120 Đề ÔN TậP VàO LớP 10 I, số ®Ị cã ®¸p ¸n ®Ị Bài : (2 điểm) a) Tính : b) Giải hệ phương trình : Bài : (2 điểm) Cho biểu thức : a) Rút gọn A b) Tìm x nguyên để A nhận giá trị nguyên Bài : (2 điểm) Một ca nơ xi dịng từ bến sơng A đến bến sơng B cách 24 km ; lúc đó, từ A B bè nứa trôi với vận tốc dòng nước km/h Khi đến B ca nô quay lại gặp bè nứa địa điểm C cách A km Tính vận tốc thực ca nô Bài : (3 điểm) Cho đường trịn tâm O bán kính R, hai điểm C D thuộc đường tròn, B trung điểm cung nhỏ CD Kẻ đường kính BA ; tia đối tia AB lấy điểm S, nối S với C cắt (O) M ; MD cắt AB K ; MB cắt AC H a) Chứng minh BMD = BAC, từ => tứ giác AMHK nội tiếp b) Chứng minh : HK // CD c) Chứng minh : OK.OS = R2 Bài : (1 điểm) Cho hai số a b khác thỏa mãn : 1/a + 1/b = 1/2 Chứng minh phương trình ẩn x sau ln có nghiệm : (x2 + ax + b)(x2 + bx + a) = Bµi 3: Do ca nô xuất phát từ A với bè nứa nên thời gian ca nô thời gian bÌ nøa: = (h) Gäi vËn tèc ca nô x (km/h) (x>4) 24 24 24 16 + =2⇔ + =2 x+4 x−4 x+4 x−4 x = ⇔ x − 40 x = ⇔ x = 20 Theo ta có: Vởy vận tốc thực ca nô lµ 20 km/h Bµi 4: -1- » » · · a) Ta cã BC = BD (GT) → BMD = BAC (2 góc nội tiếp chắn cung băng nhau) · · * Do BMD = BAC → A, M nh×n HK dêi gãc b»ng → MHKA néi tiÕp » » b) Do BC = BD (do BC = BD ), OC = OD (b¸n kÝnh) → OB đờng trung trực CD CD AB (1) Xet MHKA: tứ giác nội tiếp, à AMH = 900 (góc nt à chắn nửa đờng tròn) HKA = 1800 − 900 = 900 (®l) → HK ⊥ AB (2) Tõ 1,2 → HK // CD B C D O H K M A S Bµi 5: x + ax + b = (*) ( x + ax + b)( x + bx + a ) = ⇔ x + bx + a = (**) (*) → ∆ = α − 4b , §Ĩ PT cã nghiÖm a − 4b ≥ ⇔ a ≥ 4b ⇔ ≥ a (**) → ∆ = b 4a Để PT có nghiệm b − 4a ≥ ⇔ ≥ b a b (3) (4) 1 1 + ≥ + a b a b 1 1 1 11 1 1 ⇔ + ≤ ⇔ + ≤ ⇔ + ữ (luôn với a, b) 4a 4b 4a b a b Céng víi ta cã: De Đề thi gồm có hai trang PHẦN TRẮC NGHIỆM KHÁCH QUAN : (4 điểm) Tam giác ABC vng A có tgB = Giá trị cosC : a) cos C = ; 5 b) cos C = ; c) cos C = ; -2- d) cos C = Cho hình lập phương có diện tích tồn phần S1 ; thể tích V1 hình cầu có diện tích S2 ; thể tích V2 Nếu S1 = S2 tỷ số thể tích a) V1 ; = V2 π b) V1 π ; = V2 c) V1 : V2 V1 ; = V2 3π Đẳng thức x − x + 16 = − x xảy : a) x ≥ ; b) x ≤ –2 ; c) x ≥ –2 x ≤ ; d) V1 3π = V2 d) x ≥ x ≤ –2 Cho hai phương trình x2 – 2x + a = x2 + x + 2a = Để hai phương trình vơ nghiệm : a) a > ; b) a < ; c) a > ; d) a < Điều kiện để phương trình x − (m + 3m − 4) x + m = có hai nghiệm đối : a) m < ; b) m = –1 ; c) m = ; d) m = – Cho phương trình x − x − = có nghiệm x1 , x2 Biểu thức A = x13 + x2 có giá trị : a) A = 28 ; b) A = –13 ; c) A = 13 ; d) A = 18 x sin α − y cos α = Cho góc α nhọn, hệ phương trình có nghiệm : x cos α + y sin α = x = sin α x = cos α x = x = − cos α a) ; b) ; c) ; d) y = cos α y = sin α y = y = − sin α Diện tích hình trịn ngoại tiếp tam giác cạnh a : a) π a ; b) 3π a ; c) 3π a ; -3- d) π a PHẦN TỰ LUẬN : (16 điểm) Câu : (4,5 điểm) Cho phương trình x − (m2 + 4m) x + 7m − = Định m để phương trình có nghiệm phân biệt tổng bình phương tất nghiệm 10 + = x ( x + 1) x + x +1 Giải phương trình: Câu : (3,5 điểm) Cho góc nhọn α Rút gọn khơng dấu biểu thức : P = cos α − − sin α + Chứng minh: ( 4+ 15 )( 5− ) − 15 = C©u : (2 điểm) Với ba số không âm a, b, c, chứng minh bất đẳng thức : a + b + c +1 ≥ ( ab + bc + ca + a + b + c ) Khi đẳng thức xảy ? Câu : (6 điểm) Cho đường tròn (O) (O’) cắt hai điểm A, B phân biệt Đường thẳng OA cắt (O), (O’) điểm thứ hai C, D Đường thẳng O’A cắt (O), (O’) điểm thứ hai E, F Chứng minh đường thẳng AB, CE DF đồng quy điểm I Chứng minh tứ giác BEIF nội tiếp đường tròn Cho PQ tiếp tuyến chung (O) (O’) (P ∈ (O), Q ∈ (O’)) Chứng minh đường thẳng AB qua trung điểm đoạn thẳng PQ -HẾT - -4- ĐÁP ÁN PHẦN TRẮC NGHIỆM KHÁCH QUAN : Câu a) x x b) x c) x d) (4 điểm) 0,5đ × x x x x PHẦN TỰ LUẬN : Câu : (4,5 điểm) Đặt X = x2 (X ≥ 0) Phương trình trở thành X − (m2 + 4m) X + 7m − = (1) Phương trình có nghiệm phân biệt ⇔ (1) có nghiệm phân biệt dương + (m + 4m) − 4(7 m − 1) > ∆ > (I) + ⇔ S > ⇔ m + 4m > 7 m − > P > 2 Với điều kiện (I), (1) có nghiệm phân biệt dương X1 , X2 ⇒ phương trình cho có nghiệm x1, = ± X ; x3, = ± X 2 2 ⇒ x12 + x2 + x3 + x4 = 2( X + X ) = 2(m + 4m) + m = m = −5 2 Vậy ta có 2(m + m) = 10 ⇒ m + m − = ⇒ + Với m = 1, (I) thỏa mãn Với m = –5, (I) không thỏa mãn Vậy m = + + Đặt t = x + x + (t ≥ 1) Được phương trình + = 3(t − 1) t + 3t2 – 8t – = ⇒t=3; t=− (loại) + Vậy x + x + = ⇒ x = ± Câu : + (3,5 điểm) -5- P = cos α − − sin α + = cos α − cos α + P = cos α − 2cos α + (vì cosα > 0) + P = (cos α − 1) P = − cos α (vì cosα < 1) + + ( + 15 )( 5− ) ) ( ) (4− = ( − ) + 15 = ( − ) ( + 15 ) = ( − 15 ) ( + 15 ) − 15 = ( 5− + 15 = Câu : ( 15 ) + + + + (2 điểm) a− b ) ≥ ⇒ a + b ≥ ab + Tương tự, a + c ≥ ac b+c≥2 a +1 ≥ b +1 ≥ c +1 ≥ bc a b c + Cộng vế với vế bất đẳng thức chiều ta điều phải chứng minh + Đẳng thức xảy ⇔ a = b = c = + -6- Câu : (6 điểm) I E A D + O O’ B C Ta có : H P F Q ABC = 1v ABF = 1v ⇒ B, C, F thẳng hàng + AB, CE DF đường cao tam giác ACF nên chúng đồng quy ++ ECA = EBA (cùng chắn cung AE (O) Mà ECA = AFD (cùng phụ với hai góc đối đỉnh) ⇒ EBA = AFD hay EBI = EFI ⇒ Tứ giác BEIF nội tiếp + + + + Gọi H giao điểm AB PQ Chứng minh tam giác AHP PHB đồng dạng ⇒ HP HA = ⇒ HP2 = HA.HB HB HP + + Tương tự, HQ2 = HA.HB ⇒ HP = HQ ⇒ H trung điểm PQ + + Lưu ý : - Mỗi dấu “+” tương ứng với 0,5 điểm - Các cách giải khác hưởng điểm tối đa phần - Điểm phần, điểm tồn khơng làm trịn lu«n lu«n cã nghiƯm -7- -®Ị I.Trắc nghiệm:(2 điểm) HÃy ghi lại chữ đứng trớc khẳng định ( ) Câu 1: KÕt qu¶ cđa phÐp tÝnh 18 − 98 + 72 : lµ : A.4 C 16 D 44 B +6 +2 x + = cã hai nghiƯm ph©n biƯt : Câu : Giá trị m phơng trình mx A m D m vµ m < 1 B m < C m ≠ vµ m < 4 µ = 600 ; C = 450 Sđ BC là: ằ Câu :Cho VABC nội tiếp đờng tròn (O) cã B A 750 B 1050 C 1350 D 1500 Câu : Một hình nón có bán kính đờng tròn đáy 3cm, chiều cao 4cm diện tích xung quanh hình nón lµ: A π (cm2) B 12 π (cm2) C 15 π (cm2) D 18 π (cm2) II Tù Ln: (8 ®iĨm) x +1− x x + x + x x +1 a) Tìm x để biểu thøc A cã nghÜa b) Rót gän biĨu thøc A c) Với giá trị x ABC) Vẽ đờng tròn tâm (O') đờng kính BC.Gọi I trung điểm AC Vẽ dây MN vuông góc với AC I, MC cắt đờng tròn tâm O' D a) Tứ giác AMCN hình gì? Tại sao? b) Chứng minh tứ giác NIDC nội tiếp? c) Xác định vị trí tơng đối ID đờng tròn tâm (O) với đờng tròn tâm (O') Câu : Cho biểu thức A= Đáp án Câu C D D C Néi dung x ≥ x ≥ a) A cã nghÜa ⇔ ⇔ x −1 ≠ x ≠ §iĨm 0.5 0.5 0.5 0.5 0.5 -8- b) A= ( ) x −1 x −1 + x ( 0.5 ) x +1 x +1 0.25 = x −1 + x =2 x − 0.25 0.25 c) A