466 J.G. Ryall and G.S. Lynch Engelhardt, S., Hein, L., Wiesmann, F., Lohse, M. J. (1999). Progressive hypertrophy and heart failure in b 1 -adrenergic receptor transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 7059–7064. Esler, M., Kaye, D., Thompson, J., Jennings, G., Cox, H., Turner, A., Lambert, G., Seals, D. (1995). Effects of aging on epinephrine secretion and regional release of epinephrine from the human heart. The Journal of Clinical Endocrinology and Metabolism, 80, 435–442. Filipek, S., Krzysko, K. A., Fotiadis, D., Liang, Y., Saperstein, D. A., Engel, A., Palczewski, K. (2004). A concept for G protein activation by G protein-coupled receptor dimers: the transdu- cin/rhodopsin interface. Photochemical & Photobiological Sciences, 3, 628–638. Ford, C. E., Skiba, N. P., Bae, H., Daaka, Y., Reuveny, E., Shekter, L. R., Rosal, R., Weng, G., Yang, C. S., Iyengar, R., Miller, R. J., Jan, L. Y., Lefkowitz, R. J., Hamm, H. E. (1998). Molecular basis for interactions of G protein bg subunits with effectors. Science, 280, 1271–1274. Fowler, E. G., Graves, M. C., Wetzel, G. T., Spencer, M. J. (2004). Pilot trial of albuterol in Duchenne and Becker muscular dystrophy. Neurology, 62, 1006–1008. Fredriksson, R., Lagerström, M. C., Lundin, L. G., Schiöth, H. B. (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology, 63, 1256–1272. Frielle, T., Collins, S., Daniel, K. W., Caron, M. G., Lefkowitz, R. J., Kobilka, B. K. (1987). Cloning of the cDNA for the human b 1 -adrenergic receptor. Proceedings of the National Academy of Sciences of the United States of America, 84, 7920–7924. Furuyama, T., Yamashita, H., Kitayama, K., Higami, Y., Shimokawa, I., Mori, N. (2002). Effects of aging and caloric restriction on the gene expression of Foxo1, 3, and 4 (FKHR, FKHRL1, and AFX) in the rat skeletal muscles. Microscopy Research and Technique, 59, 331–334. Garami, A., Zwartkruis, F. J., Nobukuni, T., Joaquin, M., Roccio, M., Stocker, H., Kozma, S. C., Hafen, E., Bos, J. L., Thomas, G. (2003). Insulin activation of Rheb, a mediator of mTOR/ S6K/4E-BP signaling, is inhibited by TSC1 and 2. Molecular Cell, 11, 1457–1466. Gilman, A. G. (1995). Nobel Lecture. G proteins and regulation of adenylyl cyclase. Bioscience Reports, 15, 65–97. Glass, D. J. (2003). Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nature Cell Biology, 5, 87–90. Glass, D. J. (2005). Skeletal muscle hypertrophy and atrophy signaling pathways. The International Journal of Biochemistry & Cell Biology, 37, 1974–1984. Goodman, R. H. & Smolik, S. (2000). CBP/p300 in cell growth, transformation, and development. Genes & Development, 14, 1553–1577. Gregorevic, P., Ryall, J. G., Plant, D. R., Sillence, M. N., Lynch, G. S. (2005). Chronic b- agonist administration affects cardiac function of adult but not old rats, independent of b-adrenoceptor density. American Journal of Physiology. Heart and Circulatory Physiology, 289, H344–H349. Grifone. R., Laclef, C., Spitz, F., Lopez, S., Demignon, J., Guidotti, J. E., Kawakami, K., Xu, P. X., Kelly, R., Petrof, B. J., Daegelen, D., Concordet, J. P., Maire, P. (2004). Six1 and Eya1 expres- sion can reprogram adult muscle from the slow-twitch phenotype into the fast-twitch pheno- type. Molecular Cell Biology, 24, 6253–6267. Hagiwara, M., Alberts, A., Brindle, P., Meinkoth, J., Feramisco, J., Deng, T., Karin, M., Shenolikar, S., Montminy, M. (1992). Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB. Cell, 70, 105–113. Hagiwara, M., Brindle, P., Harootunian, A., Armstrong, R., Rivier, J., Vale, W., Tsien, R., Montminy, M. R. (1993). Coupling of hormonal stimulation and transcription via the cyclic AMP-responsive factor CREB is rate limited by nuclear entry of protein kinase A. Molecular and Cellular Biology, 13, 4852–4859. Hampoelz, B. & Knoblich, J. A. (2004). Heterotrimeric G proteins: new tricks for an old dog. Cell, 119, 453–456. Handschin, C., Chin, S., Li, P., Liu, F., Maratos-Flier, E., Lebrasseur, N. K., Yan Z, Spiegelman BM. (2007). Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. Journal of Biological Chemistry, 282, 30014–30021. 