ĐỀ ÔN TẬP CUỐI NĂM LỚP 8. ĐỀ SỐ I. (Hình thức tự luận). Bài 1: Thực hiện phép tính: 2 2 4x 16 3x + 6 : 1 2x + x 1 x − − − Bài 2: Cho biểu thức: P = 3 2 2 4x + 4x x 2 4x + 4x + 1 − − a) Tìm điều kiện của x để biểu thức P xác định. b) Tìm x sao cho P = 3 2 ; c) Tìm giá trị x nguyên sao cho P nhận giá trị nguyên. Bài 3: Tìm điều kiện của x để giá trị của biểu thức được xác định và chứng minh rằng với điều kiện đó biểu thức không phụ thuộc vào biến: 2 2 2 x x 5 2x 5 x : x 25 x 5x x 5x 5 x − − − + ÷ − + + − Bài 4: Giải các phương trình sau: a) 4x 2 – 1 = (2x + 1)(3x – 5) ; b) x - 7 2x + 3= c) 2(1 3x) 2 3x 3(2x + 1) 7 5 10 4 − + − = − d) 2 2 x + 1 x 1 2(x 2) x 2 x + 2 x 4 − + + = − − Bài 5: Cho tứ giác ABCD. Gọi E, I, F theo thứ tự là trung điểm của AD, BD, BC. Chứng minh rằng: a) EI // AB, IF // CD ; b) AB + CD EF 2 ≤ c) Tìm điều kiện của tứ giác ABCD để AB + CD EF = 2 . Bài 6: Một đường thẳng cắt các cạnh của AB, AC của ∆ ABC lần lượt ở M và N. Biết AM AN 4 MB NC 3 = = a) Chứng minh rằng ∆ AMN ~ ∆ ABC, tính tỉ số đồng dạng của hai tam giác? b) Biết MN chia ∆ ABC thành hai phần có hiệu diện tích bằng 132 cm 2 . Tính S ABC . ĐỀ SỐ II. (Hình thức tự luận). Bài 1: Thực hiện phép tính: 2 2 2x + 4 x + 2x : 4x x 1 4x− − Bài 2: Cho biểu thức: P = 3 2 2 x 2x 9x + 18 x + x 6 − − − a) Tìm điều kiện của x để biểu thức P xác định. b)Chứng minh rằng với mọi giá trị x nguyên thỏa mãn ĐKXĐ thì P nhận giá trị nguyên. Bài 3: Giải các phương trình sau: a) 0,5x.(2x – 9) = 1,5x.(x – 5) b) x 4x + 1 x x 3 4 12 − = − c) ( ) 1 3 5 3x 2 x 2 3x x − = − − d) 2x - 1 x + 2= Bài 4: Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số. a) x 4 1 2x 5 + 6 2 3 − − 〉 ; b) x + 6 x 2 2 5 3 − − 〈 ; c) x 1 x + 2 2x x + 5 3 6 5 − − 〉 + Bài 5: Giải bài toán bằng cách lập phương trình: Một người đi xe máy dự định đi từ A đến B với vận tốc 32 km/h. Sau khi đi được một giờ với vận tốc ấy, người đó phải dừng lại 15 phút để giải quyết công việc. Do đó, để đến B đúng thời gian đã định, người đó phải tăng vận tốc thêm 4 km/h. Tính quãng đường AB. Bài 6: Cho tam giác ABC vuông ở A, AB = 6cm, AC = 15cm, đường cao AH, đường phân giác BD. a) Tính độ dài các đoạn AD, DC? b) Gọi I là giao điểm của của AH và BD. Chứng minh: AB.BI = BD.HB ; AI.BI = BD.IH c) Chứng minh tam giác AID là tam giác cân. ĐỀ SỐ III. (Hình thức tự luận). Bài 1: Cho biểu thức: P = 2 x 2 1 1 : x 4 2 x x 2 x 2 + + ÷ − − + + a) Tìm điều kiện của x để biểu thức P xác định. b) Rút gọn biểu thức P. Bài 2: Giải các phương trình sau: a) (x – 2)(3x – 1) = x(2 – x) b) 2x + 3 4x + 1= c) x + 1 5x 1 3 3 10 + = − d) 2 1 3 2x 3 x + 2 2 x x 4 − + = − − Bài 3: Tìm x sao cho