MICROELECTRONIC CIRCUIT DESIGN Third Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems – Updated 1/25/08 Chapter 1 1.3 1.52 years, 5.06 years 1.5 1.95 years, 6.46 years 1.8 113 MW, 511 kA 1.10 2.50 mV, 5.12 V, 5.885 V 1.12 19.53 mV/bit, 10001110 2 1.16 0.002 A, 0.002 cos (1000t) A 1.19 v DS = [5 + 2 sin (2500t) + 4 sin (1000t)] V 1.21 15.7 V, 2.31 V, 70.0 µA, 210 µA 1.23 120 µA, 125 µA, 10.3 V 1.25 39.6 Ω, 0.0253 v s 1.27 56 kΩ, 1.33 x 10 -3 v s 1.29 1.00 MΩ, 2.50 x 10 8 i s 1.33 5 / − 45 °, 100 / − 12 ° 1.35 -90.1 sin 750πt mV, 11.0 sin 750πt µA 1.37 1 + R 2 /R 1 1.39 -1.875 V, -2.500 V 1.41 Band-pass amplifier 1.43 50.0 sin (2000 π t) + 30.0 cos (8000 π t) V 1.45 0 V 1.47 [2970Ω, 3030Ω], [2850Ω, 3150Ω], [2700Ω, 3300Ω] 1.52 6200Ω, 800 ppm/ o C 1.58 3.29, 0.995, −6.16; 3.295, 0.9952, −6.155 2 Chapter 2 2.4 For Ge: 35.9/cm 3 , 2.27 × 10 13 / cm 3 , 8.04 × 10 15 / cm 3 2.7 € −1.75x10 6 cm s, + 6.25x10 5 cm s, 2.80x10 4 A cm 2 , 1.00x10 −10 A cm 2 2.8 305.2 K 2.10 4 ΜΑ/cm 2 2.13 1.60 x 10 7 A/cm 2 , 4.00 A 2.15 316.6 K 2.19 Donor, acceptor 2.20 200 V/cm 2.22 5 x 10 3 atoms 2.24 4 x 10 16 /cm 3 , 2.50 x 10 5 /cm 3 2.28 6 x 10 18 /cm 3 , 16.7/cm 3 , 5 x 10 9 /cm 3 , 8.80 x 10 -10 /cm 3 2.30 3 x 10 17 /cm 3 , 333/cm 3 2.32 100/cm 3 , 10 18 /cm 3 , 375 cm 2 /s, 100 cm 2 /s, p-type, 62.4 mΩ-cm 2.34 10 16 /cm 3 , 10 4 /cm 3 , 800 cm 2 /s, 1230 cm 2 /s, n-type, 0.781 Ω-cm 2.38 3.06 x 10 18 /cm 3 2.40 Yes—add equal amounts of donor and acceptor impurities. Then n = n i = p, but the mobilities are reduced. See Prob. 2.37. 2.42 2.00/Ω-cm, 3.1 x 10 19 /cm 3 , 2.44 75K: 6.64 mV, 150K: 12.9 mV, 300K: 25.8 mV, 400K: 34.5 mV 2.46 -1.20 x10 5 exp (-5000 x/cm) A/cm 2 ; 12.0 mA 2.48 The width in the figure should be 2 µm: For x = 0, -535 A/cm 2 2.50 1.108 µm 3 Chapter 3 3.1 0.0373 µm, 0.0339 µm, 3.39 x 10 -3 µm, 0.979 V, 5.24 x 10 5 V/cm 3.3 10 18 /cm 3 , 10 2 /cm 3 , 10 18 /cm 3 , 10 2 /cm 3 , 0.921 V, 0.0488 µm 3.6 2.55 V, 1.05 µm 3.10 6400 A/cm 2 3.13 1.00 x 10 21 /cm 4 3.17 290 K 3.20 312K 3.21 1.39, 3.17 pA 3.22 0.837 V; 0.768 V; 0 A; 9.43 x 10 -19 A, -1.00 x 10 -18 A 3.25 1.34 V; 1.38 V 3.28 0.518 V; 0.633 V 3.31 0.757 V; 0.721 V 3.34 −1.96 mV/K 3.37 0.633 V, 0.949 µm, 3.89 µm, 12.0 µm 3.39 374 V 3.41 4 V, 0 Ω 3.43 9.80 nF/cm 2 ; 188 pF 3.45 400 fF, 10 fC; 100 pF, 0.5 pC 3.49 9.97 MHz; 15.7 MHz 3.51 0.495 V, 0.668 V 3.53 0.708 V, 0.718 V 3.56 (a) Load line: (450 µA, 0.500 V); SPICE: (443 µA, 0.575 V) (b) Load line: (-667 µA, -4 V); (c) Load line: (0 µA, -3 V); 3.59 (0.600 mA, -4 V) , (0.950 mA, 0.5 V) , (-2.00 mA, -4 V) 3.65 Load line: (50 µA, 0.5 V); Mathematical model: (49.9 µA, 0.501 V); Ideal diode model: (100 µA, 0 V); CVD model: (40.0µA, 0.6 V) 3.69 (a) 0.625 mA, 3 V; 0.625 mA, -5 V; 0 A, -5 V; 0 A, 7 V 3.71 (a) (409 µA, 0 V), (270 µA, 0 V); (c) (0 A -3.92 V), (230 µA, 0 V) 3.73 (a) (0.990 mA, 0 V) (0 mA, -1.73 V) (1.09 mA, 0) (d) (0 A, -0.452 V) (0 A, -0.948 V) (1.16 mA, 0.600 V) 3.76 (1.50 mA, 0 V) (0 A, -5.00 V) (1.00 mA, 0) 3.78 (I Z , V Z ) = (792 µA, 4.00 V) 3.81 10.8 mW 3.83 2.25 W, 4.50 W 3.88 17.6 V 3.91 −7.91 V; 1.05 F; 17.8 V; 3530 A; 841 A (ΔT = 0.628 ms) 4 3.94 -7.91V, 0.158 F, 17.8 V, 3540 A, 839 A 3.97 6.06 F; 8.6 V; 3.04 V; 1920 A; 9280 A 3.100 -20.2 V; 1.35 F; 42.4 V; 10800 A; 1650 A 3.103 3.03 F, 8.6 V, 3.04 V, 962 A, 4910 A 3.107 278 µF; 3000 V; 2120 V; 44.4 A; 314 A 3.115 5 mA, 4.4 mA, 3.6 mA, 5.59 ns 3.119 (0.969 A, 0.777 V); 0.753 W; 1 A, 0.864 V 3.121 1.11 µm, 0.875 µm; far infrared, near infrared 5 Chapter 4 4.3 10.5 x 10 -9 F/cm 2 4.4 34.5 µA/V 2 , 86.3 µA/V 2 , 173 µA/V 2 , 345 µA/V 2 4.9 (a) 4.00 mA/V 2 (b) 4.00 mA/V 2 , 8.00 mA/V 2 4.11 840 µA; −880 µA 4.15 23.0 Ω; 35.7 Ω 4.18 125 µA/V 2 ; 1.5 V; enhancement mode; 1.25/1 4.20 0 A, 0 A, 1.88 mA, 7.50 mA, 3.75 mA/V 2 4.22 (a) 460 µA, triode region; 1.56 mA, saturation region; 0 A, cutoff 4.23 saturation; cutoff; saturation; triode; triode; saturation 4.27 6.50 mS, 13.0 mS 4.30 2.48 mA; 2.25 mA 4.33 9.03 mA, 18.1 mA, 10.8 mA 4.37 Triode region 4.38 1.13 mA; 1.29 mA 4.39 99.5 µA; 199 µA; 99.5 µA; 99.5 µA 4.43 202 µA; 184 µA 4.44 5.17 V 4.49 40.0 µA; 72.0 µA; 4.41 µA; 32.8 µA 4.50 5810/1; 2330/1 4.54 235 Ω; 235 Ω 4.55 0.629 A/V 2 4.57 400 µA 4.64 14λ x 18λ ; 7.9% 4.71 3.45 x 10 -8 F/cm 2 ; 17.3 fF 4.81 (350 µA, 1.7 V); triode region 4.84 (390 µA, 4.1 V); saturation region 4.86 (778 µA, 9.20 V) 4.94 (134 µA, 4.64 V) ; (116 µA, 5.36 V) 4.97 510 kΩ, 470 kΩ, 12 kΩ, 12 kΩ, 5/1 4.100 (124 µA, 2.36 V) 4.103 (a) (33.3 µA, 1.01 V) 4.106 (23.5 µA, 0.967 V) 4.109 (73.1 µA, 9.37 V) 4.116 2.25 mA; 16.0 mA; 1.61 mA 4.119 18.1 mA; 45.2 mA; 13.0 mA 4.122 1/3.57 4.123 (153 µA, -3.53 V) ; (195 µA, -0.347 V) 6 4.125 4.04 V, 10.8 mA, 43.2 mA 4.126 14.4 mA; 27.1 mA; 10.4 mA 4.129 (59.8 µA, -5.47 V) , ≤ 130 kΩ 4.131 (55.3 µA, -7.09 V) , ≤ 164 kΩ 4.134 40.1 kΩ (138 µA, -5 V) 4.138 One possible design: 220 kΩ, 200 kΩ, 5.1 kΩ, 4.7 kΩ 4.141 (260 µA, -12.4 V) 4.144 (36.1 µA, 80.6 mV); (32.4 µA, -1.32 V); (28.8 µA, -2.49 V) 4.146 34.5 fF, 17.3 fF 4.148 6.37 GHz, 2.55 GHz; 637 GHz, 255 GHz 4.149 690 µA, 86.3 µA 4.150 10 -22 A, 10 -15 A 7 Chapter 5 5.4 0.0167, 0.667, 3.00, 0.909, 49.0, 0.9950, 0.9990, 5000 5.5 2 fA; 1.01 fA, −0.115 V 5.6 0.374 µA, -149.6 µA, +150 µA, 0.591 V 5.9 2.02 fA 5.11 5.34 mA; − 5.34 mA 5.14 25 µA, -100 µA, +75 µA, 65.7, 1/3, 0, 0.599 V 5.17 1.77 µA, -33.2 µA, +35 µA, 0.623 V 5.20 723 µA 5.24 0.990, 0.333, 2.02 fA, 6.00 fA 5.26 83.3, 87.5, 100 5.33 39.6 mV/dec, 49.5 mV/dec, 59.4 mV/dec, 69.3 mV/dec 5.34 6 V, 50 V, 6 V 5.35 2.31 mA; 388 µA; 0 5.36 65.7 V 5.40 Cutoff 5.42 saturation, forward-active region, reverse-active region, cutoff 5.46 13.3 aA, 0.263 fA, 0.25 fA 5.47 I C = 16.3 pA, I E = 17.1 pA, I B = 0.857 pA, forward-active region; although I C , I E , I B are all very small, the Transport model still yields I C ≅ β F I B 5.48 65.7, 6.81 fA 5.49 62.5, 1.73 fA 5.50 55.3 µA, 0.683 µA, 54.6 µA 5.51 6.67 MHz 5.53 0.875, 24.2 aA 5.55 -19.9 µA, 26.5 µA, -46.4 µA 5.58 17.3 mV, 0.251 mV 5.60 1.81 A, 10.1 A 5.62 0.803 V, 0.714 V, 27.5 mV 5.65 23.2 µA 5.66 4.0 fF; 0.4 pF; 40 pF 5.68 750 MHz, 3.75 MHz 5.71 0.147 µm 5.72 71.7, 43.1 V 5.74 72.9, 37.6 V 5.75 100 µA, 4.52 µA, 95.5 µA, 0.589 V, 0.593 5.77 (c) 38.7 mS 5.78 0.388 pF at 1 mA 8 5.82 (80.9 µA, 3.80 V) ; (405 µA, 3.80 V) 5.86 (42.2 µA, 4.39 V) 5.92 (7.5 mA, 4.3 V) 5.94 (5.0 mA, 1.3 V) 5.96 30 kΩ, 620 kΩ; 24.2 µA, 0.770 V 5.98 5.28 V 5.100 3.21 Ω 5.103 616 µA, 867 µA, 3.90 V, 5.83 V 5.107 4.4 percent; 70 percent 5.109 The minimum I C case, (109 µA, 7.36 V). For the maximum I C case, the transistor is saturated. 9 Chapter 6 6.1 10 µW/gate, 4 µA/gate 6.3 2.5 V, 0 V, 0 W, 62.5 µW; 3.3 V, 0 V, 0 V, 109 µW 6.5 V OL = 0 V, V OH = 3.3 V, V REF = 1.1 V; Z = A 6.7 3 V, 0 V, 2 V, 1 V, −3 6.9 2 V, 0 V, 2 V, 5 V, 3 V, 2 V 6.11 3.3 V, 0 V, 3.0 V, 0.25 V, 1.8 V, 1.5 V, 1.2 V, 1.25 V 6.13 −0.80 V, −1.35 V 6.15 1 ns 6.17 1 µW/gate, 0.40 µA/gate, 1 fJ 6.19 2.20 RC; 2.20 RC 6.21 −0.78 V, −1.36 V, 1 ns, 1 ns, 9.5 ns, 9.5 ns, 4 ns, 4 ns, 4 ns 6.24 Z = 0 0 0 1 0 0 1 1 6.26 Z = 0 1 0 1 0 1 0 1 6.29 2 ; 1 6.31 84.5 A 6.32 0.583 pF 6.35 1 µW/gate, 0.556 µA/gate 6.37 155 kΩ, 1/1.08 6.39 (b) 2.5 V, 0.0329 V, 30.8 µW 6.40 (a) 0.412 V, 1.49 V 6.44 40.9 kΩ; 1.52/1; 1.49 V, 0.267 V 6.47 417 Ω; 1000 Ω; a resistive channel exists connecting the source and drain; 20/1 6.50 1.44 V 6.53 1.29 V, 0.06 V 6.56 1.40/1, 6.67/1 6.59 0.106 V 6.61 ratioed logic so V H = 1.55 V, V L = 0.20 V; P = 0.24 mW 6.65 3.79 V 6.69 1.014 6.71 1.16/1, 1.36/1 6.72 1.46/1, 1/2.48 6.74 1.80/1, 0.610 V, 0.475 V 6.77 (a) 88.8 µA, 0.224 V (b) 0.700 V, 0.449 V 6.80 1.65/1, 1/1.80, 0.821 V, 0.440 V 6.84 2.22/1, 1.81/1 6.87 6.66/1, 1.11/1, 0.203 V, 6.43/1, 6.74/1, 7.09/1 10 6.90 Y = ( A + B)(C + D)( E + F) , 6.66/1, 1.81/1 6.94 € Y = ACE + ACDF + BF + BDE , 3.33/1, 26.6/1, 17.8/1 6.97 1/1.80, 3.33/1 6.100 Y = (C + E)[ A(B + D) + G] + F ; 3.62/1, 13.3/1, 4.44/1, 6.67/1 6.103 3.45/1, 6.43/1, 7.09/1, 6.74/1 6.105 7.09/1, 6.43/1, 6.74/1 6.108 7.24/1, 26.6/1, 8.88/1, 13.3/1 6.110 (a) 5.43/1, 9.99/1, 20.0/1 6.113 ′ I DS = 2I DS , ′ P D = 2P D 6.114 80 mW, 139 mW 6.116 1 ns 6.118 60.2 ns, a potentially stable state exists with no oscillation 6.119 31.7 ns, 4.39 ns, 5.86 ns 6.123 114 ns, 5.94 ns, 15.3 ns 6.126 78.7 ns, 10.2 ns, 9.00 ns 6.128 3.52/1, 27.8/1, 12.8 ns, 0.924 ns 6.130 (a) 1/1.68 (d) 1/5.89 (f) 1/1.60 6.132 − 1.90 V, −0.156 V 6.133 1/3.30, 1.75/1 6.134 2.30 V, 1.07 V 6.136 Y = A + B [...]... 7.35 1.00 W; 1.74 W 7.37 90.3 µA; 25.0 µA 7.41 0.290 pJ, 283 MHz, 616 µW 7.44 αΔT, α 2P, α 3PDP 7.48 2/1, 20/1; 6/1, 60/1 7.53 1.25/1 7.59 3.95 ns, 3.95 ns, 11.8 ns 7.60 (a) 5 transistors (b) The CMOS design requires 47% less area 7.62 Y = ( A + B)(C + D)E = ACE + ADE + BDE + BCE, 18/1, 30/1, 15/1 7.64 Y = A + B C + D E + F = AB + CD + EF , 4/1, 15/1 7.67 2/1, 4/1, 6/1, 20/1 7.69 (a) Path through NMOS... kΩ, 100 kΩ, 20 kΩ, 0.0133 µF 11.92 0.759 V 11.93 2.4 Hz 11.98 VO = -V1V2/104IS 11.99 ] 2.62 V, 2.38 V, 0.24 V 11.101 0.487 V, -0.487 V, 0.974 V 11.103 9.86 kHz 11.104 f = 0 VO = 0 is a stable state The circuit does not oscillate 11.106 0, 0.298 V, 69.0 mV 11.107 13 kΩ, 30 kΩ, 51 kΩ, 150 pF 18 | Q SK = K 3− K Chapter 12 12.1 (a) 13.49, 9.11x10-3, 0.0675% 12.3 (a) -9.997, 2.76x10-3, 0.0276% 12.5 106 dB... MHz 16.69 3.19, 11.3 MHz, 20.6Hz 16.71 0.964, 114 MHz 16.73 -1.46 dB, 75.4 MHz 16.75 C GD + C GS/(1 + gm RL) for ω . MICROELECTRONIC CIRCUIT DESIGN Third Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems. ≤ 130 kΩ 4.131 (55.3 µA, -7.09 V) , ≤ 164 kΩ 4.134 40.1 kΩ (138 µA, -5 V) 4.138 One possible design: 220 kΩ, 200 kΩ, 5.1 kΩ, 4.7 kΩ 4.141 (260 µA, -12.4 V) 4.144 (36.1 µA, 80.6 mV); (32.4 µA,. 20/1; 6/1, 60/1 7.53 1.25/1 7.59 3.95 ns, 3.95 ns, 11.8 ns 7.60 (a) 5 transistors (b) The CMOS design requires 47% less area. 7.62 Y = ( A + B)(C + D)E = ACE + ADE + BDE + BCE, 18/1, 30/1,