467 Role of b-Adrenergic Signalling in Skeletal Muscle Wasting: Implications for Sarcopenia Harcourt, L. J., Schertzer, J. D., Ryall, J. G., Lynch, G. S. (2007). Low dose formoterol administration improves muscle function in dystrophic mdx mice without increasing fatigue. Neuromuscular Disorders, 17, 47–55. Hardt, S. E. & Sadoshima, J. (2002). Glycogen synthase kinase-3: a novel regulator of cardiac hypertrophy and development. Circulation Research, 90, 1055–1063. Hinkle, R. T., Hodge, K. M., Cody, D. B., Sheldon, R. J., Kobilka, B. K., Isfort, R. J. (2002). Skeletal muscle hypertrophy and anti-atrophy effects of clenbuterol are mediated by the b 2 - adrenergic receptor. Muscle & Nerve, 25, 729–734. Hinkle, R. T., Dolan, E., Cody, D. B., Bauer, M. B., Isfort, R. J. (2005). Phosphodiesterase 4 inhibition reduces skeletal muscle atrophy. Muscle & Nerve, 32, 775–781. Hudlická, O. & Price, S. (1990). Effects of torbafylline, pentoxifylline and buflomedil on vascu- larisation and fibre type of rat skeletal muscles subjected to limited blood supply. British Journal of Pharmacology, 99, 786–790. Jefferies, H. B., Fumagalli, S., Dennis, P. B., Reinhard, C., Pearson, R. B., Thomas, G. (1997). Rapamycin suppresses 5¢TOP mRNA translation through inhibition of p70 s6k . The EMBO Journal, 16, 3693–3704. Johnson, M. (2006). Molecular mechanisms of b 2 -adrenergic receptor function, response, and regulation. The Journal of Allergy and Clinical Immunology, 117, 18–24. quiz 25. Kandarian, S. C. & Jackman, R. W. (2006). Intracellular signaling during skeletal muscle atrophy. Muscle & Nerve, 33, 155–165. Kass, D. A., Champion, H. C., Beavo, J. A. (2007). Phosphodiesterase type 5: expanding roles in cardiovascular regulation. Circulation Research, 101, 1084–1095. Kaye, D. & Esler, M. (2005). Sympathetic neuronal regulation of the heart in aging and heart failure. Cardiovascular Research, 66, 256–264. Kim, M. S., Fielitz, J., McAnally, J., Shelton, J. M., Lemon, D. D., McKinsey, T. A., Richardson J. A., Bassel-Duby, R., Olson, E. N. (2008). Protein kinase D1 stimulates MEF2 activity in skeletal muscle and enhances muscle performance. Molecular Cell Biology, 28, 3600–3609. Kim, Y. S., Sainz, R. D., Molenaar, P., Summers, R. J. (1991). Characterization of b 1 - and b 2 - adrenoceptors in rat skeletal muscles. Biochemical Pharmacology, 42, 1783–1789. Kissel, J. T., McDermott, M. P., Natarajan, R., Mendell, J. R., Pandya, S., King, W. M., Griggs, R. C., Tawil, R. (1998). Pilot trial of albuterol in facioscapulohumeral muscular dystrophy. Neurology, 50, 1402–1406. Kissel, J. T., McDermott, M. P., Mendell, J. R., King, W. M., Pandya, S., Griggs, R. C., Tawil, R. (2001). Randomized, double-blind, placebo-controlled trial of albuterol in facioscapu- lohumeral dystrophy. Neurology, 57, 1434–1440. Klco, J. M., Wiegand, C. B., Narzinski, K., Baranski, T. J. (2005). Essential role for the second extracellular loop in C5a receptor activation. Nature Structural & Molecular Biology, 12, 320–326. Kline, W. O., Panaro, F. J., Yang, H., Bodine, S. C. (2007). Rapamycin inhibits the growth and muscle-sparing effects of clenbuterol. Journal of Applied Physiology, 102, 740–747. Kobilka, B. K., Dixon, R. A., Frielle, T., Dohlman, H. G., Bolanowski, M. A., Sigal, I. S., Yang- Feng, T. L., Francke, U., Caron, M. G., Lefkowitz, R. J. (1987). cDNA for the human b 2 - adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proceedings of the National Academy of Sciences of the United States of America, 84, 46–50. Kobilka, B. K., Kobilka, T. S., Daniel, K., Regan, J. W., Caron, M. G., Lefkowitz, R. J. (1988). Chimeric a 2 -, b 2 -adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science, 240, 1310–1316. Lai, K. M., Gonzalez, M., Poueymirou, W. T., Kline, W. O., Na, E., Zlotchenko, E., Stitt, T. N., Economides, A. N., Yancopoulos, G. D., Glass, D. J. (2004). Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy. Molecular and Cellular Biology, 24, 9295–9304. Larkin, L. M., Halter, J. B., Supiano, M. A. (1996). Effect of aging on rat skeletal muscle b-AR function in male Fischer 344 × brown Norway rats. The American Journal of Physiology, 270, R462–R468. 468 J.G. Ryall and G.S. Lynch Latres, E., Amini, A. R., Amini, A. A., Griffiths, J., Martin, F. J., Wei, Y., Lin, H. C., Yancopoulos, G. D., Glass, D. J. (2005). Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy- induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. The Journal of Biological Chemistry, 280, 2737–2744. Léger, B., Cartoni, R., Praz, M., Lamon, S., Dériaz, O., Crettenand, A., Gobelet, C., Rohmer, P., Konzelmann, M., Luthi, F., Russell, A. P. (2006). Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. Journal de Physiologie, 576, 923–933. Lohse, M. J. (1999). G-Proteins and their regulators. Naunyn Schmiedeberg’s Archives of Pharmacology, 360, 3–4. Lopez-Ilasaca, M., Crespo, P, Pellici, P. G., Gutkind, J. S., Wetzker, R. (1997). Linkage of G protein- coupled receptors to the MAPK signaling pathway through PI 3-kinase g. Science, 275, 394–397. Lynch, G. S. & Ryall, J. G. (2008). Role of b-adrenoceptor signaling in skeletal muscle: implica- tions for muscle wasting and disease. Physiological Reviews, 88, 729–767. Martin, W. H., 3rd, Murphree, S. S., Saffitz, J. E. (1989). b-Adrenergic receptor distribution among muscle fiber types and resistance arterioles of white, red, and intermediate skeletal muscle. Circulation Research, 64, 1096–1105. Maxwell, M. A., Cleasby, M. E., Harding, A., Stark, A., Cooney, G. J., Muscat, G. E. (2005). Nur77 regulates lipolysis in skeletal muscle cells. Evidence for cross-talk between the beta- adrenergic and an orphan nuclear hormone receptor pathway. The Journal of Biological Chemistry, 280, 12573–12584. Mayr, B. & Montminy, M. (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature Reviews. Molecular Cell Biology, 2, 599–609. McDaneld, T. G., Hancock, D. L., Moody, D. E. (2004). Altered mRNA abundance of ASB15 and four other genes in skeletal muscle following administration of b-adrenergic receptor agonists. Physiological Genomics, 16, 275–283. McDaneld, T. G., Hannon, K., Moody, D. E. (2006). Ankyrin repeat and SOCS box protein 15 regulates protein synthesis in skeletal muscle. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 290, R1672–R1682. McKinsey, T. A., Zhang, C. L., Olson, E. N. (2002). Signaling chromatin to make muscle. Current Opinion in Cell Biology, 14, 763–772. McPherron, A. C., Lawler, A. M., Lee, S. J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-b superfamily member. Nature, 387, 83–90. Meng, E. C. & Bourne, H. R. (2001). Receptor activation: what does the rhodopsin structure tell us? Trends in Pharmacological Sciences, 22, 587–593. Mirshahi, T., Mittal, V., Zhang, H., Linder, M. E., Logothetis, D. E. (2002). Distinct sites on G protein bg subunits regulate different effector functions. The Journal of Biological Chemistry, 277, 36345–36350. Molenaar, P. & Parsonage, W. A. (2005). Fundamental considerations of b-adrenoceptor subtypes in human heart failure. Trends in Pharmacological Sciences, 26, 368–375. Molenaar, P., Chen, L., Parsonage, W. A. (2006). Cardiac implications for the use of b 2 - adrenoceptor agonists for the management of muscle wasting. British Journal of Pharmacology, 147, 583–586. Molkentin, J. D. & Olson, E. N. (1996). Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 93, 9366–9373. Morris, A. J. & Malbon, C. C. (1999). Physiological regulation of G protein-linked signaling. Physiological Reviews, 79, 1373–1430. Murga, C., Laguinge, L., Wetzker, R., Cuadrado, A., Gutkind, J. S. (1998). Activation of Akt/ protein kinase B by G protein-coupled receptors. A role for a and bg subunits of heterotrimeric G proteins acting through phosphatidylinositol-3-OH kinase g. The Journal of Biological Chemistry, 273, 19080–19085. Murga, C., Fukuhara, S., Gutkind, J. S. (2000). A novel role for phosphatidylinositol 3-kinase b in signaling from G protein-coupled receptors to Akt. The Journal of Biological Chemistry, 275, 12069–12073. 