giá trị của biểu thức x 2 4 − nhỏ hơn giá trị của biểu thức 4x – 5. Bài 4: Giải bài toán bằng cách lập phương trình. Một ô tô khởi hành lúc 7 giờ sáng và dự định đến b lúc 11 giờ 30 phút cùng ngày. Do trời mưa, nên ô tô đã đi với vận tốc chậm hơn dự định 5 km/h. Vì thế phải đến 12 giờ ô tô mới đến B. Tính quãng đường AB. Bài 5: Cho hình thang ABCD (AB//CD). Gọi O là giao điểm của hai đường chéo AC và BD. a) Chứng minh OA.OD = OB.OC ; b) Cho AB = 5cm, CD = 10cm và AC = 9cm. Hãy tính OA, OC. Bài 6: Cho tam giác ABC vuông tại A với AC = 3cm, BC = 5cm. Vẽ đường cao AK. a) Chứng minh rằng: ∆ ABC ~ ∆ KBA và AB 2 = BK.BC b) Tính độ dài AK, BK, CK. c) Phân giác góc BAC cắt BC tại D. Tính đọ dài BD. ĐỀ SỐ IV. (Hình thức tự luận). Bài 1: Phân tích các đa thức sau thành nhân tử: 1) x 3 + x 2 – 4x – 4 2) x 4 – 8x 3) x 2 – 2x – 15 Bài 2: Cho biểu thức: P = 2 x 1 1 1 1 . 2x x 1 x 1 + − + ÷ ÷ − + a) Tìm điều kiện của x để biểu thức P xác định. b) Rút gọn biểu thức P. c) Tìm x để giá trị biểu thức P = 0. Bài 3: Giải các phương trình và bất phương trình sau: 1) (x + 3)(2x – 5) = 0 ; 2) (x – 1)(2x – 1) = x(1 – x) 3) ( ) ( ) x x 3x + 2 2x + 6 2x + 2 x + 1 x + 3 − = 4) 3 2x x + 3 2 x 5 4 − + ≥ − Bài 4: Giải bài toán bằng cách lập phương trình. Một công nhân được giao làm một số sản phẩm trong một thời gian nhất định. Người đó dự định làm mỗi ngày 45 sản phẩm. Sau khi làm được hai ngày, người đó nghỉ 1 ngày, nên để hoàn thành công việc đúng kế hoạch, mỗi ngày người đó phải làm thêm 5 sản phẩm. Tính số sản phẩm người đó được giao. Bài 5: Cho tam giác cân AOB (OA = OB). Đường thẳng qua B và song song với đường cao AH của tam giác AOB cắt tia OA ở E. 1) Chứng minh rằng OA 2 = OH.OE ; 2) Cho · 0 AOB 45= , OA = 5cm. Hãy tính độ dài OE. Bài 6: Hình thang vuông ABCD ( µ µ 0 A D 90= = ) có hai đường chéo vuông góc với nhau tại I. 1) Chứng minh ∆ AIB ~ ∆ DAB. 2) ∆ IAB ~ ∆ ICD. 3) Cho biết AB = 4cm, CD = 9cm. Tính độ dài AD, IA, IC và tỉ số diện tích của ∆ IAB và ∆ ICD. Bài 7: Cho tam giác ABC có ba đường cao AD, BE, CF giao nhau tại H. Chứng minh rằng: 1) ∆ AEB ~ ∆ AFC. 2) ∆ ABC ~ ∆ AEF 3) HD HE HF 1 AD BE CF + + = . ĐỀ ÔN TẬP CUỐI NĂM LỚP 8. ĐỀ SỐ I. (Hình thức tự luận). Bài 1: Thực hiện phép tính: 2 2 4x 16 3x + 6 : 1 2x. bằng 132 cm 2 . Tính S ABC . ĐỀ SỐ II. (Hình thức tự luận). Bài 1: Thực hiện phép tính: 2 2 2x + 4 x + 2x : 4x x 1 4x− − Bài 2: Cho biểu thức: P = 3 2 2 x 2x 9x + 18 x + x 6 − − − a) Tìm điều. lại 15 phút để giải quyết công việc. Do đó, để đến B đúng thời gian đã định, người đó phải tăng vận tốc thêm 4 km/h. Tính quãng đường AB. Bài 6: Cho tam giác ABC vuông ở A, AB = 6cm, AC = 15cm,