MICROELECTRONIC CIRCUIT DESIGN potx

32 275 0
MICROELECTRONIC CIRCUIT DESIGN potx

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

MICROELECTRONIC CIRCUIT DESIGN Third Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems – Updated 1/25/08 Chapter 1 1.3 1.52 years, 5.06 years 1.5 1.95 years, 6.46 years 1.8 113 MW, 511 kA 1.10 2.50 mV, 5.12 V, 5.885 V 1.12 19.53 mV/bit, 10001110 2 1.16 0.002 A, 0.002 cos (1000t) A 1.19 v DS = [5 + 2 sin (2500t) + 4 sin (1000t)] V 1.21 15.7 V, 2.31 V, 70.0 µA, 210 µA 1.23 120 µA, 125 µA, 10.3 V 1.25 39.6 Ω, 0.0253 v s 1.27 56 kΩ, 1.33 x 10 -3 v s 1.29 1.00 MΩ, 2.50 x 10 8 i s 1.33 5 / − 45 °, 100 / − 12 ° 1.35 -90.1 sin 750πt mV, 11.0 sin 750πt µA 1.37 1 + R 2 /R 1 1.39 -1.875 V, -2.500 V 1.41 Band-pass amplifier 1.43 50.0 sin (2000 π t) + 30.0 cos (8000 π t) V 1.45 0 V 1.47 [2970Ω, 3030Ω], [2850Ω, 3150Ω], [2700Ω, 3300Ω] 1.52 6200Ω, 800 ppm/ o C 1.58 3.29, 0.995, −6.16; 3.295, 0.9952, −6.155 2 Chapter 2 2.4 For Ge: 35.9/cm 3 , 2.27 × 10 13 / cm 3 , 8.04 × 10 15 / cm 3 2.7 € −1.75x10 6 cm s, + 6.25x10 5 cm s, 2.80x10 4 A cm 2 , 1.00x10 −10 A cm 2 2.8 305.2 K 2.10 4 ΜΑ/cm 2 2.13 1.60 x 10 7 A/cm 2 , 4.00 A 2.15 316.6 K 2.19 Donor, acceptor 2.20 200 V/cm 2.22 5 x 10 3 atoms 2.24 4 x 10 16 /cm 3 , 2.50 x 10 5 /cm 3 2.28 6 x 10 18 /cm 3 , 16.7/cm 3 , 5 x 10 9 /cm 3 , 8.80 x 10 -10 /cm 3 2.30 3 x 10 17 /cm 3 , 333/cm 3 2.32 100/cm 3 , 10 18 /cm 3 , 375 cm 2 /s, 100 cm 2 /s, p-type, 62.4 mΩ-cm 2.34 10 16 /cm 3 , 10 4 /cm 3 , 800 cm 2 /s, 1230 cm 2 /s, n-type, 0.781 Ω-cm 2.38 3.06 x 10 18 /cm 3 2.40 Yes—add equal amounts of donor and acceptor impurities. Then n = n i = p, but the mobilities are reduced. See Prob. 2.37. 2.42 2.00/Ω-cm, 3.1 x 10 19 /cm 3 , 2.44 75K: 6.64 mV, 150K: 12.9 mV, 300K: 25.8 mV, 400K: 34.5 mV 2.46 -1.20 x10 5 exp (-5000 x/cm) A/cm 2 ; 12.0 mA 2.48 The width in the figure should be 2 µm: For x = 0, -535 A/cm 2 2.50 1.108 µm 3 Chapter 3 3.1 0.0373 µm, 0.0339 µm, 3.39 x 10 -3 µm, 0.979 V, 5.24 x 10 5 V/cm 3.3 10 18 /cm 3 , 10 2 /cm 3 , 10 18 /cm 3 , 10 2 /cm 3 , 0.921 V, 0.0488 µm 3.6 2.55 V, 1.05 µm 3.10 6400 A/cm 2 3.13 1.00 x 10 21 /cm 4 3.17 290 K 3.20 312K 3.21 1.39, 3.17 pA 3.22 0.837 V; 0.768 V; 0 A; 9.43 x 10 -19 A, -1.00 x 10 -18 A 3.25 1.34 V; 1.38 V 3.28 0.518 V; 0.633 V 3.31 0.757 V; 0.721 V 3.34 −1.96 mV/K 3.37 0.633 V, 0.949 µm, 3.89 µm, 12.0 µm 3.39 374 V 3.41 4 V, 0 Ω 3.43 9.80 nF/cm 2 ; 188 pF 3.45 400 fF, 10 fC; 100 pF, 0.5 pC 3.49 9.97 MHz; 15.7 MHz 3.51 0.495 V, 0.668 V 3.53 0.708 V, 0.718 V 