1. Trang chủ
  2. » Giáo án - Bài giảng

de thi thu dh A,B vung tau

1 223 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 106 KB

Nội dung

TRƯỜNG THPT VŨNG TÀU ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM 2010 Môn: TOÁN; Khối A, B Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm): Câu I (2,0 điểm) Cho hàm số 3 2 ( 2) ( 1) 2 1y x m x m x m= − + + − − + − (*) , m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (*) khi 1m = . 2. Tìm m để tiếp tuyến tại điểm có hoành độ 1 của đồ thị hàm số (*) đi qua điểm A (2;6) . Câu II (2,0 điểm) 1. Tìm nghiệm thuộc [0;12] của phương trình: cos3 (2sin 2 3)sinx x x= + . 2. Giải hệ phương trình: 2 3 1 1 6 2 3 1 1 6 x x y y y x  + − = − +   + − = − +   . Câu III (1,0 điểm) Tính tích phân: 9 4 ln( 1)x dx x − ∫ . Câu IV (1,0 điểm) Cho khối hộp chữ nhật . ' ' ' 'ABCD A B C D có , ' 3AB a BC a= = , góc giữa hai đường thẳng 'DA và 'BC bằng 0 60 . Tính thể tích khối hộp đã cho và tính bán kính mặt cầu ngoại tiếp tứ diện 'D ABC . Câu V (1,0 điểm) Cho các số thực dương , ,x y z . Chứng minh rằng: 5 5 5 3 3 3 2 2 2 x y z x y z y z x + + ≥ + + . PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được chọn làm một trong hai phần ( phần A hoặc B) A.Theo chương trình Chuẩn Câu VI.a (2,0 điểm) 1. Trong mặt phẳng tọa độ Oxy cho đường tròn (C): 2 2 2 2 2 0x y x y+ − − − = và đường thẳng (d): 4 3 0x y m+ + = . Tìm m biết rằng trên (d) có đúng một điểm M thỏa mãn từ M kẻ được hai tiếp tuyến MA, MB đến (C), sao cho tam giác MAB là tam giác đều (A, B là các tiếp điểm). 2. Trong không gian Oxyz cho các đường thẳng (d 1 ): 7 3 9 1 2 1 x y z− − − = = − và (d 2 ): 7 3 2 1 3 1 x t y t z t = − +   = +   = +  . Chứng minh (d 1 ) và (d 2 ) chéo nhau. Lập phương trình mặt cầu nhận đoạn vuông góc chung của (d 1 ) và (d 2 ) là một đường kính. Câu VII.a (1,0 điểm) Cho 2 0 1 2 n n a a x a x a x+ + + + là khai triển của ( ) (1 2 ) n p x x= + , với , 5n N n∈ ≥ . Tìm n , biết rằng { } 0 1 2 4 max ; ; ; ; n a a a a a= . B.Theo chương trình Nâng cao Câu VI.b (2,0 điểm) 1. Trong mặt phẳng tọa độ Oxy cho đường tròn (C): 2 2 2 2 7 0x y x y+ + + − = và đường thẳng (d): 3 4 0x y m− + = . Tùy theo m , hãy xét vị trí tương đối của (C) và (d). Khi (d) cắt (C), gọi A, B là các giao điểm, tìm m để độ dài đoạn thẳng AB đạt giá trị lớn nhất. 2. Trong không gian Oxyz, cho các điểm I (1;1;1), A (1;4;5) và mặt phẳng (P): 2 2 5 0x y z+ − − = . Lập phương trình mặt cầu (S) đi qua A và có tâm là I. Gọi đường tròn (C) là giao tuyến của (P) và (S), viết phương trình tiếp tuyến của (C) tại A. Câu VII.b (1,0 điểm) Tìm tất cả các giá trị thực của a sao cho bất phương trình: 2 2 2 2 2 3 log ( 2 2 1) log ( 2 2 2) 2x ax a x ax a+ + + + + + + ≤ có nghiệm duy nhất. Hết Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: ……………………………… ; Số báo danh . sát sự biến thi n và vẽ đồ thị của hàm số (*) khi 1m = . 2. Tìm m để tiếp tuyến tại điểm có hoành độ 1 của đồ thị hàm số (*) đi qua điểm A (2;6) . Câu II (2,0 điểm) 1. Tìm nghiệm thu c [0;12] . TRƯỜNG THPT VŨNG TÀU ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM 2010 Môn: TOÁN; Khối A, B Thời gian làm bài: 180 phút, không kể thời. a+ + + + + + + ≤ có nghiệm duy nhất. Hết Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: ……………………………… ; Số báo danh

Ngày đăng: 05/07/2014, 21:00

TỪ KHÓA LIÊN QUAN

w