469 Role of b-Adrenergic Signalling in Skeletal Muscle Wasting: Implications for Sarcopenia Nader, G. A. (2005). Molecular determinants of skeletal muscle mass: getting the “AKT” together. The International Journal of Biochemistry & Cell Biology, 37, 1985–1996. Nave, B. T., Ouwens, M., Withers, D. J., Alessi, D. R., Shepherd, P. R. (1999). Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. The Biochemical Journal, 344(Pt 2), 427–431. Navegantes, L. C., Resano, N. M., Migliorini, R. H., Kettelhut, I. C. (2000). Role of adrenoceptors and cAMP on the catecholamine-induced inhibition of proteolysis in rat skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 279, E663–E668. Nichols, C. D. & Roth, B. L. (2009). Engineered G-protein coupled receptors are powerful tools to investigate biological processes and behaviors. Frontiers in Molecular Neuroscience, 2, 16. Nicholson, K. M. & Anderson, N. G. (2002). The protein kinase B/Akt signalling pathway in human malignancy. Cellular Signalling, 14, 381–395. Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., Nakatani, Y. (1996). The transcrip- tional coactivators p300 and CBP are histone acetyltransferases. Cell, 87, 953–959. Ohkura, N., Ito, M., Tsukada, T., Sasaki, K., Yamaguchi, K., Miki, K. (1998). Alternative splicing generates isoforms of human neuron-derived orphan receptor-1 (NOR-1) mRNA. Gene, 211, 79–85. Omori, K. & Kotera, J. (2007). Overview of PDEs and their regulation. Circulation Research, 100, 309–327. Oh, M., Rybkin, I. I., Copeland, V., Czubryt, M. P., Shelton, J. M., van Rooij, E., Richardson, J. A., Hill, J. A., De Windt, L. J., Bassel-Duby, R., Olson, E. N., Rothermel, B. A. (2005). Calcineurin is necessary for the maintenance but not embryonic development of slow muscle fibers. Molecular Cell Biology, 25, 6629–6638. Pallafacchina, G., Calabria, E., Serrano, A. L., Kalhovde, J. M., Schiaffino, S. (2002). A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proceedings of the National Academy of Sciences of the United States of America, 99, 9213–9218. Pearen, M. A., Ryall, J. G., Maxwell, M. A., Ohkura, N., Lynch, G. S., Muscat, G. E. (2006). The orphan nuclear receptor, NOR-1, is a target of b-adrenergic signaling in skeletal muscle. Endocrinology, 147, 5217–5227. Pearen, M. A., Ryall, J. G., Lynch, G. S., Muscat, G. E. (2009). Expression profiling of skeletal muscle following acute and chronic β2-adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm. BMC Genomics, 10, 448. Pei, Y., Rogan, S. C., Yan, F., Roth, B. L. (2008). Engineered GPCRs as tools to modulate signal transduction. Physiology, 23, 313–321. Pourquié, O. (2005). Signal transduction: a new canon. Nature, 433, 208–209. Rattigan, S., Appleby, G. J., Edwards, S. J., McKinstry, W. J., Colquhoun, E. Q., Clark, M. G., Richter, E. A. (1986). a-adrenergic receptors in rat skeletal muscle. Biochemical and Biophysical Research Communications, 136, 1071–1077. Ricks, C. A., Dalrymple, R. H., Baker, P. K., Ingle, D. L. (1984). Use of a b-agonist to alter fat and muscle deposition in steers. Journal of Animal Science, 59, 1247–1255. Rodbell, M., Birnbaumer, L., Pohl, S. L., Krans, H. M. (1971). The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. The Journal of Biological Chemistry, 246, 1877–1882. Rommel, C., Bodine, S. C., Clarke, B. A., Rossman, R., Nunez, L., Stitt, T. N., Yancopoulos, G. D., Glass, D. J. (2001). Mediation of IGF-1-induced skeletal myotube hypertrophy by PI3K/Akt/ mTOR and PI(3)K/Akt/GSK3 pathways. Nature Cell Biology, 3, 1009–1013. Roth, J. F., Shikama, N., Henzen, C., Desbaillets, I., Lutz, W., Marino, S., Wittwer, J., Schorle, H., Gassmann, M., Eckner, R. (2003). Differential role of p300 and CBP acetyltransferase during myogenesis: p300 acts upstream of MyoD and Myf5. The EMBO Journal, 22, 5186–5196. Ryall, J. G., Gregorevic, P., Plant, D. R., Sillence, M. N., Lynch, G. S. (2002). b 2 -Agonist fenoterol has greater effects on contractile function of rat skeletal muscles than clenbuterol. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 283, R1386–R1394. 