3.56 (a) Load line: (450 µA, 0.500 V); SPICE: (443 µA, 0.575 V) (b) Load line: (-667 µA, -4 V); (c) Load line: (0 µA, -3 V); 3.59 (0.600 mA, -4 V) , (0.950 mA, 0.5 V) , (-2.00 mA, -4 V) 3.65 Load line: (50 µA, 0.5 V); Mathematical model: (49.9 µA, 0.501 V); Ideal diode model: (100 µA, 0 V); CVD model: (40.0µA, 0.6 V) 3.69 (a) 0.625 mA, 3 V; 0.625 mA, -5 V; 0 A, -5 V; 0 A, 7 V 3.71 (a) (409 µA, 0 V), (270 µA, 0 V); (c) (0 A -3.92 V), (230 µA, 0 V) 3.73 (a) (0.990 mA, 0 V) (0 mA, -1.73 V) (1.09 mA, 0) (d) (0 A, -0.452 V) (0 A, -0.948 V) (1.16 mA, 0.600 V) 3.76 (1.50 mA, 0 V) (0 A, -5.00 V) (1.00 mA, 0) 3.78 (I Z , V Z ) = (792 µA, 4.00 V) 3.81 10.8 mW 3.83 2.25 W, 4.50 W 3.88 17.6 V 3.91 −7.91 V; 1.05 F; 17.8 V; 3530 A; 841 A (ΔT = 0.628 ms) 4 3.94 -7.91V, 0.158 F, 17.8 V, 3540 A, 839 A 3.97 6.06 F; 8.6 V; 3.04 V; 1920 A; 9280 A 3.100 -20.2 V; 1.35 F; 42.4 V; 10800 A; 1650 A 3.103 3.03 F, 8.6 V, 3.04 V, 962 A, 4910 A 3.107 278 µF; 3000 V; 2120 V; 44.4 A; 314 A 3.115 5 mA, 4.4 mA, 3.6 mA, 5.59 ns 3.119 (0.969 A, 0.777 V); 0.753 W; 1 A, 0.864 V 3.121 1.11 µm, 0.875 µm; far infrared, near infrared 5 Chapter 4 4.3 10.5 x 10 -9 F/cm 2 4.4 34.5 µA/V 2 , 86.3 µA/V 2 , 173 µA/V 2 , 345 µA/V 2 4.9 (a) 4.00 mA/V 2 (b) 4.00 mA/V 2 , 8.00 mA/V 2 4.11 840 µA; −880 µA 4.15 23.0 Ω; 35.7 Ω 4.18 125 µA/V 2 ; 1.5 V; enhancement mode; 1.25/1 4.20 0 A, 0 A, 1.88 mA, 7.50 mA, 3.75 mA/V 2 4.22 (a) 460 µA, triode region; 1.56 mA, saturation region; 0 A, cutoff 4.23 saturation; cutoff; saturation; triode; triode; saturation 4.27 6.50 mS, 13.0 mS 4.30 2.48 mA; 2.25 mA 4.33 9.03 mA, 18.1 mA, 10.8 mA 4.37 Triode region 4.38 1.13 mA; 1.29 mA 4.39 99.5 µA; 199 µA; 99.5 µA; 99.5 µA 4.43 202 µA; 184 µA 4.44 5.17 V 4.49 40.0 µA; 72.0 µA; 4.41 µA; 32.8 µA 4.50 5810/1; 2330/1 4.54 235 Ω; 235 Ω 4.55 0.629 A/V 2 4.57 400 µA 4.64 14λ x 18λ ; 7.9% 4.71 3.45 x 10 -8 F/cm 2 ; 17.3 fF 4.81 (350 µA, 1.7 V); triode region 4.84 (390 µA, 4.1 V); saturation region 4.86 (778 µA, 9.20 V) 4.94 (134 µA, 4.64 V) ; (116 µA, 5.36 V) 4.97 510 kΩ, 470 kΩ, 12 kΩ, 12 kΩ, 5/1 4.100 (124 µA, 2.36 V) 4.103 (a) (33.3 µA, 1.01 V) 4.106 (23.5 µA, 0.967 V) 4.109 (73.1 µA, 9.37 V) 4.116 2.25 mA; 16.0 mA; 1.61 mA 4.119 18.1 mA; 45.2 mA; 13.0 mA 4.122 1/3.57 4.123 (153 µA, -3.53 V) ; (195 µA, -0.347 V) 6 4.125 4.04 V, 10.8 mA, 43.2 mA 4.126 14.4 mA; 27.1 mA; 10.4 mA 4.129 (59.8 µA, -5.47 V) , ≤ 130 kΩ 4.131 (55.3 µA, -7.09 V) , ≤ 164 kΩ 4.134 40.1 kΩ  (138 µA, -5 V) 4.138 One possible design: 220 kΩ, 200 kΩ, 5.1 kΩ, 4.7 kΩ 4.141 (260 