Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
817,5 KB
Nội dung
5 ĐÊ ÔN THI TỐT NGHIỆP THPT ĐỀ 11 ( Thời gian làm bài 150 phút ) I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I ( 3,0 điểm ) Cho hàm số 2 1 1 x y x + = − . 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho. 2. Tìm tất cả các giá trị của tham số m để đường thẳng y=mx+1 cắt đồ thị của hàm số đã cho tại hai điểm phân biệt. Câu II ( 3,0 điểm )1) Giải bất phương trình : 1 2 2 1 log 0 5 x x + < + . 2)Tính tích phân :1) 3 2 0 x I dx 1 x = + ò . 3)Tính diện tích hình phẳng giới hạn bởi đồ thị các hàm số: 2 2 ; .y x x y x = − + = − Câu III. (1.0 điểm). Cho số phức: ( ) ( ) 2 2 1 . 2z i i = − + . Tính giá trị biểu thức . = A z z . II . PHẦN RIÊNG ( 3 điểm ) Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó. 1. Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) : Cho chóp S.ABCD có đáy hình vuông cạnh a, ( ),SA ABCD ⊥ 3SB a= . Tính thể tích chóp S.ABCD theo a. CâuV(1.0 điểm). Trong không gian với hệ toạ độ Oxyz, cho điểm A(2;0;0), B(0;3;0), C(0;0;4), D(1;-2;4) 1. Viết phương trình mặt phẳng (ABC). 2. Chứng minh rằng ABCD là hình tứ diện. Tính thể tích tứ diện ABCD. . Theo chương trình nâng cao : Câu IV.b ( 2,0 điểm ) : 1. Cho hai mặt phẳng (P): 2x – y – 2z + 3 = 0 và (Q): 2x – 6y + 3z – 4 = 0. Viết phương trình mặt cầu (S) có tâm nằm trên đường thẳng 3 : 1 1 2 x y z+ ∆ = = − đồng thời tiếp xúc với cả hai mặt phẳng (P) và (Q). Câu Vb. (1 điểm) Tìm căn bậc hai của số phức 1 4 3i− + . . . . . . . . . .Hết . . . . . . . HƯỚNG DẪN đề 11 I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I ( 3,0 điểm ) Tập xác định : { } = ¡ \ 1D Sự biến thiên : • Chiều biến thiên : ( ) 2 3 y' 0, x D. x 1 − = < ∀ ∈ − Suy ra, hàm số nghịch biến trên mỗi khoảng ( ) ( ) ;1 1;−∞ ∪ +∞ . • Hàm số không có cực trị. • Giới hạn : →−∞ →+∞ = =lim 2; lim 2 x x y y và + − → → = +∞ = −∞ 1 1 lim ; lim x x y y . Suy ra, đồ thị hàm số có một tiệm cận đứng là đường thẳng: x = 1,và tiệm cận ngang là đường thẳng: y = 2. • Bảng biến thiên : x −∞ 1 +∞ y' _ y 2 −∞ +∞ 2 • Đồ thị : Gv :Mai Thành LB Ôn Thi tốt nghiệp THPT . Theo chương trình mới 1 - Đồ thị cắt trục tung tại điểm (0;-1) và cắt trục hoành tại điểm 1 ;0 2 − ÷ . - Đồ thị nhận điểm I (1;2) làm tâm đối xứng. 2. (1,0 điểm) Đường thẳng y=mx+1 cắt đồ thị tại hai điểm phân biệt ⇔ Phương trình (ẩn x) 2 1 1 1 x mx x + = + − có hai nghiệm phân biệt ⇔ Phương trình (ẩn x) − + − = 2 mx (m 1)x 2 0 có hai nghiệm phân biệt, khác 1 ≠ ≠ ⇔ ∆ = + + > ⇔ + + > − + − ≠ 2 2 2 m 0 m 0 (m 1) 8m 0 m 10m 1 0 m.1 (m 1).1 2 0 < − − ⇔ − + < < > m 5 21 5 21 m 0 m 0 Câu II ( 3,0 điểm ) Bất phương trình đã cho tương đương với bất phương trình : + > + 2x 1 1 x 5 − > + > < − − ⇔ > ⇔ ⇔ + > − < + < x 4 0 x 5 0 x 5 x 4 0 x 5 x 4 x 4 0 x 5 0 2. (1,0 điểm) Tính các tích phân sau 3 2 0 x I dx 1 x = + ò Đặt 2 u 1 x du 2xdx= + Þ = Đổi cận: u 4 x 3 u 1 x 0 = = Þ = = Do đó: 4 1 4 1 I du u 1 1 2 u = = = ò Gv :Mai Thành LB Ôn Thi tốt nghiệp THPT . Theo chương trình mới 2 Vậy I 1= 3. (1,0 điểm) Ta có : 2 2 0; 3x x x x x− + = − ⇔ = = Diện tích là : 3 3 2 2 0 0 3 ( 3 )S x x dx x x dx= − + = − + ∫ ∫ 3 2 3 3 9 0 3 2 2 x x = − + = ÷ (đvdt). Câu III ( 1,0 điểm ) :Ta có : S ABCD = 2 a ; ( ),SA ABCD ⊥ Suy ra, = = − = 2 2 h SA 3a a a 2 Vậy, thể tích chóp S.ABCD là : = = = 3 2 S.ABCD ABCD 1 1 a 2 V S .SA a a 2 3 3 3 (đvtt) II . PHẦN RIÊNG ( 3 điểm ) 1. Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) : Áp dụng PT của mặt phẳng theo đoạn chắn ta có PT mp (ABC) là : 1 2 3 4 x y z + + = 6 4 3 12 0x y z ⇔ + + − = 2. (1,0 điểm) • Thay toạ độ điểm D vào pt mặt phẳng (ABC) • Suy ra ( )D ABC∉ do đó ABCD là hình tứ diện. • Ta có : ( 2;3;0)AB = − uuur , ( 2;0;4)AC = − uuur , ( 1; 2;4)AD = − − uuur Thể tích: = = − = uuur uuur uuur 1 1 1 , . 2 ( ) 6 6 3 V AB AC AD ñvtt Câu IV (1,0 điểm ) : Tacó: ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 1 2 1 2 4 4 2 3 4 6 8 8 6 z i i i i i i i i i i i = − + = − + + + = − + = − − = − 2. Theo chương trình nâng cao : ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ĐỀ 12 ( Thời gian làm bài 150 phút ) I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I ( 3,0 điểm ) Cho hàm số x 2 y 1 x + = − có đồ thị (C) a. Khảo sát sự biến thiên và vẽ đồ thị (C) . b. Chứng minh rằng đường thẳng (d) : y = mx − 4 − 2m luôn đi qua một điểm cố định của đường cong (C) khi m thay đổi . . Câu II ( 3,0 điểm ) a. Giải phương trình x x 1 2 2 log (2 1).log (2 2) 12 + − − = b. Tính tìch phân : I = 0 sin2x dx 2 (2 sinx) /2 + −π ∫ c. Viết phương trình tiếp tuyến với đồ thị 2 x 3x 1 (C): y x 2 − + = − , biết rằng tiếp tuyến này song song với đường thẳng (d) : 5x 4y 4 0− + = . Câu III ( 1,0 điểm ) Cho hình chóp S,ABC . Gọi M là một điểm thuộc cạnh SA sao cho MS = 2 MA . Tính tỉ Gv :Mai Thành LB Ôn Thi tốt nghiệp THPT . Theo chương trình mới 3 số thể tích của hai khối chóp M.SBC và M.ABC . II . PHẦN RIÊNG ( 3 điểm ) Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó 1. Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC có các đỉnh A,B,C lần lượt nằm trên các trục Ox,Oy,Oz và có trọng tâm G(1;2; 1− ) Hãy tính diện tích tam giác ABC . Câu V.a ( 1,0 điểm ) : Cho hình phẳng (H) giới hạn bởi các đường ( C ) : y = 2 x , (d) : y = 6 x− và trục hoành . Tính diện tích của hình phẳng (H) . 2. Theo chương trình nâng cao : Câu IV.b ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz , cho hình lập phương ABCD.A’B’C’D’ . Biết A’(0;0;0) , B’(a;0;0),D’(0;a;0) , A(0;0;a) với a>0 . Gọi M,N lần lượt là trung điểm các cạnh AB và B’C’ . a. Viết phương trình mặt phẳng (P) đi qua M và song song với hai đường thẳng AN và BD’ b. Tính góc và khoảng cách giữa hai đường thẳng AN và BD’ . Câu V.b ( 1,0 điểm ) : Tìm các hệ số a,b sao cho parabol (P) : 2 y 2x ax b= + + tiếp xúc với hypebol (H) : 1 y x = Tại điểm M(1;1) . . . . . . . .Hết . . . . . . . HƯỚNG DẪN ĐỀ 12 I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I ( 3,0 điểm ) a) 2đ b) 1đ Ta có : y = mx − 4 − 2m m(x 2) 4 y 0 (*)⇔ − − − = Hệ thức (*) đúng với mọi m x 2 0 x 2 4 y 0 y 4 − = = ⇔ ⇔ − − = = − Đường thẳng y = mx − 4 − 2m luôn đi qua điểm cố định A(2; − 4) thuộc (C) ( Vì tọa độ điểm A thỏa mãn phương trình x 2 y 1 x + = − ) Câu II ( 3,0 điểm ) a) 1đ Điều kiện : x > 1 . 2 2 x x pt log (2 1).[1 log (2 1)] 12 0 (1)⇔ − + − − = Đặt : 2 x t log (2 1)= − thì 2 (1) t t 12 0 t 3 t 4⇔ + − = ⇔ = ∨ = − 2 2 x x t = 3 log (2 1) 3 2 9 x log 9 2 17 17 x x t = 4 log (2 1) 4 2 x log 2 16 16 ⇔ − = ⇔ = ⇔ = − ⇔ − = − ⇔ = ⇔ = ® ® b) 1đ Đặt t 2 sinx dt cosxdx = + ⇒ = Gv :Mai Thành LB Ôn Thi tốt nghiệp THPT . Theo chương trình mới x −∞ 1 +∞ y ′ + + y +∞ 1− 1− −∞ 4 x = 0 t = 2 , x = t 1 2 2 2 2 2 2 2(t 2) 1 1 1 4 I = dt 2 dt 4 dt 2ln t 4 ln4 2 ln 1 2 2 2 t t t t e 1 1 1 1 π ⇒ − ⇒ = − = − = + = − = ∫ ∫ ∫ ® ® c) 1đ Đường thẳng (d) 5 5x 4y 4 0 y x 1 4 − + = ⇔ = + Gọi ∆ là tiếp tuyến cần tìm , vì ∆ song song với (d) nên tiếp tuyến có hệ số góc k = 5 4 Do đó : 5 ( ): y x b 4 ∆ = + ∆ là tiếp tuyến của ( C ) ⇔ hệ sau có nghiệm 2 x 3x 1 5 x b (1) x 2 4 x 2: 2 x 4x 5 5 (2) 2 4 (x 2) − + = + − ≠ − + = − 2 (2) x 4x 0 x 0 x 4 1 5 1 (1) x = 0 b tt( ): y x 1 2 4 2 5 5 5 (1) x = 4 b tt( ): y x 2 2 4 2 ⇔ − = ⇔ = ∨ = → = − ⇒ ∆ = − → = − ⇒ ∆ = − ® ® Câu III ( 1,0 điểm ) Ta có : V SM 2 2 S.MBC V .V (1) S.MBC S.ABC V SA 3 3 S.ABC = = ⇒ = 2 1 V V V V .V .V (2) M.ABC S.ABC S.MBC S.ABC S.ABC S.ABC 3 3 = − = − = Từ (1) , (2) suy ra : V V M.SBC S.MBC 2 V V M.ABC M.ABC = = II . PHẦN RIÊNG ( 3 điểm ) 1. Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) : Vì các đỉnh A,B,C lần lượt nằm trên các trục Ox,Oy,Oz nên ta gọi A(x;0;0) , B(0;y;0), C(0;0;z) . Theo đề : G(1;2; 1− ) là trọng tâm tam giác ABC x 1 3 x 3 y 2 y 6 3 z 3 z 1 3 = = ⇔ = ⇔ = = − = − 0,5đ Vậy tọa độ của các đỉnh là A(3;0;0) , B(0;6;0), C(0;0; 3− ) 0,25đ Mặt khác : 3.V 1 OABC V .d(O,(ABC).S S OABC ABC ABC 3 d(O,(ABC) = ⇒ = 0,25đ Phương trình mặt phẳng (ABC) : x y z 1 3 6 3 + + = − 0,25đ nên 1 d(O,(ABC)) 2 1 1 1 9 36 9 = = + + Gv :Mai Thành LB Ôn Thi tốt nghiệp THPT . Theo chương trình mới 5 Mặt khác : 1 1 V .OA.OB.OC .3.6.3 9 OABC 6 6 = = = 0,25đ Vậy : 27 S ABC 2 = 0,25đ Câu V.a ( 1,0 điểm ) : Phương trình hònh độ giao điểm của ( C ) và (d) : x 2 2 2 x 6 x x x 6 0 x 3 = = − ⇔ + − = ⇔ = − 2 6 2 1 x 26 2 3 2 6 S x dx (6 x)dx [x ] [6x ] 0 2 3 2 3 0 2 = + − = + − = ∫ ∫ 2. Theo chương trình nâng cao :Câu IV.b ( 2,0 điểm ) : a) 1đ Từ giả thiết ta tính được : B(a;0;a), D(0;a;0) , A(0;0;a) , M( a ;0;a) 2 , N(a; a 2 ;0) . a a AN (a; ; a) (2;1; 2) 2 2 BD' ( a;a; a) a(1; 1;1) = − = − = − − = − − uuur uuuur Mặt phẳng (P) đi qua M và song song với AN và BD’ nên có VTPT là 2 a n [AN,BD'] (1;4;3) 2 = = − uuur uuuur r Suy ra : : a 7a (P):1(x ) 4(y 0) 3(z a) 0 x 4y 3z 0 2 2 − + − + − = ⇔ + + − = b) 1đ Gọi ϕ là góc giữa AN uuur và BD' uuuur . Ta có : 2 a 2 2 a a 2 AN.BD' 1 3 3 cos arccos 3a 9 9 3 3 AN . BD' .a 3 2 2 a [AN,BD'] (1;4;3),AB (a;0;0) a(1;0;0) 2 − + + ϕ = = = = ⇒ ϕ = = = = uuur uuuur uuuur uuuur uuur uuuur uuur Do đó : 3 a [AN,BD'].AB a 2 d(AN,BD') 2 26 [AN,BD'] a . 26 2 = = = uuur uuuur uuur uuur uuuur Câu V.b ( 1,0 điểm ) : Tiếp điểm M có hoành độ chính là nghiệm của hệ phương trình : 1 2 1 2 2x ax b 2x ax b x x 1 1 2 4x a (2x ax b)' ( )' 2 x x + + = + + = ⇔ + = − + + = (I) Thay hoành độ của điểm M vào hệ phương trình (I) , ta được : Gv :Mai Thành LB Ôn Thi tốt nghiệp THPT . Theo chương trình mới 6 2 a b 1 a b 1 a 5 4 a 1 a 5 b 4 + + = + = − = − ⇔ ⇔ + = − = − = Vậy giá trị cần tìm là a 5,b 4= − = ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ĐỀ 13 ( Thời gian làm bài 150 phút ) I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I ( 3,0 điểm ) Cho hàm số 4 2 2 y x 2(m 2)x m 5m 5= + − + − + có đồ thị ( C m ) c. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 1 . b. Tìm giá trị của m để đồ thị ( C m ) cắt trục hoành tại 4 điểm phân biệt . Câu II ( 3,0 điểm ) d. Giải phương trình x x x x 9 5 4 2( 20)= + + e. Tính tích phân : I = 1 2 ln(1 x )dx 0 + ∫ f. Tìm giá trị lớn nhất của hàm số y = lnx x− . Câu III ( 1,0 điểm ) Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành với AB = a , BC = 2a và · ABC 60= o ; SA vuông góc với đáy và SC tạo với đáy góc α . a) Tính độ dài của cạnh AC . b) Tính theo a và α thể tích của khối chóp S.ABCD . II . PHẦN RIÊNG ( 3 điểm ) Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó 1. Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz , cho 3 điểm A(2;0; 1) ,B(1;0;0) ,C(1;1;1) và mặt phẳng ( ): x y z 2 0α + + − = . a. Viết phương trình mặt phẳng ABC. Xét vị trí tương đối giữa hai mặt phẳng (ABC) và mặt phẳng ( α ) . b. Viết phương trình mặt cầu (S) qua 3 điểm A,B,C và có tâm nằm trên mặt phẳng ( α ) . Câu V.a ( 1,0 điểm ) : Cho (H) giới hạn bởi các đường 2 y 4 x= − và 2 y x 2= + Tính thể tích của khối tròn xoay khi (H) quay quanh trục hoành . 2. Theo chương trình nâng cao : Câu IV.b ( 2,0 điểm ) : Cho hình hộp chữ nhật ABCD. A B C D 1 1 1 1 có các cạnh AA a 1 = , AB = AD = 2a . Gọi M,N,K lần lượt là trung điểm các cạnh AB,AD, AA 1 . a) Tính theo a khoảng cách từ C 1 đến mặt phẳng (MNK) . b) Tính theo a thể tích của tứ diện C MNK 1 . Câu V.b ( 1,0 điểm ) : Tính giá trị của biểu thức : = + + + + + + + 2 4 18 M 1 (1 i) (1 i) (1 i) . . . . . . . .Hết . . . . . . . HƯỚNG DẪN I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I ( 3,0 điểm ) a) 2đ Gv :Mai Thành LB Ôn Thi tốt nghiệp THPT . Theo chương trình mới 7 x −∞ 1− 0 1 +∞ y ′ − 0 + 0 − 0 + y +∞ 1 +∞ 0 0 b) 1đ Phương trình hoành độ giao điểm của ( C m ) và trục hoành : 4 2 2 x 2(m 2)x m 5m 5+ − + − + = 0 (1) Đặt 2 t x ,t 0 = ≥ . Ta có : (1) ⇔ 2 2 t 2(m 2)t m 5m 5 0+ − + − + = (2) Đồ thị ( C m ) cắt trục hoành tại 4 điểm phân biệt ⇔ pt (1) có 4 nghiệm phân biệt ⇔ pt (2) có 2 nghiệm dương phân biệt . ⇔ m 1 0 ' 0 5 5 2 P 0 m 5m 5 0 1 m 2 S 0 2(m 2) 0 − > ∆ > − > ⇔ − + > ⇔ < < > − − > Câu II ( 3,0 điểm ) a) 1đ 5 2 2x x x 2 x x x x x pt 3 [( 5) 2 ] 3 ( 5) 2 ( ) ( ) 1 3 3 ⇔ = + ⇔ = + ⇔ + = (1) Vì 5 2 0 , 1 3 3 < < nên vế trái là hàm số nghịch biến trên ¡ Mặt khác : f (2) = 1 nên pt (1) ⇔ f (x) = f (2) ⇔ x = 2 . b) 1đ Đặt 2xdx 2 du u ln(1 x ) 2 1 x dv dx v x = = + ⇒ + = = Ta có : 1 1 1 2 1 x 1 1 2 1 I xln(1 x ) 2 dx ln2 2 (1 )dx ln2 [2x] dx = ln2 2 2M 0 2 2 2 0 1 x 1 x 1 x 0 0 0 = + − = − − = − + − + + + + ∫ ∫ ∫ Với 1 1 M dx 2 1 x 0 = + ∫ . Đặt x tant= , ta tính được M = 4 π Do đó : I ln2 2 2 π = − + c) 1đ Ta có : TXĐ D (0; )= +∞ 1 1 1 1 1 1 1 1 y ( ), y 0 ( ) 0 x 4 x 2 2 2 x x x x x ′ ′ = − = − = ⇔ − = ⇔ = Bảng biến thiên : Vậy : Maxy y(4) 2ln2 2 (0; ) = = − +∞ Câu III ( 1,0 điểm ) a) Áp dụng định lí côsin vào ABC∆ , ta có : AC = a 3 Gv :Mai Thành LB Ôn Thi tốt nghiệp THPT . Theo chương trình mới x 0 4 +∞ y ′ − 0 + y 2ln2 - 2 8 b) Vì · = = = = α = α ⇒ = = α 3 2 S AB.BC.sinABC a.2a. a 3 ABCD 2 1 3 SA AC.tan a 3.tan V .SA.S a tan S.ABCD ABCD 3 II . PHẦN RIÊNG ( 3 điểm ) . 1. Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) : a) 1,0đ (ABC) : x y z 1 0+ − − = Vì 1:1: 1 1:1:1− ≠ nên hai mặt phẳng cắt nhau . b) 1,0đ Gọi mặt cầu cần tìm là : 2 2 2 (S): x y z 2ax 2by 2cz d 0+ + + + + + = với 2 2 2 2 a b c d+ + > có tâm I( a; b; c)− − − (S) qua A,B,C và tâm I thuộc mặt phẳng ( )α nên ta có hệ : 5 4a 2c d 0 a 1 1 2a d 0 b 0 3 2a 2b 2c d 0 c 1 a b c 2 0 d 1 + + + = = − + + = = ⇔ + + + + = = − − − − − = = Vậy (S) : 2 2 2 (S): x y z 2x 2z 1 0+ + − − + = có tâm I(1;0;1) và bán kính R = 1 . Câu V.a ( 1,0 điểm ) : Phương trình hoành độ điểm chung : 2 2 2 4 x x 2 x 1 x 1− = + ⇔ = ⇔ = ± Vì 2 2 4 x x 2, x [ 1;1]− ≥ + ∀ ∈ − nên : 1 1 2 2 2 2 2 V [(4 x ) (x 2) ]dx [12 12x ]dx 16 Ox 1 1 = π − − + = π − = π − − ∫ ∫ 2. Theo chương trình nâng cao : Câu IV.b ( 2,0 điểm ) : a) 1đ Chọn hệ trục tọa độ Oxyz có gốc O trùng với A , các trục Ox ,Oy ,Oz đi qua B, D và A 1 như hình vẽ . Khi đó : A(0;0;0) , B(2a;0;0) , D(0;2a;0) , A 1 (0;0;a) , C 1 (2a;2a;a) , M(a;0;0) , N(0;a;0) K(0;0; a 2 ) . Khi đó : (MNK):x y 2z a 0+ + − = Suy ra : 5a 6 d(C ;(MNK)) 1 6 = . b) 1đ Ta có : 1 3 1 5a V [MN,MK].MC C MNK 1 6 12 = = uuuur uuuur uuuuur với 2 2 a a 2 [MN,MK] ( ; ;a ) 2 2 = uuuur uuuur . Câu V.b ( 1,0 điểm ) : M là tổng của 10 số hạng đầu tiên của một cấp số nhân có số hạng đầu tiên u 1 1 = , công bội q = 2 (1 i) 2i+ = Ta có : − − + + = = = = = + − − − 10 10 10 1 q 1 (2i) 1 2 1025(1 2i) M u . 1. 205 410i 1 1 q 1 2i 1 2i 5 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Gv :Mai Thành LB Ôn Thi tốt nghiệp THPT . Theo chương trình mới 9 ĐỀ 14 ( Thời gian làm bài 150 phút ) I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I ( 3,0 điểm ) Cho hàm số 3 2 y x 3x 3x 2= − + − có đồ thị (C) d. Khảo sát sự biến thiên và vẽ đồ thị (C). e. Tính diện tích hình phẳng giới hạn bởi (C) , trục hoành và tiếp tuyến (d) với đồ thị (C) tại điểm M(0; 2− ) . . Câu II ( 3,0 điểm ) g. Giải bất phương trình x 2 x 1 x 1 2 3 6 + + + + < h. Tính tích phân : 2 cosx I dx sinx cosx 0 π = + ∫ c. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y 2x 1 3x 5= − − − .trên 5 [ ;2 ] 3 Câu III ( 1,0 điểm ) Thiết diện qua trục của một hình nón là một tam giác vuông cân có cạnh góc vuông bằng a .a. Tính diện tích xung quanh và diện tích toàn phần của hình nón . b. Tính thể tích của khối nón tương ứng . II . PHẦN RIÊNG ( 3 điểm ) Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó 2. Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz , cho bốn điểm A(1;0;0),B(0;1;0),C(0;0;1) và D( − 2;1; − 2) . a. Chứng minh rằng A,B,C,D là bốn đỉnh của một hình tứ diện . . b. Tính thể tích tứ diện ABCD và độ dài đường cao của tứ diện kẻ từ đỉnh A . Câu V.a ( 1,0 điểm ) : Giải phương trình 4 2 2z 2z 1 0+ − = trên tập số phức £ 3. Theo chương trình nâng cao : Câu IV.b ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz cho bốn điểm A(0;0;1) , B(0;0; − 1),C(1;1;1) và D(0;4;1) a. Viết phương trình mặt cầu (S) qua bốn điểm A,B,C,D . b. Viết phương trình đường thẳng (d) tiếp xúc với mặt cầu (S) tại C và tạo với trục Oz một góc o 45 . Câu V.b ( 1,0 điểm ) : Giải phương trình 2 z (cos isin )z isin .cos 0 , − ϕ + ϕ + ϕ ϕ = ϕ∈¡ trên tập số phức £ . . . . . . . .Hết . . . . . . . HƯỚNG DẪN ĐỀ 14 I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I ( 3,0 điểm ) a) 2đ x −∞ 1 +∞ y ′ + 0 + y +∞ 1 −∞ b) 1đ Gọi (d) là tiếp tuyến cần tìm (d): y 3x 2⇒ = − 2/3 3 2/3 3 20 88 4 3 2 3 2 S [y y ]dx y dx [ x 3x ]dx [x 3x 3x 2]dx (d) (C) (C) 81 81 3 0 2/3 0 2/3 = − − = − + − − + − = + = ∫ ∫ ∫ ∫ Câu II ( 3,0 điểm ) Gv :Mai Thành LB Ôn Thi tốt nghiệp THPT . Theo chương trình mới 10 [...]...a) 1đ Chia 2 vế cho 1 6 1 3 1 2 x x x +1 < 1 6x > 0 : bpt ⇔ ( ) + 2.( ) + 3.( ) (1) 1 1 1 f (x) = ( ) x + 2.( ) x + 3.( ) x +1 là hàm số nghịch biến trên R (2) 6 3 2 (2) Mặt khác : f(2) = 1 nên (1) ⇔ f(x) < f(2) Vậy tập nghiệm của bpt là S = (2; +∞) x>2 ⇒ π b) 1đ Đặt u = − x thì ta có 2 Đặt : π 2 0 π 2 sin u sin x dx = − ∫ du = ∫ du = ∫... π 2 π cos( − u) 2 ∫ Ta có : y′ = 2 − 3 2 3x − 5 ;y′ = 0 ⇔ x = 89 48 + Maxy = y(2) = 2 5 [ ;2 ] 3 Vậy : Câu III ( 1,0 điểm ) Xét hình nón đỉnh S , đáy là đường tròn tâm O , bán kính R Gọi ∆SAB cân là thi t diện qua trục SO Đường sinh : l = SA = SB = a a Do đó : ⇒ AB = a 2,R = 5 7 89 47 y( ) = ,y(2) = 2,y( ) = 3 3 48 24 89 47 + min y = y( ) = 48 24 5 [ ;2 ] 3 Vì a 2 2 π 2 2 Sxq = πRl = a 2 π 2 2 πa2... [AB;AC].AD = −4 ≠ 0 ⇒ , AB,AC,AD không đồng phẳng a) 1đ Do đó : A,B,C,D là bốn đỉnh của một hình tứ diện b) 1đ Ta có : uu ur uu ur uu ur CD = (−2;1; −3),BD = ( −2;0; −2),BC = (0; −1;1) Gv :Mai Thành LB Ôn Thi tốt nghiệp THPT Theo chương trình mới 11 Do đó : ur ur ur 1 uu uu uu 2 Vtø diÖn = | [AB;AC].AD | = 6 3 Độ dài đường cao đường cao kẻ từ đỉnh A : hA = 6V 2 3 uu uu = ur ur 3 | [BC;BD] | Cách khác... cos ϕ + i sin ϕ − (cos ϕ − i sin ϕ) z2 = = i sin ϕ 2 z1 = ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Gv :Mai Thành LB Ôn Thi tốt nghiệp THPT Theo chương trình mới 12 . ĐÊ ÔN THI TỐT NGHIỆP THPT ĐỀ 11 ( Thời gian làm bài 150 phút ) I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I ( 3,0 điểm ) Cho hàm số 2 1 1 x y x + = − . 1. Khảo sát sự biến thi n. . .Hết . . . . . . . HƯỚNG DẪN đề 11 I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I ( 3,0 điểm ) Tập xác định : { } = ¡ 1D Sự biến thi n : • Chiều biến thi n : ( ) 2 3 y' 0, x. có nghiệm 2 x 3x 1 5 x b (1) x 2 4 x 2: 2 x 4x 5 5 (2) 2 4 (x 2) − + = + − ≠ − + = − 2 (2) x 4x 0 x 0 x 4 1 5 1 (1) x = 0 b tt( ): y x 1 2 4 2 5 5 5 (1) x = 4 b tt( ): y x 2 2