470 J.G. Ryall and G.S. Lynch Ryall, J. G., Plant, D. R., Gregorevic, P., Sillence, M. N., Lynch, G. S. (2004). b 2 -Agonist administration reverses muscle wasting and improves muscle function in aged rats. Journal de Physiologie, 555, 175–188. Ryall, J. G., Sillence, M. N., Lynch, G. S. (2006). Systemic administration of b 2 -adrenoceptor agonists, formoterol and salmeterol, elicit skeletal muscle hypertrophy in rats at micromolar doses. British Journal of Pharmacology, 147, 587–595. Ryall, J. G., Schertzer, J. D., Lynch, G. S. (2007). Attenuation of age-related muscle wasting and weakness in rats after formoterol treatment: therapeutic implications for sarcopenia. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 62, 813–823. Ryall, J. G., Schertzer, J. D., Alabakis, T. M., Gehrig, S. M., Plant, D. R., Lynch, G. S. (2008a). Intramuscular b 2 -agonist administration enhances early regeneration and functional repair in rat skeletal muscle after myotoxic injury. Journal of Applied Physiology, 105, 165–172. Ryall, J. G., Schertzer, J. D., Murphy, K. T., Allen, A. M., Lynch, G. S. (2008b). Chronic b 2 - adrenoceptor stimulation impairs cardiac relaxation via reduced SR Ca 2+ -ATPase protein and activity. American Journal of Physiology. Heart and Circulatory Physiology, 294, H2587–H2595. Sandri, M., Sandri, C., Gilbert, A., Skurk, C., Calabria, E., Picard, A., Walsh, K., Schiaffino, S., Lecker, S. H., Goldberg, A. L. (2004). Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell, 117, 399–412. Sartorelli, V., Huang, J., Hamamori, Y., Kedes, L. (1997). Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Molecular and Cellular Biology, 17, 1010–1026. Schertzer, J. D., Plant, D. R., Ryall, J. G., Beitzel, F., Stupka, N., Lynch, G. S. (2005). b 2 -Agonist administration increases sarcoplasmic reticulum Ca 2+ -ATPase activity in aged rat skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 288, E526–E533. Schmidt, P., Holsboer, F., Spengler, D. (2001). b 2 -adrenergic receptors potentiate glucocorticoid receptor transactivation via G protein bg-subunits and the phosphoinositide 3-kinase pathway. Molecular Endocrinology, 15, 553–564. Sillence, M. N. (2004). Technologies for the control of fat and lean deposition in livestock. The Veterinary Journal, 167, 242–257. Sillence, M. N. & Matthews, M. L. (1994). Classical and atypical binding sites for b-adrenoceptor ligands and activation of adenylyl cyclase in bovine skeletal muscle and adipose tissue mem- branes. British Journal of Pharmacology, 111, 866–872. Small, K. M., Brown, K. M., Forbes, S. L., Liggett, S. B. (2001). Modification of the b 2 -adrenergic receptor to engineer a receptor-effector complex for gene therapy. The Journal of Biological Chemistry, 276, 31596–31601. Smith, W. N., Dirks, A., Sugiura, T., Muller, S., Scarpace, P., Powers, S. K. (2002). Alteration of contractile force and mass in the senescent diaphragm with b 2 -agonist treatment. Journal of Applied Physiology, 92, 941–948. Sneddon, A. A., Delday, M. I., Steven, J., Maltin, C. A. (2001). Elevated IGF-II mRNA and phos- phorylation of 4E-BP1 and p70 S6k in muscle showing clenbuterol-induced anabolism. American Journal of Physiology. Endocrinology and Metabolism, 281, E676–E682. Spangenburg, E. E. (2005). SOCS-3 induces myoblast differentiation. The Journal of Biological Chemistry, 280, 10749–10758. Spurlock, D. M., McDaneld, T. G., McIntyre, L. M. (2006). Changes in skeletal muscle gene expression following clenbuterol administration. BMC Genomics, 7, 320. Stitt, T. N., Drujan, D., Clarke, B. A., Panaro, F., Timofeyva, Y., Kline, W. O., Gonzalez, M., Yancopoulos, G. D., Glass, D. J. (2004). The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Molecular Cell, 14, 395–403. Thompson, P. R., Wang, D., Wang, L., Fulco, M., Pediconi, N., Zhang, D., An, W., Ge, Q., Roeder, R. G., Wong, J., Levrero, M., Sartorelli, V., Cotter, R. J., Cole, P. A. (2004). Regulation of the 471 Role of b-Adrenergic Signalling in Skeletal Muscle Wasting: Implications for Sarcopenia p300 HAT domain via a novel activation loop. Nature Structural & Molecular Biology, 11, 308–315. Tintignac, L. A., Lagirand, J., Batonnet, S., Sirri, V., Leibovitch, M. P., Leibovitch, S. A. (2005). Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. The Journal of Biological Chemistry, 280, 2847–2856. Tran, H., Brunet, A., Griffith, E. C., Greenberg, M. E. (2003). The Many Forks in FOXO’s Road. Sci STKE 2003, RE5. Wadzinski, B. E., Wheat, W. H., Jaspers, S., Peruski, L. F., Jr., Lickteig, R. L., Johnson, G. L., Klemm, D. J. (1993). Nuclear protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation. Molecular and Cellular Biology, 13, 2822–2834. Wenzel-Seifert, K. & Seifert, R. (2000). Molecular analysis of b 2 -adrenoceptor coupling to G s -, G i -, and G q -proteins. Molecular Pharmacology, 58, 954–966. Wilkie, T. M., Gilbert, D. J., Olsen, A. S., Chen, X. N., Amatruda, T. T., Korenberg, J. R., Trask, B. J., de Jong, P., Reed, R. R., Simon, M. I. (1992). Evolution of the mammalian G protein alpha subunit multigene family. Nature Genetics, 1, 85–91. Williams, R. S., Caron, M. G., Daniel, K. (1984). Skeletal muscle b-adrenergic receptors: varia- tions due to fiber type and training. The American Journal of Physiology, 246, E160–E167. Wu, A. L., Kim, J. H., Zhang, C., Unterman, T. G., Chen, J. (2008). Forkhead box protein O1 negatively regulates skeletal myocyte differentiation through degradation of mammalian target of rapamycin pathway components. Endocrinology, 149, 1407–1414. Yamamoto, D. L., Hutchinson, D. S., Bengtsson, T. (2007). b 2 -Adrenergic activation increases glycogen synthesis in L6 skeletal muscle cells through a signalling pathway independent of cyclic AMP. Diabetologia, 50, 158–167. Yang, X. J. (2004). Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays, 26, 1076–1087. Yang, X., Yang, C., Farberman, A., Rideout, T. C., de Lange, C. F., France, J., Fan, M. Z. (2008). The mammalian target of rapamycin-signaling pathway in regulating metabolism and growth. Journal of Animal Science, 86(14 Suppl), E36–E50. Zeman, R. J., Ludemann, R., Easton, T. G., Etlinger, J. D. (1988). Slow to fast alterations in skel- etal muscle fibers caused by clenbuterol, a b 2 -receptor agonist. The American Journal of Physiology, 254, E726–E732. Zeman, R. J., Peng, H., Etlinger, J. D. (2004). Clenbuterol retards loss of motor function in motor neuron degeneration mice. Experimental Neurology, 187, 460–467. Zhang, X., Odom, D. T., Koo, S. H., Conkright, M. D., Canettieri, G., Best, J., Chen, H., Jenner, R., Herbolsheimer, E., Jacobsen, E., Kadam, S., Ecker, J. R., Emerson, B., Hogenesch, J. B., Unterman, T., Young, R. A., Montminy, M. (2005). Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tis- sues. Proceedings of the National Academy of Sciences of the United States of America, 102, 4459–4464. 473 A ACE. See Angiotensin converting enzyme Acquired immunodeficiency syndrome (AIDS), 15, 172, 396–397, 427 Action potential, 48–50, 112, 115, 117, 370 Activin, 210, 235, 421–422, 426–428, 432, 452 Actomyosin, 4, 14, 73–106, 267, 272, 274 Adenosine triphosphate (ATP), 11, 15, 40, 42, 74–79, 82, 83, 86, 87, 91, 92, 101, 134–136, 143, 176, 178, 180, 188, 260, 261, 267, 269–270, 272, 320, 340, 447, 458 Adenovirus, 13 Adipose, 11, 16–17, 19, 27, 142, 400, 416, 418 b-Adrenergic, 445–460 b-Adrenoceptor (b-adrenoceptor), 446–452, 456–459 b-Adrenoceptor agonists, 452–456, 459 b-Adrenoceptor antagonist, 457–458 Aerobic capacity, 134, 151, 340 Age, 2, 19, 42, 56, 79, 112, 136, 157, 174, 206, 222, 225, 286, 314, 330, 372, 392, 416, 452 Ageing, 5, 19, 39, 55, 74, 111, 133, 159, 172, 207, 222, 256, 286, 322, 330, 433, 452 Age-related, 2–5, 19, 21–26, 37–51, 73–106, 112, 114–117, 119–125, 134–148, 159, 186, 205–213, 222, 223, 226, 228, 242–243, 264, 267–270, 272, 275–276, 285–301, 314, 319–322, 334, 337, 369–384, 389–405, 433, 435, 452, 454, 455, 459 b-Agonist (b-agonist), 448, 451, 453–459 AIDS. See Acquired immunodeficiency syndrome Alpha actinin 3 (ACTN3), 230, 232–233, 237, 241–242 Alpha-bungarotoxin, 44, 120, 122, 123 Amino acid (AA), 10, 17, 74, 81, 94, 99, 101, 102, 104, 208, 291–295, 298–300, 334, 335, 337, 349, 350, 379, 391–392, 395, 396, 401, 416, 417, 421, 428, 447 Amyotrophic lateral sclerosis, 56, 58, 141 Anabolic resistance, 208, 288, 291, 293, 296, 300, 301, 334–336 Anabolic stimuli, 207–209, 211, 288, 297, 301, 332, 334–337 Androgen receptor (AR), 229, 237–240 Anemia, 10 Angiotensin converting enzyme (ACE), 229–232, 237, 241–242 Anorexia, 2, 10–12, 21, 27 Antioxidant supplementation, 322 Apoptosis, 3, 4, 12–15, 24–26 Apoptosome, 14, 15, 144, 180 Appendicular muscle mass, 331, 339–341 AR. See Androgen receptor Asthenia, 10, 22 Astrocytes, 123 ATP. See Adenosine triphosphate Atrogin, 14, 208, 297, 334, 396, 429, 450 Atrophy, 3, 4, 10, 21, 22, 26, 39, 56, 63, 112, 116–118, 120, 124, 134, 141–146, 173, 174, 176, 178, 182, 190–191, 206–210, 240, 264, 268, 271, 272, 289, 290, 297, 314, 332–339, 372, 391, 393, 395–398, 404, 405, 428, 429, 431–435, 450, 451, 453–454, 458 Atrophy gene-1 (Atrogin-1), 334, 395 Autocrine, 22, 122, 124, 125, 186, 393–394, 405 Axon terminal, 38, 44, 122 B Basal lamina, 158, 162, 163, 211, 289, 290, 338, 379, 381 BAT. See Brown adipose tissue Index G.S. Lynch (ed.), Sarcopenia – Age-Related Muscle Wasting and Weakness, DOI 10.1007/978-90-481-9713-2, © Springer Science+Business Media B.V. 2011 474 Index Bedridden, 2 Biceps brachii, 60, 117 Bioinformatics, 100, 103, 104 Biopsy, 79, 135, 207, 225, 344, 373, 376, 398 Bivariate linkage, 227 Body composition, 2, 22, 223, 227, 243, 330–331, 337, 339, 340 Bone marrow, 11 Brown adipose tissue (BAT), 11, 12, 142 C Cachectic, 10–12, 15, 26, 27, 433 Cachexia, 2, 3, 9–27, 256, 391, 396, 427–430 Calcineurin, 241 Calcium, 15, 64, 66, 74, 97–99, 112, 116, 121, 175, 176, 190, 273, 370, 379, 380, 401, 402, 422 Calcium ion (Ca 2+ ), 24, 40, 47, 76, 78, 79, 82, 86, 87, 97, 101, 112, 114–115, 134, 144, 267, 268, 273–275, 334, 403, 458 Caloric restriction, 341, 401, 405, 451 Calpain, 15, 160, 300, 334, 379, 432 cAMP. See cyclic AMP cAMP response element (CRE), 448 cAMP response element binding protein (CREB), 113, 114, 448, 449 Cancer cachexia, 9–27, 256, 396, 427, 429 Cardiac hypertrophy, 210, 457 Cardiac output, 340 Cardiorespiratory function, 331 Caspase, 14, 15, 24, 144, 175–186 Catabolic mediator, 11 Caveolin, 432 Cellular, 3–5, 19, 26, 46, 74, 79, 91, 100, 101, 104, 134, 135, 140, 173–178, 180, 183, 190, 191, 206, 255–257, 265, 270–273, 275, 276, 297, 314–320, 347, 381, 382, 451 Cholinergic, 46–48, 50 Chronic obstructive pulmonary disease (COPD), 14, 230–232, 236, 256, 445 Ciliary neurotrophic factor (CNTF), 18, 22, 230, 233, 234, 237 Circadian rhythm, 452 Citrate synthase (CS), 340 Clenbuterol, 450, 453, 455, 457, 459 CNTF. See Ciliary neurotrophic factor Collagen, 103, 119, 157–164, 435, 458 Comorbidity, 4, 256, 287 Compensatory hypertrophy, 117 Conditioning protocol, 384 Connective tissue, 25, 64, 66, 158, 159, 161, 163, 373 Contractile apparatus, 66, 257, 266–267, 382 COPD. See Chronic obstructive pulmonary disease Costamere, 120, 121, 381, 382 CRE. See cAMP response element C-reactive protein (CRP), 17, 18 CREB. See cAMP response element binding protein Cross-bridges, 40, 42, 64, 77, 78, 80, 83, 86, 90, 105, 112, 134, 370, 372 CS. See Citrate synthase Cultured myotube, 13 Cyclic AMP (cAMP), 447–449, 458 Cytochrome c, 14, 15, 92, 144–146, 176–178, 180, 270 Cytoprotective, 271, 272, 316, 318, 321 D Deacetylase, 340–341, 432, 449 Delta, 212, 213 Denervation, 3, 39, 42–43, 47–48, 51, 56, 58, 59, 63, 113–118, 120–121, 139–142, 146, 147, 151, 173, 182, 187, 190, 264, 265, 271, 334, 391, 396, 398, 404, 450–451, 458 Depolarization, 56, 113, 116, 121, 274 Designer receptors exclusively activated by designer drugs (DREADDs), 459 Desmin, 381, 382, 429 Dexamethasone, 428, 433 DHPR. See Dihydropyridine receptor Diabetes, 4, 14–15, 172, 206, 256, 273, 286–287, 330, 334, 339, 391, 396, 397, 403 Diaphragm, 41, 43–51, 162, 453 Differentiation, 13–15, 22, 158, 162, 172, 189, 210, 213, 257, 264, 271, 273, 290, 296, 300, 319, 336, 393, 394, 416, 417, 419, 422–424, 