µA, -12.4 V) 4.144 (36.1 µA, 80.6 mV); (32.4 µA, -1.32 V); (28.8 µA, -2.49 V) 4.146 34.5 fF, 17.3 fF 4.148 6.37 GHz, 2.55 GHz; 637 GHz, 255 GHz 4.149 690 µA, 86.3 µA 4.150 10 -22 A, 10 -15 A 7 Chapter 5 5.4 0.0167, 0.667, 3.00, 0.909, 49.0, 0.9950, 0.9990, 5000 5.5 2 fA; 1.01 fA, −0.115 V 5.6 0.374 µA, -149.6 µA, +150 µA, 0.591 V 5.9 2.02 fA 5.11 5.34 mA; − 5.34 mA 5.14 25 µA, -100 µA, +75 µA, 65.7, 1/3, 0, 0.599 V 5.17 1.77 µA, -33.2 µA, +35 µA, 0.623 V 5.20 723 µA 5.24 0.990, 0.333, 2.02 fA, 6.00 fA 5.26 83.3, 87.5, 100 5.33 39.6 mV/dec, 49.5 mV/dec, 59.4 mV/dec, 69.3 mV/dec 5.34 6 V, 50 V, 6 V 5.35 2.31 mA; 388 µA; 0 5.36 65.7 V 5.40 Cutoff 5.42 saturation, forward-active region, reverse-active region, cutoff 5.46 13.3 aA, 0.263 fA, 0.25 fA 5.47 I C = 16.3 pA, I E = 17.1 pA, I B = 0.857 pA, forward-active region; although I C , I E , I B are all very small, the Transport model still yields I C ≅ β F I B 5.48 65.7, 6.81 fA 5.49 62.5, 1.73 fA 5.50 55.3 µA, 0.683 µA, 54.6 µA 5.51 6.67 MHz 5.53 0.875, 24.2 aA 5.55 -19.9 µA, 26.5 µA, -46.4 µA 5.58 17.3 mV, 0.251 mV 5.60 1.81 A, 10.1 A 5.62 0.803 V, 0.714 V, 27.5 mV 5.65 23.2 µA 5.66 4.0 fF; 0.4 pF; 40 pF 5.68 750 MHz, 3.75 MHz 5.71 0.147 µm 5.72 71.7, 43.1 V 5.74 72.9, 37.6 V 5.75 100 µA, 4.52 µA, 95.5 µA, 0.589 V, 0.593 5.77 (c) 38.7 mS 5.78 0.388 pF at 1 mA 8 5.82 (80.9 µA, 3.80 V) ; (405 µA, 3.80 V) 5.86 (42.2 µA, 4.39 V) 5.92 (7.5 mA, 4.3 V) 5.94 (5.0 mA, 1.3 V) 5.96 30 kΩ, 620 kΩ; 24.2 µA, 0.770 V 5.98 5.28 V 5.100 3.21 Ω 5.103 616 µA, 867 µA, 3.90 V, 5.83 V 5.107 4.4 percent; 70 percent 5.109 The minimum I C case, (109 µA, 7.36 V). For the maximum I C case, the transistor is saturated. 9 Chapter 6 6.1 10 µW/gate, 4 µA/gate 6.3 2.5 V, 0 V, 0 W, 62.5 µW; 3.3 V, 0 V, 0 V, 109 µW 6.5 V OL = 0 V, V OH = 3.3 V, V REF = 1.1 V; Z = A 6.7 3 V, 0 V, 2 V, 1 V, −3 6.9 2 V, 0 V, 2 V, 5 V, 3 V, 2 V 6.11 3.3 V, 0 V, 3.0 V, 0.25 V, 1.8 V, 1.5 V, 1.2 V, 1.25 V 6.13 −0.80 V, −1.35 V 6.15 1 ns 6.17 1 µW/gate, 0.40 µA/gate, 1 fJ 6.19 2.20 RC; 2.20 RC 6.21 −0.78 V, −1.36 V, 1 ns, 1 ns, 9.5 ns, 9.5 ns, 4 ns, 4 ns, 4 ns 6.24 Z = 0 0 0 1 0 0 1 1 6.26 Z = 0 1 0 1 0 1 0 1 6.29 2 ; 1 6.31 84.5 A 6.32 0.583 pF 6.35 1 µW/gate, 0.556 µA/gate 6.37 155 kΩ, 1/1.08 6.39 (b) 2.5 V, 0.0329 V, 30.8 µW 6.40 (a) 0.412 V, 1.49 V 6.44 40.9 kΩ; 1.52/1; 1.49 V, 0.267 V 6.47 417 Ω; 1000 Ω; a resistive channel exists connecting the source and drain; 20/1 6.50 1.44 V 6.53 1.29 V, 0.06 V 6.56 1.40/1, 6.67/1 6.59 0.106 V 6.61 ratioed logic so V H = 1.55 V, V