. Vì thế : 2 2 2 1 2 2 2 11 21 2 )( ),( nn nnRRJ nnh     Không phải lúc nào cũng dễ dàng rút ra được một biểu thức phân tích đáp ứng xung như trên. Ví dụ dưới đây minh hoạ việc sử dụng phép tích phân số để thu được ),( 21 nnh . Ví dụ 2.5 Tính đáp ứng xung của bộ lọc thông thấp Butterworth đối xứng vòng tròn có đáp ứng tần số cho bởi ),( 12 1 1 ),( 21 2 2 21   R D H o    17 ở đây 2 2 2 12121 ),(,,   R và D 0 = 3-dB. (Giả thiết rằng  3.0 o D ). Dùng biểu thức trong công thức 2.17 để tính đáp ứng xung với .5, ,5,5, ,5 21  nn Giải Vì ),( 21  H là thực và đối xứng vòng tròn, công thức (2.17) có thể viết đơn giản lại là          21221121 2 21 )cos(),( 4 1 ),( ddnnHnnh đơn giản hơn nữa ta có thể viết 1 0 0 2222111 2 21 )cos(),()cos( 1 ),(     ddnHnnnh          (2.20) Lời giải của bài toán này sẽ được đưa ra thông qua một chương trình viết bằng ngôn ngữ C. Ngôn ngữ C được sử dụng rộng rãi bởi tính linh hoạt của nó. C phù hợp cho các ứng dụng khác nhau. Trước khi bạn viết chương trình, bạn cần nghiên cứu phương pháp tính tích phân kép. Sau đây ta sẽ phát triển thêm qui tắc Simpson để tính tích phân kép. Qui tắc tính tích phân của Simpson được viết như sau:   m x x dxxfI 0 )(                   2 , 4,2 1 , 3,1 0 )()(2)(4)( 3 m i mi m i i x xfxfxfxf lÎch½n ở đây ;/)( 0 mxx mx  và m là một số lẻ. Với tích phân kép dxdyyxfI nm y y x x ),( 00   Sử dụng qui tắc Simpson ta có thể viết như sau: dyyxfyxfyxfyxfI m i mi m i i y y x n                    2 , 4,2 1 , 3,1 0 ),(),(2),(4),( 3 0 ch½nlÎ 18 vậy có thể viết dy yxf yxf yxf yxf I m y y x n                     ),( ),( ),( ),( ]241 14242[ 3 2 1 0 0  Lại áp dụng qui tắc Simpson vào công thức trên ta có     ]241 14242[ 3 3 y x I                                             1 4 2 2 4 2 4 1 ),( ),(),(),( ),( ),(),(),( ),( ),(),(),( 210 1211101 0201000   nmmmm n n yxfyxfyxfyxf yxfyxfyxfyxf yxfyxfyxfyxf (2.21) ở đây mxx mx /)( 0  nyy my /)( 0  m và n là số lẻ. Nếu ),( 21  H là thực và có tính đối xứng vòng tròn, thì đáp ứng xung có thể được tính từ tích phân kép 21221121 00 2 21 )cos()cos(),( 1 ),(    ddnnHnnh   Dùng công thức trên có thể viết một chương trình C để thu được đáp ứng xung từ đáp ứng tần số. Dưới đây là chương trình được viết bằng Turbo C 2.0. Chương trình 2.1 "FILTERD.C". Tính đáp ứng xung từ đáp ứng tần số /*Program to compute the impulse from the frequency response.*/ 19 /* Chuong trinh nay dung de tinh dap ung xung cua bo loc 2-D tuan hoan doi xung. Dap ung tan so cua bo loc duoc cho boi nguoi dung trong chuong trinh con tinh ham H(float w1, float w2). */ #include <stdio.h> #include <conio.h> #include <float.h> #include <math.h> #include <alloc.h> #define pi 3.1415926 int n1,n2; float f(float,float); float H(float,float); float Simpson2(float(*)(float,float),float,float,float,float,int,int); void main(void) { float f(float,float),xmin,xmax,ymin,ymax; int M,N; int NS,xt,yt; float h[11][11],temp; char file_name[40],ch; FILE *fptr; clrscr(); xmin=ymin=0.0; xmax=ymax=pi; M=N=20; /* So cac diem chia theo phuong x va y. cac gia tri nay phai la chan.*/ gotoxy(1,2); printf (" This program calculates the impulse response from the"); printf("\n frequency response."); printf("\n The impulse response is calculated over a window"); printf("\n centered around the origin."); 20 printf ("\n Enter the number of samples in the impulse response."); printf("\n e.g. 7*7 (max. 11*11) (number have to be odd.) >"); scanf("%d*%d",&NS,&NS); NS=(NS-1)>>1; /* chieu rong va chieu dai cua mot cua so*/ xt=wherex(); yt=wherey(); gotoxy(70,25); textattr(WHITE+(GREEN<<4)+BLINK); cputs("WAIT"); for(n1=0;n1<=NS;n1++) for(n2=0;n2<=NS;n2++) { if(n2>n1) continue; h[n1][n2]=simpson2(f,xmin,xmax,ymin,ymax,M,N); h[n1][n2]/=pi*pi; } for(n1=0;n1<=NS;n1++) for(n2=0;n2<=NS;n2++) { if(n2<n1) h[n2][n1]=h[n1][n2]; } gotoxy(70,25); textattr(WHITE+(BLACK<<4)); cputs(" "); gotoxy(xt,yt); printf("\n Impulse Response one quadrant.\n\n"); for(n1=0;n1<=NS;n1++) { for(n2=0;n2<=NS;n2++) printf("%7.6f ",h[n1][n2]); printf("\n"); } /* Dinh dang dap ung xung tuan hoan. */ temp=h[NS][NS]; for(n1=NS;n1<((NS<<1)+1);n1++) [...]... fprintf(fptr,"%f",h[n1][n2]); fclose(fptr); printf("\nCalculating and storing frequency response "); printf("\nfor 3-D plotting.\n"); printf(" "); /* Chuan bi du lieu cho 3-D Du lieu duoc dinh dang thich hop voi chuong trinh in cua GRAFTOOL mot cong cu phan mem phan tich do hoa cua 3-D vision (412 S.Pacific Coast Hwy Suite 201, Redondo Beach,CA 90277) */ { /* Declaring local variable*/ float . ),(),(),( ),( ),(),(),( 210 1211101 0201000   nmmmm n n yxfyxfyxfyxf yxfyxfyxfyxf yxfyxfyxfyxf (2.21) ở đ y mxx mx /)( 0  nyy my /)( 0  m và n là số lẻ. Nếu ),( 21  H là thực và. 3,1 0 )()(2)(4)( 3 m i mi m i i x xfxfxfxf lÎch½n ở đ y ;/)( 0 mxx mx  và m là một số lẻ. Với tích phân kép dxdyyxfI nm y y x x ),( 00   Sử dụng qui tắc Simpson ta có thể viết như sau: dyyxfyxfyxfyxfI m i mi m i i y y x n                    2 ,. dyyxfyxfyxfyxfI m i mi m i i y y x n                    2 , 4,2 1 , 3,1 0 ),(),(2),(4),( 3 0 ch½nlÎ 18 v y có thể viết dy yxf yxf yxf yxf I m y y x n                     ),( ),( ),( ),( ]241 14242[ 3 2 1 0 0 

Ngày đăng: 10/07/2014, 21:20

TỪ KHÓA LIÊN QUAN