448, 451, 452 Dihydropyridine receptor (DHPR), 112, 113, 115, 121, 122, 273–275 Disabilities, 2, 9, 19, 21, 23, 56, 73, 79, 124, 222, 330, 331, 339, 344, 345 DNA damage, 142–144, 178 DREADDs. See Designer receptors exclu- sively activated by designer drugs Dysferlin-related myopathy, 271 Dystrophin, 15, 121, 162–164, 271, 317, 381–383, 431, 432 Dystrophin glycoprotein complex, 15, 317 475Index E EAA. See Essential amino acids Eccentric contraction, 116, 160, 296, 371 ECM. See Extracellular matrix Economic burden, 3 ECU. See Excitation-contraction uncoupling EDL. See Extensor digitorum longus Electrical stimulation, 115, 122, 148, 150, 315, 335 Electromyography, 48, 59, 117 Electron transport chain (ETC), 91–93, 95, 136–138, 140, 143, 146, 178, 320 Endoplasmic reticulum (ER), 15, 46, 47, 97, 175, 176, 184, 190, 258 Endotoxic, 11 End-plate potential, 47, 48, 50, 112 Endurance, 78, 112, 120, 148, 149, 151, 159, 189, 264, 271, 295, 296, 298, 330, 331, 340, 341, 348, 349, 351, 433 Essential amino acids (EAA), 17, 291, 292, 295–297, 299–300, 321, 334–335 Estrogen receptor (ESR1), 234–235, 237 ETC. See Electron transport chain Excitability, 39, 115, 124, 173, 274, 449, 459 Excitation-contraction coupling (ECC), 3, 4, 64, 68, 74, 76, 79, 111–125, 263, 265, 268, 273–275 Excitation-contraction uncoupling (ECU), 112–113, 115–116, 124, 125 Exercise, 5, 21, 78, 113, 135, 159, 187, 207, 227, 258, 285, 314, 339, 372, 390, 432 Extensor digitorum longus (EDL), 44, 47–50, 113, 119, 123, 137, 145, 374, 375, 377, 378, 418, 448, 452, 454–458 Extracellular matrix (ECM), 68, 158, 160, 163, 300, 381, 418 F Fall, 3, 55, 56, 172, 206, 222, 243, 314, 315, 317, 319, 320, 333, 344 Familial aggregation, 223, 226 Fatigue, 10, 38, 40, 57, 112, 117, 268, 373, 453, 454 Fenoterol, 454, 455, 459 Fibre type transformation, 267, 276 Fibre type transition, 267, 276 Fibrosis, 4, 162–164, 381, 425, 435 Follistatin (FST), 235, 238, 239, 419, 426, 428, 432 Force deficit, 377–379, 383 Formoterol, 451–452, 455–457, 459 Fracture, 3, 19, 206, 222 Frailty, 3, 56, 73, 79, 275, 300, 314, 330, 347, 372, 384, 402, 453 Free radicals, 4, 64, 81, 91, 93, 95, 96, 178, 314 FST. See Follistatin G Gastrocnemius, 41, 58–59, 137, 146, 147, 149, 162, 208, 260, 265, 267, 269, 274, 275, 370, 453, 458 GDP. See Guanosine diphosphate Genetic screening, 241, 243 Genetic variation, 5, 221–243 Genome-wide association, 228–229, 239, 240, 242, 243 GH. See Growth hormone Glial cell, 123 Glucocorticoid, 21, 23, 184, 428 Glucose homeostasis, 331 Glutathione, 58, 102, 315, 320 Glutathione peroxidase, 319 Glycation, 58, 97, 102–104, 159 Glycation endproduct, 58 Glycoprotein, 15, 18, 274, 275, 317, 381 G-protein coupled receptor (GPCR), 446, 459 Growth hormone (GH), 22, 23, 161, 164, 209, 211, 239, 390, 393–394, 397–399, 401–405 Guanosine diphosphate (GDP), 446 H Haplotype analysis, 232–234, 236, 238 Heat shock proteins (HSPs), 176, 265, 271–273, 316–318, 321, 322 Hepatocyte growth factor (HGF), 212, 380 Hepatocytes, 11, 17 Heritability, 223–226, 240, 242 Hindlimb suspension, 271, 453 Hippocampal, 124 Histones, 178, 242–243, 449, 452 HSPs. See Heat shock proteins Human, 11, 56, 79, 112, 135, 161, 172, 207, 235, 256, 288, 316, 332, 370, 390, 418, 448 Humoural, 10, 11, 27 Hydrogen peroxide (H 2 O 2 ), 91, 95, 139, 314, 315, 319–320, 322 Hydroxyl, 91, 99, 314 Hydroxyl radical (HO • ), 91, 99, 314 Hypercholesterolemia, 16, 190 Hyperinsulinemia, 292, 335 Hyperlipaemia, 16 Hyperlipidemia, 287 . Attenuation of age-related muscle wasting and weakness in rats after formoterol treatment: therapeutic implications for sarcopenia. The Journals of Gerontology. Series A: Biological Sciences and Medical. (2002). Effects of aging and caloric restriction on the gene expression of Foxo1, 3, and 4 (FKHR, FKHRL1, and AFX) in the rat skeletal muscles. Microscopy Research and Technique, 59, 331–334. Garami,. & Matthews, M. L. (1994). Classical and atypical binding sites for b-adrenoceptor ligands and activation of adenylyl cyclase in bovine skeletal muscle and adipose tissue mem- branes. British