L = 0.20 V; P = 0.24 mW 6.65 3.79 V 6.69 1.014 6.71 1.16/1, 1.36/1 6.72 1.46/1, 1/2.48 6.74 1.80/1, 0.610 V, 0.475 V 6.77 (a) 88.8 µA, 0.224 V (b) 0.700 V, 0.449 V 6.80 1.65/1, 1/1.80, 0.821 V, 0.440 V 6.84 2.22/1, 1.81/1 6.87 6.66/1, 1.11/1, 0.203 V, 6.43/1, 6.74/1, 7.09/1 10 6.90 Y = ( A + B)(C + D)( E + F) , 6.66/1, 1.81/1 6.94 € Y = ACE + ACDF + BF + BDE , 3.33/1, 26.6/1, 17.8/1 6.97 1/1.80, 3.33/1 6.100 Y = (C + E)[ A(B + D) + G] + F ; 3.62/1, 13.3/1, 4.44/1, 6.67/1 6.103 3.45/1, 6.43/1, 7.09/1, 6.74/1 6.105 7.09/1, 6.43/1, 6.74/1 6.108 7.24/1, 26.6/1, 8.88/1, 13.3/1 6.110 (a) 5.43/1, 9.99/1, 20.0/1 6.113 ′ I DS = 2I DS , ′ P D = 2P D 6.114 80 mW, 139 mW 6.116 1 ns 6.118 60.2 ns, a potentially stable state exists with no oscillation 6.119 31.7 ns, 4.39 ns, 5.86 ns 6.123 114 ns, 5.94 ns, 15.3 ns 6.126 78.7 ns, 10.2 ns, 9.00 ns 6.128 3.52/1, 27.8/1, 12.8 ns, 0.924 ns 6.130 (a) 1/1.68 (d) 1/5.89 (f) 1/1.60 6.132 − 1.90 V, −0.156 V 6.133 1/3.30, 1.75/1 6.134 2.30 V, 1.07 V 6.136 Y = A + B [...]... 7.35 1.00 W; 1.74 W 7.37 90.3 µA; 25.0 µA 7.41 0.290 pJ, 283 MHz, 616 µW 7.44 αΔT, α 2P, α 3PDP 7.48 2/1, 20/1; 6/1, 60/1 7.53 1.25/1 7.59 3.95 ns, 3.95 ns, 11.8 ns 7.60 (a) 5 transistors (b) The CMOS design requires 47% less area 7.62 Y = ( A + B)(C + D)E = ACE + ADE + BDE + BCE, 18/1, 30/1, 15/1 7.64 Y = A + B C + D E + F = AB + CD + EF , 4/1, 15/1 7.67 2/1, 4/1, 6/1, 20/1 7.69 (a) Path through NMOS... kΩ, 100 kΩ, 20 kΩ, 0.0133 µF 11.92 0.759 V 11.93 2.4 Hz 11.98 VO = -V1V2/104IS 11.99 ] 2.62 V, 2.38 V, 0.24 V 11.101 0.487 V, -0.487 V, 0.974 V 11.103 9.86 kHz 11.104 f = 0 VO = 0 is a stable state The circuit does not oscillate 11.106 0, 0.298 V, 69.0 mV 11.107 13 kΩ, 30 kΩ, 51 kΩ, 150 pF 18 | Q SK = K 3− K Chapter 12 12.1 (a) 13.49, 9.11x10-3, 0.0675% 12.3 (a) -9.997, 2.76x10-3, 0.0276% 12.5 106 dB... MHz 16.69 3.19, 11.3 MHz, 20.6Hz 16.71 0.964, 114 MHz 16.73 -1.46 dB, 75.4 MHz 16.75 C GD + C GS/(1 + gm RL) for ω . MICROELECTRONIC CIRCUIT DESIGN Third Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems. ≤ 130 kΩ 4.131 (55.3 µA, -7.09 V) , ≤ 164 kΩ 4.134 40.1 kΩ  (138 µA, -5 V) 4.138 One possible design: 220 kΩ, 200 kΩ, 5.1 kΩ, 4.7 kΩ 4.141 (260 µA, -12.4 V) 4.144 (36.1 µA, 80.6 mV); (32.4 µA,. 20/1; 6/1, 60/1 7.53 1.25/1 7.59 3.95 ns, 3.95 ns, 11.8 ns 7.60 (a) 5 transistors (b) The CMOS design requires 47% less area. 7.62 Y = ( A + B)(C + D)E = ACE + ADE + BDE + BCE, 18/1, 30/1,

Ngày đăng: 05/07/2014, 05:20

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan