sao chép (ori), vừa có các vị trí nhận biết cho các enzyme hạn chế như Eco RI , Hin dIII , Bam HI , Sal I , Ở đoạn gen Amp r có bốn điểm nhận biết, ở gen Tet r có tám điểm nhận biết, những điểm này giúp dễ phát hiện các plasmid có gen ngoại lai gắn vào. Ví dụ: nếu cắt plasmid bằng enzyme BamHI (375) rồi gắn DNA ngoại lai vào chỗ cắt thì gen Tet r bị phân đôi do chèn đoạn DNA lạ, vì thế tế bào mất khả năng kháng tetracycline nhưng vẫn kháng ampicillin. Plasmid này có khả năng sao chép độc lập với tế bào E. coli và tồn tại với số lượng trung bình 20-30 bản sao cho mỗi tế bào. Trong những điều kiện nuôi cấy nhất định có thể khuếch đại có chọn lọc làm tăng số plasmid đến hơn 1.000 bản sao cho một tế bào. Hình 4.1. Plasmid vector pBR 322. Ap r (hay Amp r ) và Tet r : gen kháng ampicillin và tetracycline, ori: trình tự khởi đầu sao chép, và một số vị trí nhận biết cho các RE. - Thế hệ thứ ba . L à các plasmid đa năng (polycloning plasmid) và chuyên dụng. Để tiện cho việc sử dụng nhiều lo ại RE khác nhau, nhiều trình tự nhận biết của chúng được xếp nối tiếp nhau thành một đoạn dài gọi là polylinkers (vùng đa nối) hay multiple cloning sites (các vị trí tạo dòng). Các plasmid vi khuẩn có thể chứa đoạn DNA ngoại lai khoảng 3-10 kb. Có 3 nhóm plasmid thông dụng hiện đang được bán rộng rãi trên thị trường như: + Nhóm các plasmid pUC. Kích thước khoảng 2.600 bp, mang gen Ap r và một phần gen lacZ’, xen vào giữa gen lacZ’ là polylinker (Hình 4.2). Các thành viên của nhóm này chỉ khác nhau do độ dài và chiều của polylinker. Các ưu điểm của nhóm này: * Kích thước nhỏ. * Sự có mặt của gen lacZ’ 7 rất thuận tiện cho việc phát hiện vector tái tổ hợp. * Vùng polylinker cho phép chèn vào gần như bất kỳ một trình tự DNA lạ nào. Hình 4.2. Plasmid vector pUC19 . Vị trí tạo dòng (từ 396-447) được gắn vào gen lacZ’, nhưng không can thiệp vào chức năng của gen. + Nhóm các plasmid pGEM : Kích thước khoảng 3.000 bp, mang gen Amp r , gen lacZ, polylinker và promoter đặc trưng cho các RNA polymerase (SP6, T7) ở hai bên vùng polylinker cho phép phiên mã đoạn DNA gắn trong vector thành nhiều RNA (Hình 4.3). Các RNA này thường dùng làm probe (mẫu dò) hay dùng trong nghiên cứu cấu trúc và chức năng của RNA. Hình 4.3. Plasmid vector pGEM. Nhóm vector này được mở vòng sẵn mang 2 đầu T ở vùng MCS, đặc trưng cho việc gắn các sản phẩm PCR mang 2 đầu A. + Nhóm các plasmid pBluescript : Kích thước khoảng 3 . 000 bp, các plasmid này kết hợp được tất cả những ưu điểm của mấy nhóm vừa kể và được xem là nhóm có tiềm năng ứng dụng lớn nhất hiện nay (Hình 4.4). 2. Tạo dòng trong plasmid Về nguyên tắc, DNA plasmid bị cắt bởi enzyme hạn chế và gắn in vitro với đoạn DNA ngoại lai tạo ra các plasmid tái tổ hợp, sau đó chúng được dùng để biến nạp vào vi khuẩn. Khó khăn lớn nhất là phân biệt giữa các plasmid chứa các đoạn DNA ngoại lai-thể tái tổ hợp (recombinant) và các phân tử DNA vector đã tái tạo lại vòng (recircularization). Sự tái tạo lại vòng của plasmid có thể được hạn chế bằng cách điều chỉnh nồng độ DNA ngoại lai và DNA vector trong phản ứng gắn (ligation). Một số phương thức được dùng để phân biệt giữa các thể tái tổ hợp và tái tạo lại vòng như sau: Hình 4.4. Plasmid vector pBluescript II SK (+ /- ). Vector này mang vùng tạo dòng ở vị trí từ 598-826 trên gen lacZ’, gen kháng ampicillin, các promoter T3 và T7, và các vị trí gắn cho các cặp primer khác nhau dùng trong phân tích trình tự đoạn DNA ngoại lai. 2.1. Khử hoạt tính bằng chèn đoạn (insertional inactivation) Phương pháp này dùng cho các plasmid mang hai hoặc nhiều marker (ví dụ: Amp r , lacZ). DNA ngoại lai và DNA plasmid được thủy phân cùng một loại enzyme hạn chế và tinh sạch, sau đó gắn hai DNA với nhau, hỗn hợp gắn được dùng để biến nạp vào E. coli mẫn cảm Amp để chọn lọc thể biến nạp nhờ tính kháng Amp của plasmid và hoạt tính b -galactosidase của gen lacZ. Các khuẩn lạc chứa các plasmid tái tổ hợp sinh trưởng trên môi trường có mặt Amp và isopropyl- thiogalactoside (IPTG) cùng với cơ chất nhiễm sắc thể X-gal sẽ có màu trắng do đoạn DNA ngoại lai xen vào giữa gen lacZ làm gen này mất hoạt tính. Trong khi đó các khuẩn lạc chứa DNA plasmid tái tạo lại vòng sẽ có màu xanh do gen lacZ không bị mất hoạt tính (Hình 4.5 và 4.6). Hình 4.5. Cơ chế tác dụng của ß -galactosidase 2.2. Tạo dòng định hướng (directional cloning) Hầu hết các plasmid vector mang hai hoặc nhiều vị trí nhận biết enzyme hạn chế, ví dụ: vector pBR 322 chứa các vị trí nhận biết đơn HindIII và BamHI sau khi cắt bằng hai enzyme hạn chế tương ứng, đoạn DNA plasmid lớn hơn có thể được tinh sạch bằng điện di agarose gel và gắn với một đoạn DNA ngoại lai mang các đầu kết dính tương đồng với nó cũng được cắt bởi BamHI và HindIII. Kết quả, thể tái tổ hợp dạng vòng mang tính kháng Amp sau đó được dùng để biến nạp vào E. coli. Do thiếu sự bổ trợ giữa các đầu lồi HindIII và BamHI nên đoạn vector lớn hơn không thể tái tạo lại vòng một cách hiệu quả được vì thế nó biến nạp vào E. coli rất kém. Dĩ nhiên, các tổ hợp khác của enzyme cũng có thể được sử dụng tùy thuộc vào các vị trí nhận biết (RS-recognition sites) trong vector và của đoạn DNA ngoại lai (Hình 4.7). . hai bên vùng polylinker cho phép phiên mã đoạn DNA gắn trong vector thành nhiều RNA (Hình 4.3). Các RNA này thường dùng làm probe (mẫu dò) hay dùng trong nghiên cứu cấu trúc và chức năng của RNA dụng lớn nhất hiện nay (Hình 4.4). 2. Tạo dòng trong plasmid Về nguyên tắc, DNA plasmid bị cắt bởi enzyme hạn chế và gắn in vitro với đoạn DNA ngoại lai tạo ra các plasmid tái tổ hợp, sau. Sự tái tạo lại vòng của plasmid có thể được hạn chế bằng cách điều chỉnh nồng độ DNA ngoại lai và DNA vector trong phản ứng gắn (ligation). Một số phương thức được dùng để phân biệt giữa các